
 

 

  

Abstract— The precise motion control of a pneumatic artificial 

muscle (PAM) actuated system poses a great challenge to researchers 

due to the inherent nonlinearities, time-varying parameters, and high 

sensitivity to payload of the PAM mechanism. This paper highlights 

the effective practical implementation of an active force control 

(AFC) technique incorporating an iterative learning (IL) algorithm 

known as AFCAIL applied to a two-link planar robotic arm actuated 

by a pair of PAMs. The iterative learning is primarily used as a 

technique to compute the best value of the estimated inertia matrix of 

the robot arm required for the AFC loop that is complemented with a 

conventional proportional-integral-derivative (PID) control. An 

experimental rig utilizing a hardware-in-the-loop simulation (HILS) 

configuration was designed and developed based on suitable 

hardware and software installation. A number of experiments were 

carried out to validate the theoretical counterpart considering the 

independent joint control and coordinated motion control of the 

system for a given operating and loading conditions. The results of 

the experimental works verify the effectiveness and robustness of the 

proposed PAM actuated AFCAIL scheme in executing a number of 

trajectory tracking tasks. 

 

Keywords— Active force control, hardware-in-the-loop 

simulation, iterative learning, pneumatic artificial muscle.  

I. INTRODUCTION 

OBOTS are typically designed to move objects through 

various programmed motions while performing specific 

tasks. Actuators are therefore indispensable components for all 

robotic systems since they provide the necessary forces, 

torques, and mechanical motions to move the joint, limb or 

body. Today’s mechanical systems have such criteria for 

actuators including high power density, high power to weight 

ratio, rapid response, accurate and repeatable control, low 

cost, cleanliness and high efficiency. The pneumatic artificial 

muscle (PAM) actuator possesses many of these advantages, 

which is therefore considered as a strong candidate for robotic 

applications. However, the inherent nonlinearities, time-

varying parameters, and high sensitivity to payload of the 
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PAM make it a challenge for the accurate force and position 

control of manipulators in employing these actuators. In order 

to have a proper control, the accurate model of actuator is 

needed. Hence, a number of researches have been carried out 

on the modelling of PAM for specific application. In [1], the 

principle of virtual work is used to derive the muscle force 

model and by [2] typical model as a parallel spring and a 

damper system is proposed and their mechanical behaviour 

was followed by [3].  With the aim of achieving satisfactory 

control performance, many control strategies have been 

proposed to deal with the effect of nonlinearity and hysteresis 

of PAMs. However, the majority of conventional control 

methods, such as PID controllers, are based on mathematical 

and statistical methods for modelling the system. In practice, 

the manipulators usually are highly nonlinear and a 

mathematical model may be difficult to obtain. Hence, 

conventional methods are not able to achieve high level of 

accuracy and robustness. Thanh and Anh in their research, 

proposed a nonlinear PID controller which was tuned by 

neural networks to control the two-link planar manipulator [4]. 

Recently, genetic algorithm is employed to identify the 

parameters of the two-link PAM manipulator by an ARX 

model [5]. Zhu et al. applied a discontinuous projection-based 

adaptive robust control method to control a three pneumatic-

muscles-driven parallel manipulator through the simulation 

and experimental studies to achieve the precise posture 

trajectory tracking control [6]. An adaptive self-organizing 

fuzzy sliding mode control was developed by [7] that utilized a 

fuzzy sliding surface to reduce the number of fuzzy rules. 

Chan et al. has done an extensive simulation study on the 

control of PAM using fuzzy PD+I for position tracking of a 

vertical movement of a mass attached to a pneumatic muscle 

[8]. Lilly applied adaptive tracking techniques to PAM 

actuators arranged in bicep and tricep configurations [9]. As 

an extension to this work, a sliding mode control method for 

elbow angle tracking under load with PAM in place of the 

bicep and tricep configuration was employed [10]. Among the 

many research done on PAM, only a handful of research can 

be found pertaining to force control. Also, to the authors 

knowledge, there is as yet no available literature on the 

application of an iterative learning (IL) technique to control 

the PAM system directly or otherwise.  

