
 

 

  
Abstract—Tinnitus is considered as an auditory 

perception in one ear, both ears or in the head without any 
external source. A very effective method of tinnitus 
management is referred to as sound therapy. Computational 
and dynamical models with plasticity using a neural 
oscillator or neuronal networks have been proposed by our 
team in order to investigate mechanisms of tinnitus 
generation and the clinical effects of sound therapy. In the 
present paper, two models are proposed, a neuronal network 
model with homeostatic plasticity (HP) and another model 
with both HP and spike-time-dependent plasticity (STDP). 
The results are compared in reference to their effects on 
inhibition of oscillations as a model of tinnitus management. 
The outcome data show that the model with both HP and 
STDP is more robust than the model with STDP only or HP 
only in the sense that oscillation can be inhibited in a larger 
range of the intensity of external constant input. 
 
Keywords— tinnitus, neuronal network model, sound therapy, 

spike-time-dependent plasticity, homeostatic plasticity, oscillation, 
inhibition 

I. INTRODUCTION 

INNITUS is considered as an auditory perception in one 
ear, both ears or in the head without any external source 
[1]. Tinnitus is not a real sound; it is an actual brain 

electrical activity.  This annoying auditory phenomenon is 
generated by many factors such as noise exposure and/or 
chemical and medicinal exposure. Other contributing factors 
include aging, metabolic and endocrine disorders, 
neurologic atypicalities, and cardiovascular disturbances. 

For many years, tinnitus has been considered as a 
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difficult-to-manage clinical condition. Throughout the 
history many scientists and clinicians have attempted to find 
ways to help those who suffer from this condition.  Tinnitus 
generation is still a mystery. There are many proposed 
theories that have attempted to explain its generation. Some 
of these theories relate the percept of tinnitus to 
hyperactivity of the auditory cortex and some attribute the 
changes in inhibitory and excitatory neurotransmitters of the 
auditory system. The most favored tinnitus generation 
theory describes tinnitus as a product of brain reorganization 
as a consequence of hearing loss [2]. Based on the tonotopic 
organization maps of the auditory cortex, it has been shown 
that those cortical areas that represent the corresponding 
frequency region of hearing loss are “invaded” by adjacent 
frequencies. This reorganization and neuroplasticity has 
been credited in generating tinnitus. 

Additionally, the mechanisms of tinnitus generation have 
been described based on neurophysiological models [3], [4]. 
The role of neural plasticity to explain the neural correlates 
of tinnitus also has been reported [5]-[11]. Auditory 
electrophysiological recordings have addressed the thalamic 
plasticity via top down modulation [12]. A scientific 
literature review showed that cochlear damage decreases 
auditory nerve activity and this change leads to plastic 
adjustments, a shift in the balance of excitation and 
inhibition, and increase of spontaneous firings in the central 
auditory system [8], [9]. Neuroimaging studies such as 
magnetic resonance imaging (MRI) have shown structural 
brain changes in individuals with tinnitus [13]. 

Computational modeling has been applied for better 
understanding of tinnitus [14]-[17]. There are many areas in 
the brain that contribute to tinnitus generation; however, it 
has been shown that the thalamo-cortical network is 
important for its generation [13], [18].  A neural network 
model of thalamo-cortical correlates with plasticity toward 
understanding of the tinnitus has been reported [14]. A 
tinnitus model based on the neurophysiological model of 
Jastreboff [3], combined with the adaptive resonance theory 
of cognitive sensory processing [19] has been proposed for 
identification of neural correlates of tinnitus [20].  Using 
models of corticothalamic feedback dynamics, the effect of 
auditory selective attention on the tinnitus decompensation 
has also been investigated [20], [21].  

