International Journal of Mechanics

ISSN: 1998-4448
Volume 12, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format


Volume 12, 2018

Title of the Paper: Numerical Study of Disperse Materials Process in a Continuous-Flow Plasma Reactor


Authors: Issakhov A. A., Urmashev B. A.

Pages: 1-7

Abstract: The paper presents a numerical study of the temperature propagation in the direct-flow plasma reactor, which is solved by the compressible Navier - Stokes equations that is approximated by finite volume method, the numerical algorithm based on the SIMPLE method. In the numerical algorithm of the equation system can be divided into four stages. The first stage is that the transfer of momentum carried out only by convection and diffusion. The intermediate velocity field is solved by the solution of the differential velocity gradient equation with the Green-Gauss Cell Based scheme. For the pressure field is applied PRESTO numerical scheme. In a third step it is assumed that the transfer is carried out only by the pressure gradient. The fourth step of the equation is solved for the energy transport equation as well as the momentum equations by the Green-Gauss Cell Based scheme. The algorithm is parallelized on high-performance systems. With this numerical algorithm was obtained numerical results of temperature distribution in a continuousflow plasma reactor. Numerical modelling allows us to give a more precise description of the processes that have been identified and studied theoretically and can reveal new physical phenomena processes that are not yet available, seen in experimental studies. Simulation results show that the constructed numerical model provides the necessary accuracy and stability, which should accurately describe the process during the time interval.