   In this paper, a feedback control known as active force 
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control (AFC) strategy is employed to control a PAM actuated 

robot system robustly and effectively. AFC has been 

recognized to be simple, robust and effective compared to 

conventional methods in controlling dynamical systems, both 

in theory as well as in practice through the pioneering works of 

Hewit and co-workers [11]. Their works were extended and 

consolidated by Mailah and fellow researchers, who applied 

the concept taking into account various value-added features to 

a number of dynamical systems which are mainly developed in 

the Systems and Control Laboratory at the Universiti 

Teknologi Malaysia (UTM) [12,13]. In this research, IL is 

incorporated into the control scheme to compute the estimated 

inertia matrix (IN) of a robot arm intelligently, so that it can be 

utilized by the AFC mechanism in compensating the 

disturbances. As an illustration, two types of motion control, 

namely, the independent joint control and coordinated motion 

control were considered and implemented. The AFCAIL 

schemes were subsequently benchmarked with the 

conventional PID counterparts with the main objective of 

acquiring robust and accurate trajectory tracking task 

performances. 

II. PNEUMATIC ARTIFICIAL MUSCLE 

The PAM in this research as an actuator is fluidic muscle 

produced by FESTO which is depicted in Fig. 1. The first idea 

of this type of actuator was proposed in the late 1950’s by 

Gaylord for use in prosthetics and developed [14]. It was used 

by McKibben as an orthotic device for polio patients [15]. 

PAM is made up of a flexible rubber tube braided with cross-

weave sheath material and two connection flanges. When the 

rubber tube is inflated with compressed air, the cross-weave 

sheath experiences lateral expansion, consequential in axial 

contractive force and the change of the end point position of 

PAM. Thus, the position or force control of the PAM along its 

axial direction can be found by regulating the inner pressure 

[6]. Its operation is very similar to how an animal skeletal 

muscle performs and is readily applicable to the construction 

of biomechanically realistic skeletal models [16]. 

 

 
Fig. 1 Fluidic muscle produced by FESTO 

 

PAM actuators have been widely investigated with regard to 

static modelling and geometric calculations. Tondu and Lopez 

modelled the PAM actuator using the virtual work principle [1, 

17] as depicted in Fig. 2. Ping and Hannaford also modelled 

the McKibben system using the principle of virtual work [18, 

19] which is similar to Tondu and Lopez but they did not 

separate the lateral force and axial force produced by internal 

pressure as shown in Fig. 2. 

 

 
Fig. 2 Virtual work principle applied to McKibben actuator 

 

The force produced by PAM can be expressed as a function 

of the total pressure P and contraction ratio ε [1]:  

 

            
max

2 0,])    1(   [   )  (  )  ( εεπ ≤≤−−= bεkaPrεP,F 2

0
   (1) 

    

where P is the pressure inside the PAM, a and b are 

constants given by a=3/tan2(α0) and b=1/sin2(α0) respectively, 

that are related to the structure of PAM, k is a parameter to 

account for shape degradation at both ends of actuator during 

contraction, ε is the contraction ratio expressed as ε = (l0-l)/l,  

r0 is the initial radius of the PAM, and the initial angle α0 is 

defined as the angle between the PAM axis and each thread of 

the braided sheath before expansion . 

III. DYNAMICS OF THE ROBOTIC ARM 

The dynamics of the manipulator is not completely 

consistent with that of a human arm. By modelling the coupled 

links as a conservative system, friction is neglected which is 

inherent in realistic applications. In addition, the 

computational model is unable to impose the geometric 

constraints characteristic of the human joints. The applicability 

of Lagrange’s equation of motion in robotics is demonstrated 

by modelling the two-link planar robotic arm as shown in Fig. 

3. 