A variety of therapeutic approaches for tinnitus have been 
used for the management of tinnitus [22]-[24]. These 
include use of medications, supplemental vitamins and 
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micronutrients, psychotherapy and biofeedback, electrical 
stimulation, transcranial magnetic stimulation, and more 
importantly and least invasively sound therapy or acoustic 
therapy. Tinnitus has many types and subcategories 
depending on what caused it. Attempts have been made to 
categorize tinnitus based on its characteristics which in turn 
can facilitate the selection of management methods [25]. 

The process of sound therapy is one of the most effective 
methods. The tinnitus patients who have gone under sound 
therapy protocol report diminished annoyance from tinnitus 
[26]. Potentially, patients may perceive a reduction in 
tinnitus loudness following acoustical stimulation through 
sound therapy. This cessation of tinnitus following the use 
of sound therapy has been termed “residual inhibition”. 
Sound therapy employs a variety of stimuli such as music, 
white noise, narrow band noise and environmental sounds to 
facilitate the habituation process to tinnitus. The 
mechanisms of tinnitus management by sound therapy; 
however, have not been thoroughly clarified. Some attribute 
the success with sound therapy to brain plasticity [27] while 
others consider it a habituation process [28]. 

Previously we proposed computational and dynamical 
models employing a neural oscillator [15], [30], [31] or a 
neuronal network [32]-[35] in order to replicate tinnitus and 
its management by sound therapy. We have demonstrated 
that those models conceptually imitate tinnitus perception 
and exhibit tinnitus inhibition with sound. This inhibition is 
provided by applying a variety of input with constant 
amplitude, sinusoidal waveform or noise that represent the 
role of acoustic stimuli which are used for treatment of 
tinnitus. By employing these models we could inhibit the 
oscillations (i.e., tinnitus). This was accomplished by 
incorporating neural plasticity through parameters in a way 
that their values can be modified. By hypothesizing that the 
oscillation and the equilibrium in the model correspond to 
perception and inhibition of tinnitus, respectively, we 
reported that these phenomena could explain the fact that the 
habituated human auditory system temporarily halts 
perception of tinnitus following sound therapy. However, a 
model that has larger range of input intensity for inhibition 
of oscillation is preferable. In order to explore it, we propose 
a model with different plasticity in the present paper. 

For plasticity of our previous models we employed 
Hebbian hypothesis [15], [30]-[33], or spike-timing- 
dependent plasticity (STDP) [34], [35] in one of the 
couplings between the components.  

Hebbian hypothesis [36] has been adopted in a number of 
neural network models for many years. As a newer and 
biologically plausible hypothesis for synaptic plasticity in 
the nervous system, “spike-timing-dependent plasticity 
(STDP)”, has been proposed  [37]. It does not replace the 
idea of Hebbian hypothesis; however, it describes Hebbian 
synaptic plasticity more specifically. This hypothesis has 
been adopted in a number of computational models of 
neuronal networks [38].  

As another hypothesis for the plasticity in the nervous 
system, homeostatic plasticity (HP) was proposed [39]. The 
HP is applied to nervous systems that require stability of the 
activities and its role has been widely investigated [40]. The 
role of HP in hearing loss-induced tinnitus has been 
investigated [41]. A computational model with HP for 
tinnitus with hearing loss has been proposed [17], [42]. That 
model, however, is not a dynamical system. Further 

modeling of a dynamical system for tinnitus with HP 
[43]-[45] is required. 

In the present paper, we propose a dynamical model with 
HP. The current model has the same structure as the 
previous one [35]. It is composed of the model neurons 
described by simplified Hodgkin-Huxley equations 
[46]-[48]] as we employed in the previous studies [32]-[35]. 
The plasticity is given to inhibitory coupling [49] between 
neurons, which is based on the neurophysiological 
consideration [18]. 

We show the results of analysis of a neuronal network 
model with HP only and another model with both HP and 
STDP. We demonstrate the results of computer simulation 
of this model. The results show that the present model is 
more robust than the model with STDP only, which was 
reported in [35] and the model with HP only in the sense 
that oscillation can be inhibited in a larger range of the 
intensity of external constant input. 

II. A NEURONAL NETWORK MODEL 
The neuronal network model that we analyze in this paper 

is shown in Fig. 1. In the model the firing sequences in the 
nervous system are simulated. The present model only 
replicates the inhibition of tinnitus by external sound 
stimulation. Modeling the habituation would need much 
larger network configuration. The present model is a 
conceptually simplified system of a tinnitus generation 
network. However, we believe that the neural mechanism 
proposed here could form components of models involving 
large-scale neural correlates for providing a 
neurophysiological framework [2]. 

The model is composed of two excitatory neurons and 
one inhibitory neuron as shown in Fig. 1. This mechanism 
includes a positive feedback loop of the excitatory neurons 
E1 and E2 mutually coupled, and a negative feedback loop 
with the excitatory neuron E1 and the inhibitory neuron I 
that are also mutually coupled. The negative feedback loop 
controls the firing rate. The mechanism can be bistable with 
a sustained firing state and a non-firing state. 

The coupling strength between neurons is denoted by Cij 
(

€ 

i, j ∈ 1, 2, 3{ }). The neuron E1 receives external stimuli S 
that is afferent signal due to the acoustic stimuli that are 
employed in sound therapy. 

We express the dynamics of the model by a simplified 
version of Hodgkin-Huxley equations (HH) [46]-[48]. We 
employed it instead of HH to reduce the computational 
complexity and the related simulation time by reducing the 
number of state variables for each neuron from four to two. 

 

Fig. 1 A neuronal network model. 
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A. Formulation of the model without plasticity 

We describe the basic dynamics of the model as 

€ 

dv1
dt

=
G (v1, m1, n1, h1) +C12z2 −C13z3 +D + S

Cm

,                   

(1) 

€ 

dh1
dt

=αh (v1)(1− h1) + βh (v1)h1 ,                                          (2) 

€ 

dv2
dt

=
G (v2, m2, n2, h2) +C21z1

Cm

,                                      (3) 

€ 

dh2
dt

=αh (v2)(1− h2) + βh (v2)h2 ,                                        (4) 

€ 

dv3
dt

=
G (v3, m3, n3, h3) +C31z1 +C32z2

Cm

,                          (5) 

and 

€ 

dh3
dt

=αh (v3)(1− h3) + βh (v3)h3 .                                             (6) 

where v is the membrane potential, m, n and h are the 
variables associated with activation of sodium ion channel, 
inactivation of sodium ion channel and activation of 
potassium ion channel in the neuron E1, E2 or I. The 
functions 

€ 

G (v,m, n, h) , m and n are expressed as 

€ 

G(v,m,n,h) = g Nam 3h(VNa − v) +

g K n4 (VK − v) + g l (Vl − v)
                (7) 

{ })()()( vvvm mmm βαα +=                                               (8) 

and 

)1(8.0 hn −=                                                                       (9) 

respectively. In the original HH model [41] m and n are 
expressed by differential equations. In the simplified version 
that we employ in the present study, m is expressed by the 
function of the membrane potential v, as Eq. (8), and n is 
expressed by the function of the variable h, as Eq. (9), since 
the change of m and n rapidly converges compared with v 
and h. The functions 

€ 

αm (v)  and 

€ 

βm (v)  in Eq. (8) are 
expressed respectively as 

€ 

αm (v) = 0.1(25− v) e(25−v) 10−1{ }                                      (10) 

and 

€ 

βm (v) = 4 e−v 18                                                                   (11) 

Functions 

€ 

αh (v)  and 

€ 

βh (v)  in Eq. (2), (4), (6) are 
expressed respectively as 

€ 

αh (v) = 0.07 e−v 20                                                              (12) 

and 

€ 

βh (v) = 1 e(30−v) 10+1{ } .                                                    (13) 

The parameters of the neuron model were fixed as 

Cm=1[µF/cm2], 

€ 

g Na = 120[mS /cm2 ] ,

€ 

g K = 36[mS /cm2 ] , 

€ 

g l = 0.3[mS /cm2 ] , VNa=115[mV], 

€ 

VK = −12   [mV], 
Vl=10.6 [mV], based on the values in the original HH model 
[41].  