 

 
Fig. 3 A representation of a two link robotic arm 

 

In the figure, subscripts 1 and 2 refer to the parameters of 

the first link (Humerus) and second link (forearm), 

respectively. L is the length of arm and θ is the angular (joint) 

position of the arm. Lagrange formulation is used to derive the 

equation of motion for the nonlinear dynamic system. The 

general dynamic equation for a series rotating manipulator can 
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be described as follows [20]: 

 

dτθθθθθτ +++= )(),()( GhH ɺɺɺ
          (2) 

 

Where τ is the actuated torque vector, H  is the N × N 

inertia matrix of the manipulator, h is the Coriolis and 

centripetal torque vector, G is the gravitational torque vector 

and dτ
is the external disturbance torque vector. Since the arm 

is assumed to move in a horizontal plane, the gravitational 
term can be omitted.  

The detailed dynamic model is given by: 

21

2

22121111 2 θθθθθτ ɺɺɺɺɺɺɺ hhHH −−+=                   (3) 

2

11212222 θθθτ ɺɺɺɺɺ hHH −+=                             (4) 

Where 

2221

2

2

2

121

2

1211   )  cos  2   (    IllllmIlmH cccc +++++= θ              (5) 

2

2

2222122112 cos IlmllmHH cc ++== θ
               (6) 

2

2

2222 IlmH c +=
                              (7) 

2212 sinθcllmh =
                              (8) 

IV. ROBOTIC ARM ACTUATED BY ANTAGONISTIC PAMS 

Two PAMs arranged into an antagonism configuration 

emulate a physiological model of the bicep-tricep system – the 

antagonistic configuration of skeleto-muscle system of human 

elbow joint. The two muscles are connected by a timing belt 

driven a timing pulley. The differential pressure and in 

consequence, force difference between the agonist and the 

antagonist produces a positive or negative torque. Both 

muscles shall pressurize at the same pressure P0 and cause the 

same contraction ratio ε0 in the first place. When the agonist 

inflates with pressure P1 different from the antagonist pressure 

P2, an actuator rotation of angle θ shall be produced. This 

principle is depicted in Fig. 4. 

 

 
Fig. 4 Working principle of antagonistic fluidic muscle actuator 

    

   A model of produced torque by the actuators can be 

managed by force produced by each actuator. The agonist 

force will be denoted F1, the antagonist force F2, and the 

timing pulley radius r. We obtain: 

 

       τ = (F1 (ε1, P1) - F2 (ε2, P2))r                           (9) 

 

       ε1 = ε0 + rθ/l0 , ε2 = ε0 - rθ /l0                          (10) 

 

After developing the torque model in above, a monovariable 

approach of the PAM actuator, which could be called 

symmetrical co-contraction by analogy with the 

neurophysiological terminology is now considered. The 

symmetrical pressure variation, applied from initial pressure P0 

in both muscles, will be noted ∆P. By applying P1 = P0 + ∆P 

and P2 = P0 – ∆P in (10), the torque model of the actuator 

becomes:  

 

T = 2K1 ∆P - 2 K2 P0 θ                                  (11) 

 

Where  

       K1 =  
])1([)( 2

0

2
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This model highlights the main originality of the actuator. 

The static relationship is deduced with G representing an 

open-loop gain [1]: 

 

θ = G ∆P                            (13) 
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The schematic model of a two link planar driven by PAMs 

can be seen in Fig. 5. In this model, each link is actuated by a 

pair of PAM that the differential pressure causes to move the 

link. For first link the actuator is fixed to the body while the 

second link’s muscles are attached to the first link. 

 

 
Fig. 5 Schematic model of the PAM actuated two link arm system 

V. CONTROLLER DESIGN 

In this section, all the major elements constituting the design 

and implementation of the overall control system are 

described. It involves three stages; firstly, the design of the 

PID controller; secondly, the integration of AFC into the PID 

control system and lastly, the incorporation of an iterative 
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learning (IL) algorithm into the AFC loop. The resulting 

overall scheme is to be known as active force control and 

iterative learning (AFCAIL).  

A. PID Control 

The PID control is first designed prior to the 

implementation of the AFC. It is represented by the outermost 

loop of the proposed scheme specially formulated to provide 

for the positional trajectory control. The transfer function of a 

PID controller is typically given by: 

 

SK
S

K
KG D

I

PPID ++=

              (15) 

 

   Where KP, KI, and KD are the proportional, integral and 

derivative gains, respectively which were obtained by a 

heuristic approach.  