The output of the neuron j to its postsynaptic neurons is 
denoted by zj and expressed as function of the membrane 
potential vj as 

€ 

z j = {
1 (v j ≥ 6)
0 (v j < 6)

.                                                           (14) 

Moreover, a bias term D is introduced in the equation of 
the membrane potential v1 of the neuron E1, Eq. (1) in order 
to enable the neurons to elicit sustained firings keeping zj at 
0 when the neurons are not firing. 

B. Introduction of plasticity 
All the couplings in the model could have plasticity. 

Based on the physiological consideration in [xx] and for 
simplicity of the modeling, we assume in the current model 
that only single coupling of inhibition between neurons has 
plasticity. In the present model both HP and STDP are 
introduced.  

C. Formulation of HP 
We incorporate HP in the present model as a dynamical 

process. We assume that the plastic coupling coefficient C13 
changes depending on the activity of the neuron E1. The 
dynamics of C13 is modeled in such a way that the higher the 
activity of E1 is, the larger C13 grows. When E1 does not fire, 
C13 converges to CS. The change of the synaptic coefficient 
due to HP is expressed as 

dC13
dt

=
−C13 +CS + pz1

τ
 ,                                                (15) 

where CS is the stationary value of C13 when E1 does not fire, 
p is a parameter that gives the quantity of the modification 
of C13, and τ is the time constant of C13. 

D. Formulation of spike-time-dependent plasticity 
(STDP) 
Secondly we incorporate spike-time-dependent plasticity 

(STDP) in the present model. We assume that the inhibitory 
coupling, the coupling strength from the neuron I to the 
neuron E1, C13, also has STDP. The key idea of this 
hypothesis on inhibitory synapses is that when the 
postsynaptic neuron fires before the presynaptic neuron, the 
synaptic strength becomes stronger (long term depression), 
and when the presynaptic neuron fires before the 
postsynaptic neuron fires, the synaptic strength becomes 
weaker (long term potentiation). Hence, C13 decreases when 
E1 fires after I fires, and increases when I fires after E1 fires. 
The time difference between firings of neuron I and neuron 
E1, t31, is defined as 

€ 

t31 = t3 − t1                                                                       (16) 

where t1 and t3 are the latest firing times of E1 and  I, 
respectively as shown in Fig. 2. The value of coupling 
strength with plasticity C13 at time t +Δt, C13(t +Δt), is given 
by addition of the value at time t, C13(t), and the change of 
C13, ΔC13, 
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€ 

C13 (t + Δt) = C13 (t) + ΔC13  ,                                                              (17) 

where Δt is the time step of calculation, and ΔC12 is given as  

€ 

ΔC13 = −
dC13MAX
T1

t31 + dC13MAX           (18) 

when 

€ 

0 < t31 <T1 , 

€ 

ΔC13 = −
dC13MIN
T2

t31 − dC13MIN           (19) 

when 

€ 

−T2 < t31 ≤ 0 , and 

€ 

ΔC13 = 0 ,                   (20) 
when 

€ 

t31 ≤ −T2  or 

€ 

t31 ≥T1. 
 

 

 
Fig. 2 Definition of firing time. 

 

 
Fig. 3 Modeling of STDP in inhibitory coupling strength C13. 

III. RESULTS 
We demonstrate the results of computer simulation of the 

model. Throughout the simulation the parameter values 

€ 

D = 18

€ 

[µA/cm2 ] , 

€ 

C21 =10 , 

€ 

C31 = 10 , 

€ 

C32 = 20  were 
employed. 

A. Analysis of the model without input or plasticity 
Without stimulation or plasticity, the model has two 

stable solutions, an oscillatory state by sustained firings and 
a non-firing state. They are bistable for a parameter region.  

First, we performed the simulation changing the value of 
the coupling coefficient C12 by one in the range 

€ 

0 <C12 ≤ 30  with the value C13=10. The non-firing state 
exists for any value of C12 in the range. On the other hand, 
the oscillatory state exists when 

€ 

C12 ≥ 23. That is, the two 
solutions coexist when 

€ 

C12 ≥ 23 . It corresponds to the 
clinical fact that a number of patients of tinnitus claim that 
they do not always hear sound when there is no external 
sound. The larger C12 brings the larger basin of the 
oscillatory solution in the state space of the model in the 
region.  

Secondly, we performed the simulation changing the 

value of the coupling coefficient C13 by one in the range 

€ 

0 < C13 ≤ 30  with the value C12=25. The non-firing state 
exists for any value of C12 in the range. On the other hand, 
the oscillatory state exists when 

€ 

0 ≤ C13 ≤ 22  and 

€ 

27 ≤ C13 ≤ 30 . Also in this case the two solutions coexist 
when 

€ 

0 ≤ C13 ≤ 22  and 

€ 

27 ≤ C13 ≤ 30 . 
 

B. Analysis of the model with input and HP only 
The inhibition of oscillation by constant input with 

amplitude I as stimulus S to neuron E1 was examined with 
plasticity. The parameter values 

€ 

CS = 15  and 

€ 

τ = 50 [ms]  
were employed for plasticity. The time scale of the change 
of the synaptic strength is much smaller than the clinical 
process. It was arranged so that the simulation is completed 
in a reasonable time. The initial value of the coupling 
strength C13 is denoted by 

€ 

C0 . Simulations were performed 
where the parameter 

€ 

C0 = 25, in which only non-firing 
solution exists stably. The amplitude I of the input was 
changed by 1

€ 

µA/cm2  in the range of 

€ 

0 < I ≤ 15[µA/cm2 ] . 
Fig. 4 and Fig. 5 show the examples of simulation results. In 
the figures, the rows illustrate the membrane potentials v1, v2, 
v3, the coupling strength C13, input S, output of the neurons 
z1, z2 and z3, and time difference between firings of neuron I 
and neuron E1, t31, respectively from the top.  

At first the neurons do not fire since the model is in the 
parameter region where only non-firing solution exists 
stably. The coupling strength C13 decreases towards its 
stationary value 

€ 

CS = 15. The model enters the parameter 
region where both non-firing and firing solutions. However, 
the non-firing state is sustained since the state of the model 
system is in the basin of the non-firing solution in the state 
space of variables vj and hj. For a short period of time from 

€ 

t = 100 [ms], appropriate input S constant with time whose 
amplitude is appropriate is applied. Then the neurons start 
firing since the state variables move to the basin of the firing 
solution. From 

€ 

t = 200 to 300 [ms], input S constant with 
time whose amplitude is I is applied to the neuron E1 for 
100ms. The neurons continue to fire for the period. After the 
input is removed at 

€ 

t = 300[ms], the behavior of the model 
depends upon the amplitude of the input which is applied 
from 

€ 

t = 200 to 300 [ms]. 
As shown in Fig. 4, when p=5, the input with I=7 

[µA/cm2] for 100ms makes the network stop the oscillation 
after the input is removed, while the input with I=6 
[µA/cm2] fails to stop the oscillation. For p=5, the amplitude 
I=7 or 8 [µA/cm2] was required for inhibition of oscillation. 
When p=10, the input with I=9 [µA/cm2] for 100ms makes 
the network stop the oscillation after the input is removed, 
while the input with I=10 [µA/cm2] fails to stop the 
oscillation, which is shown in Fig. 5. For p=10, the input 
with I=7, 8 or 9 [µA/cm2] was required for inhibition of 
oscillation. When p=1, the input with I=6, 7 or 8 [µA/cm2], 
and when p=20, the input with I=9 or 10 [µA/cm2], 
respectively, for 100ms was required to make the network 
stop the oscillation after the input is removed. These results 
are summarized in Table 1. 
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(a) 

 

 

(b) 

Fig. 4 Simulation results in the model with homeostatic plasticity 
only, C0=25, p=5, (a) an unsuccessful result, I=6 [µA/cm2], 
(b) a successful result, I=7 [µA/cm2]. 