B. Active Force Control 

Next the AFC scheme is integrated with the PID control 

loop by adding the AFC loop (Fig. 6) in series to constitute a 

2-DOF controller. Hewit and Burdess first applied the active 

force control (AFC) technique successfully to a robotic arm 

[11]. They proposed a practical and robust technique to 

compensate for the internal and external disturbances of a 

mechatronics/machinery system by employing an internal force 

error feedback control based on real-time acceleration and 

force measurements. 

 

 
Fig. 6 General form of the AFC scheme 

    

   The main AFC algorithm is defined as follows: 

 

                                  
θττ ɺɺIN−=

*

d             (16) 

Where IN is the estimated inertia matrix, 
*

dτ  is the estimated 

disturbance torque, θɺɺ  is the actual acceleration and τ is the 

actuated torque. The aim of the AFC method is to ensure that 

the system is stable and robust even in the presence of known 

or unknown disturbances via a compensating action using 

mainly the estimated or measured values of certain parameters. 

This has the benefits of reducing the mathematical complexity 

of the robot system that is known to be highly coupled and 

non-linear. The main computational burden in AFC is the 

multiplication of the estimated inertia matrix with the 

respective acceleration of the robot dynamic component before 

being fed into the AFC feed forward loop. The control of a 

robot arm using AFC can be considerably improved if a 

method is found to provide good estimates of the inertia 

matrix of the arm.  

In the study, we use an iterative learning (IL) method to 

estimate this parameter. Thus, the third and final stage is to 

embed a type of IL algorithm into the AFC loop to compute 

the estimated inertia matrix of the arm.  

C. Iterative Learning 

The IL technique has been rigorously studied by Arimoto 

and co-workers [21, 22]. In this study, a PD-type IL algorithm 

based on Arimoto’s original work is proposed as shown in 

Fig.7. 

 

 

Fig. 7 PD type iterative learning scheme 

    

The PD type IL algorithm can be expressed as follows: 

 

             
kkk TEtININ )d/d(1 Γ+Φ+=

+
          (17) 

 

Where INk+1 is the next step value of the estimated inertia 

matrix, INk is the current estimated inertia matrix, TEk is the 

current track error, Ф and Г are suitably positive definite 

constant learning parameters [23].  

The algorithm is implemented in the main control strategy 

producing scheme which shall be known as the AFCAIL 

(Active Force Control and Iterative Learning). Fig. 8 shows 

the complete schematic of the AFCAIL scheme. The AFCAIL 

scheme exploits the use of iterative learning algorithm as the 

inertial parameter estimator.  

 

 
Fig. 8 The AFCAIL scheme with a PD type learning algorithm 
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The idea behind the AFCAIL scheme is to obtain a 

continuous computation of the estimated inertia matrix of the 

arm by means of a suitable learning algorithm in which the 

arm is gradually forced to execute a prescribed task accurately 

even in the presence of unknown disturbances. As the arm 

starts to move, the internal mechanism activates the learning 

process by identifying new inertia values of the links for each 

iteration after which these signals were then processed by the 

AFC loop, thereby performing the required task and 

eventually reducing the track error. This error is in turn fed 

back into the learning algorithm section and the process is 

repeated iteratively until a suitable error goal criterion is 

achieved. The estimated inertia matrix IN is updated 

iteratively and the track error TE is forced to converge to 

value approaching zero as the learning progresses and the 

robot arm continuously moves to describe a predefined input 

reference.  

A flow chart showing the logical flow of the main 

algorithm is illustrated in Fig. 9. Information about the 

robot’s trajectory or motion while performing a specific task 

is relayed to a feedback in the outer control loop of the overall 

control scheme as the robot moves. This information is 

compared with the desired reference input and the difference 

between the two gives the track error. The resulting track 

error is then used by the IL algorithm to determine the inertia 

matrix of the arm for the next cycle. 