 
Table 1. Inhibition of oscillation in the model with 
homeostatic plasticity only. O: Inhibition is accomplished. 
X: Inhibition is not accomplished. 
 

p 
 

I

€ 

[µA/cm2 ]  
4 5 6 7 8 9 10 11 

1 X X O O O X X X 
5 X X X O O X X X 

10 X X X O O O X X 
20 X X X X X O O X 

 

 

(a) 

 

(b) 

Fig. 5 Simulation results in the model with homeostatic plasticity 
only, C0=25, p=10, (a) an unsuccessful result, I=10 [µA/cm2], 
(b) a successful result, I=9 [µA/cm2]. 

 

C. Analysis of the model with input, HP and STDP 
In order to examine the effect of additional STDP on the 

oscillation in the model, temporarily constant input with 
amplitude I as stimulus S was supplied to neuron E1 in the 
model with plasticity of the inhibitory coupling strength C13. 
The parameter values 

€ 

dC13MAX = 0.001, 

€ 

dC12MIN = 0.001 , 

€ 

T1 =15 [ms] , 

€ 

T2 = 5 [ms] , and 

€ 

Δt = 0.01[ms] were 
employed for STDP. For HP CS=15, p=10 and 

€ 

τ = 50 [ms]  
were employed. The time scale of the change of the synaptic 
strength is much smaller than the clinical process.  
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 (a) 

 
(b) 

Fig. 6 Simulation results in the model with both homeostatic 
plasticity and spike-time-dependent plasticity, 

€ 

C0 = 25 , p=1, 
(a) an unsuccessful result, I=2 [µA/cm2], (b) a successful 
result, I=3 [µA/cm2]. 

It was arranged so that the simulation is completed in a 
reasonable time. Simulations were performed with the initial 
value of the coupling strength C13, 

€ 

C0=25, at which no 
oscillation occurs without external input. The amplitude I of 
the input was changed by 1

€ 

µA/cm2  in the range of 

€ 

0 < I ≤ 15[µA/cm2]. 
Fig. 6 and Fig. 7 show examples of simulation results. In 

the figures, the rows illustrate the membrane potentials v1, v2, 
v3, the coupling strength C13, input S, output of the neurons 
z1, z2 and z3, and time difference between firings of neuron I  

 
(a) 

 
(b) 

Fig. 7 Simulation results in the model with both homeostatic 
plasticity and spike-time-dependent plasticity,

€ 

C0 = 25 , p=10, 
(a) an unsuccessful result, I=8 [µA/cm2], (b) a successful 
result, I=7 [µA/cm2]. 

Table 2. Inhibition of oscillation in the model with both 
homeostatic plasticity and spike-time-dependent plasticity. 
O: Inhibition is accomplished. X: Inhibition is not 
accomplished. 
 

p I

€ 

[µA/cm2 ]  
 2 3 4 5 6 7 8 9 
1 X O O O X X X X 
5 X O O O X X X X 

10 X X O O O O X X 
20 X X X X O O O X 
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and neuron E1, t31, respectively from the top. At first from 
time t=0[ms] to t=200[ms] input S=0. The coupling strength 
C13 decreases according to HP so that the firing of neuron E1 
is easier to occur. It decays to the value in which oscillatory 
solution also exists. At t=200[ms] a trigger input with very 
short duration and with intensity It is given to E1. The 
constant input I was applied to E1 for 100[ms] from 
t=400[ms] to 500[ms]. The neurons fire with higher rate for 
this period. Consequently it gives an effect of plasticity that 
is different from the one given while no input is applied. 
From t=500[ms] to t=600[ms] input is not applied. As 
shown in Fig. 4 and Fig. 5, when It=1.3[µA/cm2], the input 
with I=4 [µA/cm2] for 100ms makes the network stop the 
oscillation after the input is removed, while the input with 
I=3 [µA/cm2] fails to stop the oscillation. For the inhibition 
of oscillation the input amplitude of a suitable range is 
required.  

As shown in Fig. 6, when p=5, the input with I=3 
[µA/cm2] for 100ms makes the network stop the oscillation 
after the input is removed, while the input with I=4 
[µA/cm2] fails to stop the oscillation. For p=5, the amplitude 
I=3, 4 or 5 [µA/cm2] was required for inhibition of 
oscillation. When p=10, the input with I=7 [µA/cm2] for 
100ms makes the network stop the oscillation after the input 
is removed, while the input with I=8 [µA/cm2] fails to stop 
the oscillation, which is shown in Fig. 5. For p=10, the input 
with I=4, 5, 6 or 7 [µA/cm2] was required for inhibition of 
oscillation. When p=1, the input with I=3, 4 or 5 [µA/cm2], 
and when p=20, the input with I=6, 7 or 8 [µA/cm2], 
respectively, for 100ms was required to make the network 
stop the oscillation after the input is removed. Table 2 
summarizes these results. 

For It=1.3, the amplitude I=5, 6 or 7 [µA/cm2] was 
required for inhibition of oscillation. Table 1 demonstrates 
the inhibition is accomplished or not with different values of 
It and I. With larger It, smaller range of I was appropriate for 
inhibition. 
 

The plastic coupling coefficient C13 increases slightly during 
the stimulation. 

D. Discussion 
In summary, it was observed that the model succeeds in 

demonstrating the effect of the introduction of the external 
stimulus S. This leads to termination of firing of the 
neurons. 

Tables 1 and 2 show that the range of input intensity in 
which the oscillation is inhibited in the model with STDP 
and HP is wider than the range of input intensity in the 
model with HP only for some values of the parameter p. 

Comparing the results in the model with STDP and HP 
and those in the model with STDP only described in [xx], 
we can see that the range of input intensity in which the 
oscillation is inhibited in the model with both STDP and HP 
is wider than the range of input intensity in the model with 
STDP only. 

It can be stated that that the model with both STDP and 
HP is more robust than the model with STDP only or HP 
only in the sense that oscillation can be inhibited by a larger 

range of the intensity of external input. 
In the models with STDP only, HP only, and both STDP 

and HP, the plastic coupling coefficient does not change to 
the value in which the firing solution does not exist during 
the stimulation. The oscillation stops due to the change of 
the state of the model as well as the change of the coupling 
coefficient by the input. Hence, further investigation of 
simulation or different modeling is required in order to 
reproduce the inhibition of oscillation by synaptic plasticity 
only. 

IV. CONCLUSION 
The results of computer simulation of a computational 

and dynamical neuronal network model with HP only and 
the one with both HP and STDP for tinnitus generation and 
its management by sound therapy were described in this 
paper. The structure of the models is the same as that of the 
model with STDP only that was previously proposed.  

It has been shown through computer simulations that the 
model with both STDP and HP is more robust than the 
model with STDP only or HP only in the sense that 
oscillation can be inhibited by a larger range of the intensity 
of external input that can be hypothesized as activation by 
sound stimulus in sound therapy. 

In the present model, the inhibition of the oscillation was 
realized by both the change of the plastic coupling strength 
and the change of the state of the model by supplying the 
input. More investigation for improvement of the model is 
required in order to demonstrate that only the synaptic 
plasticity brings the inhibition of oscillation and the model is 
more robust in the input amplitude for inhibition of 
oscillation.  

Our future work will expand this model so that it can 
more effectively explain underlying physiology of tinnitus, 
and explore better stimulation for its inhibition through 
sound therapy techniques. 
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