  
Fig. 9 A PD type learning algorithm applied to robot arm 

VI. SIMULATION 

All the controller parameters (PID, AFC and IL) need to be 

obtained prior to the implementation of the overall scheme. It 

is assumed that the main controller parameters were 

adequately tuned after a number of standard procedures. Then, 

these parameters were incorporated into the scheme and later 

experimented via the hardware-in-the-loop simulation (HILS) 

configuration. The parameters used in the study are presented 

in the following sections. 

A. PID Parameters  

Table 1 shows the PID parameters that were derived from 

works done in [24]. 

 
Table 1 PID parameters for the PAM system 

PID Parameter Value 

Proportional gain of link 1, KP1 21 

Integral gain of link 1, KIl 35 

Derivative gain of link 1, KD1 3.15 

Proportional gain of link 2, KP2 30 

Integral gain of link 2, KI2 42.86 

Derivative gain of link 2, KD2 5.25 
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B. Link Parameters 

The main link parameters of the robotic arm can be seen 

in Table 2. 

 
Table 2 Link parameters 

m1 Mass of link1 1.25 kg 

m2 Mass of link 2 0.75 kg 

L1 Length of link1 0.405 m 

L2 Length of link 2 0.290 m 

 

C.  IL Parameters  

The IL learning parameters were set as follows: 

  

Ф = 0.0175,  Г = 0.005 

 

Initial conditions:   IN1 = 0.4 kgm
2
 and IN2 = 0.04 kgm

2
 

 

It is useful to note that in the IL algorithm, one has to 

consider the initial conditions to commence the iterating 

process. The initial conditions refer to the instances where the 

system starts from 0 second. i.e., the robot arm is at rest 

position. It is essential that appropriate initial conditions are 

specified in order to obtain the desired behaviour of the 

system. For the IL algorithm, although IN can be assumed the 

same initial value, it is clear that from the robot’s physical 

configuration, IN1 is realistically greater than IN2. It is 

verified in [18] that IN1 > IN2 produced more accurate results 

than IN1 = IN2. A stopping criterion is also specified for 

halting the learning process if the convergence of the desired 

parameter is assumed to have taken place. The range of the 

track error set for the system’s performance deemed to be 

acceptably accurate and stable is 0 ≤ TE ≤ 0.0174 rad (0 ≤ TE 

≤ 1 degree). The Simulink model of the AFCAIL scheme is 

shown in Fig. 10. 

 

 
Fig. 10 Simulink model for the AFCAIL scheme 

VII. EXPERIMENTAL SETUP 

This section presents the practical feature of rig based on 

the proposed control strategy. Two data acquisition board 

(PCI-1710HG) were used. Appropriate signals from the 

sensors, actuators and other electronic devices were processed 

through the analogue to- digital and digital-to-analogue 

converters functions which were already embedded in the 

card. A pair of pneumatic artificial muscle (MAS-10-N-250-

AA-MCFK) and a pair of pneumatic artificial muscle (MAS-

10-N-100-AA-MCFK) were used as actuators. To control the 

pressure, the proportional pressure regulators were used as the 

servovalves. The advantage of using the proportional pressure 

regulator is that no pressure sensor is required because of its 

built-in pressure controller. Therefore, mathematical 

formulation of the pneumatic flow is not required. In the rig 

set-up, proportional pressure regulators (MPPES-3-1/8-10-

010) were utilized to control the pressure inside the PAMs. 

Accelerometers (ADXL330) were used to measure the 

acceleration of each link. The physical sensors and actuators 

required for the input/output (I/O) signals were connected to a 

PC-based data acquisition and control system via 

MATLAB/Simulink/Real Time Workshop (RTW) and other 

related components that essentially constitute the hardware-

in-the-loop simulation (HILS) configuration. Fig. 11 shows 

the RTW processing part of the PAM system. 

 

 
Fig. 11 Simulink model with RTW 

 

Fig. 12 illustrates a view of the physical rig while Fig. 13 

depicts a schematic representation of the experimental set-up. 

 

 
Fig. 12 A view of the physical rig 
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Fig. 13 Schematic diagram of the experimental set-up 

 

   Two types of experiments were carried out: 

1. Independent joint control of the first link at frequency, f 

= 0.1 Hz with a harmonic disturbance, Q = 10 sin (2t) 

Nm (joint space). The experiment is repeated for f = 

0.05 and 0.2 Hz for the second link.  

2. Coordinated motion control of the arm (in Cartesian or 

task space) performing a circular trajectory tracking 

task with a spring disturbance, ks = 50 N/m  

 

Prior to applying the controller, all muscles were 

pressurized to 4 bar. Due to the same pressure in each PAM, 

the torque is initially set to zero. Two types of control 

algorithms, namely, the PID and AFC with IL were applied 

individually with the former executed first, followed by the 

latter. 

VIII. RESULTS AND DISCUSSION 

The robustness and viability of AFC-based scheme were 

satisfactorily carried out through the experimental study using 

a number of appropriate parameters obtained through a 

number of standard techniques or operating procedures. Fig. 

14 shows that the PID scheme for the independent joint control 

of link 1 produces significant track errors as it does not 

satisfactorily conform to the desired joint trajectory throughout 

the simulation period. On the other hand, Fig. 15 illustrates the 

superiority of the AFCAIL scheme to track the sinusoidal 

trajectory. The actual trajectory generated almost replicates the 

desired counterpart. Similar trend is also observed in both 

Figs. 16 and 17 for different frequencies related to the second 

link trajectories for the given experimental conditions. It is 

very evident that the AFCAIL produces a rapid response, 

indicating that all the mechanisms (including the IL part) work 

to ‘perfection’.  

 

 
Fig. 14 PID performance for link 1 at f = 0.1 Hz 

 

 
Fig. 15 AFCAIL performance for link 1 at f = 0.1 Hz 

 

 Fig. 16 AFCAIL performance for link 2 at f =0.2 Hz 

 

  
Fig. 17 AFCAIL performance for link 2 at f = 0.05 Hz 

For the coordinated motion control, the arm was designed to 

perform a circular trajectory with a radius of 5 cm and a 

driving frequency of 0.1 Hz as depicted in Fig. 18. This low 

frequency setting ensures that the proposed system has a low 

speed tracking motion to compensate for the hysteresis 

behaviours of the actuators. The mean track errors obtained for 

this experiment are 0.0013 m and 0.0009 m for PID and 

AFCAIL schemes, respectively, as shown in Fig. 19. Again, 

the AFC-based control system performs better than the PID 
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counterpart. Fig. 20 shows the computed estimated inertia of 

link 1 which illustrates a crude sinusoidal pattern as it 

describes the circular path.  

 

 
Fig. 18 Circular tracking results with spring disturbance: (a) 

reference, (b) PID and (c) AFCAIL 

 

 
Fig. 19 Tracking errors for the circular trajectory 
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Fig. 20 Computed estimated inertia of link 1 via AFCAIL 

 

The proposed scheme clearly demonstrates their robustness 

and effectiveness to control the robot arm equipped with the 

highly non-linear PAM actuators. The IL part is also very 

effective in estimating the IN continuously on-line as the 

robot operates. This clearly shows that the AFC-based 

systems produce excellent results for effective tracking 

control even in the wake of inherent hysteresis behaviour, 

non-linearities and disturbances in the PAM system. 

IX. CONCLUSION 

The proposed practical AFCAIL controller based on a HILS 

concept has been shown to perform effectively when 

implemented to the real-time control of a two axes planar 

robotic arm driven by PAMs. The experimental results verify 

the robustness of the AFC-based algorithms in performing the 

independent joint and coordinated motion trajectory tracking 

control tasks. The proposed schemes perform much better than 

the standard PID control technique. One of the main research 

contributions was the effective control of the PAM actuated 

system through the AFC-based schemes considering the 

presence of the inherent non-linearities and disturbances in the 

system. Future works shall take into account other forms of 

disturbances, different operating conditions and parametric 

changes. 
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