
 

 

  
Abstract—Tinnitus is an auditory perception of sound 

with no external source that can be perceived in the ear(s) or 
in the head. There is a wide range of methods for tinnitus 
management. Sound therapy is considered as one of the 
most effective ones. In this paper, a simple, computational 
and dynamical model with plasticity is proposed using 
Bonheoffer-van der Pol (BVP) equations for a preliminary 
step of modeling the framework with tonotopic organization 
with hearing loss. Mechanisms of the generation of tinnitus 
and the effects of sound therapy is investigated. This model 
replicates tinnitus generation associated with hearing loss 
and the temporary inhibition of tinnitus perception following 
sound therapy. 
 
Keywords— tinnitus, computational model, sound therapy, 

hearing loss, homeostatic plasticity, oscillation, inhibition 

I. INTRODUCTION 

INNITUS is an auditory perception that one perceives 
sound(s) in the ear(s) or in the head without any 
external source [1]-[6]. Several neurophysiological 

models have been proposed for understanding of mechanism 
of tinnitus [7], [8]. Previous research has widely discussed 
the role of neural plasticity on tinnitus [8]-[13]. It has been 
suggested that the damage of the peripheral auditory system 
decreases the activity of auditory nerve, it brings a shift in 
the balance of excitation and inhibition by plasticity, and 
consequently it results in an increase in spontaneous firings 
in the central auditory system [8], [9]. Anatomical 
neuroimaging studies employing techniques such as 
magnetic resonance imaging (MRI) have shown structural 
brain changes secondary to tinnitus [14]. However, the 
mechanism of tinntitus generation has not been clarified 
sufficiently [15]. 

Clinical observations show that a large number of tinnitus 
sufferers have hearing loss. On the other hand it is common 
to see individuals with normal hearing and no tinnitus. It is 
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also common to see no tinnitus in patients with hearing loss. 
The emphasis of this paper is to explore the generation of 
tinnitus in those with hearing impairment, particularly those 
with sensorineural hearing loss. Hearing loss is a frequency 
dependent condition and there is a correlation between the 
perceived frequency of tinnitus and hearing sensitivity loss 
at that particular frequency. 

For management and treatment of tinnitus, a number of 
approaches have been proposed by clinicians and scientists 
[16]-[19]. These include medications, supplemental vitamins 
and micronutrients therapy, surgical procedures, 
psychotherapy and biofeedback, electrical stimulation, 
transcranial magnetic stimulation, and sound therapy or 
acoustic therapy. Sound therapy is one of the most effective 
and noninvasive methods to manage tinnitus when 
compared to other types of tinnitus management and 
therapies. Sound therapy techniques for tinnitus treatment 
have a clinical effect on tinnitus loudness. In many cases in 
the loudness perception of tinnitus decreases following use 
of acoustical stimuli. As a result annoyance from tinnitus 
decreases after the sound presentation [20]-[23]. This 
loudness reduction is clinically effective for many tinnitus 
sufferers with hearing loss.  Occasionally tinnitus 
completely disappears for a short period of time following 
acoustic stimulation of ears with tinnitus. This paper 
addresses complete cessation of tinnitus. The complete 
cessation of tinnitus following the presentation of external 
stimuli is referred to as residual inhibition. 

A few computational models have been proposed as an 
effective approach to investigate mechanisms of tinnitus 
generation [24]-[28]. Previously our research team proposed 
computational and dynamical models with plasticity using a 
neural oscillator [25], [26], [29]-[31] and neuronal networks 
with simplified Hodgkin-Huxley (HH) equations [32]-[39] 
to replicate not only the tinnitus generation but also the 
effect of sound therapy. The original structure of our models 
was very simple. These models conceptually account for the 
tinnitus generation and its relief by sound therapy. For the 
purpose of modeling of tinnitus with hearing loss, it is 
essential to incorporate the tonotopic organization of the 
auditory system. This incorporation will facilitate the 
modeling of tinnitus and hearing loss when they are present 
together. 

In this paper, a simple model using Bonheoffer-van der 
Pol (BVP) equations [40] for the representation of neurons 
is proposed. The structure of the model is the same as 
former models. The present model is a preliminary step of 
development of a model that expresses the tonotopic 
organization in the auditory system in the auditory brain 
structures in relation to tinnitus. BVP equations are much 
simpler than the simplified HH equations. This simplicity 
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provides less computation time and less number of 
parameters that are necessary for any model with a large 
number of neurons such as a model with tonotopic 
organization. 

In the previous models, the plasticity has been applied in 
one of the couplings between the components by use of 
Hebbian hypothesis [25], [26], [29]-[33], [41] or 
spike-timing-dependent plasticity (STDP) [34], [35], [42]. 
As a different approach for the explanation of the plasticity 
in the nervous system, homeostatic plasticity (HP) was 
proposed [43] and it has been investigated in a variety of 
neural networks [44]. It has been pointed out that HP is 
necessary for stability of the activities in the nervous system 
and it has been employed in a number of neural systems 
[41]. 

The role of HP in tinnitus types that are induced by 
hearing loss has been investigated [45]. Treatment of 
tinnitus to reverse the homeostatic change also has been 
reported [46]. Additionally a computational model with HP 
for tinnitus with hearing loss has been proposed [47]. That 
model, however, is not a dynamical system. Further 
modeling of a dynamical system for tinnitus with HP is 
required [48]. In the present paper, we propose a 
computational model as a dynamical system incorporating 
HP in order to replicate tinnitus generation process with 
hearing loss and the relief of tinnitus by sound therapy as it 
was recommended earlier [49]. 

The currently proposed neuronal network model 
conceptually replicates the generation of tinnitus combined 
with hearing loss, and represents the clinical behavior of the 
human auditory system when the tinnitus perception is 
temporarily halted following the treatment by sound therapy. 
In this paper we show that with appropriate range of 
parameter values in the model, generation of oscillation in 
the model occurs with no input due to the HP. The inhibition 
of the oscillation can be obtained following the application 
of constant or sinusoidal input. Once again this occurs due 
to the HP. In this method the effects of sound therapy are 
replicated similarly to the previous models. 

II. A NEURAL NETWORK MODEL 
The structure of the neural network model in this paper is 

shown in Fig. 1. The model is a conceptually simplified 
system of neural correlates that generate tinnitus. However, 
we believe that the neural mechanism proposed here could 
form the essential component of a large-scale and 
multi-layered system for tinnitus [6]. This model is 
composed of two excitatory neurons and one inhibitory 
neuron.  

 

Fig. 1 A neural network model. 

The excitatory neurons E1 and E2 make a positive 

feedback loop by the connection to each other. They excite 
the inhibitory neuron I, and the inhibitory neuron I inhibits 
the excitatory neuron E1, which makes a negative feedback 
loop. It has been suggested that the thalamo-cortical network 
[50] could be essentially important for tinnitus generation 
[12], [14], [51]. The functional changes in the dorsal 
cochlear nucleus and the inferior colliculus in tinnitus 
generation have also been suggested [12], [52]. These 
studies all support the role of a range of auditory related 
centers in generation and perception of tinnitus. It could be 
stated that both positive feedback loop and negative 
feedback loop play important roles in regulation of auditory 
activities and generation of tinnitus. The model structure in 
our study is based on these considerations. The model can 
be bistable with a sustained firing state and a non-firing 
state. 

The coupling strength between neurons is denoted by Cij 
(

€ 

i, j ∈ 1, 2, 3{ }). The neuron E1 receives external stimuli S. 
It represents afferent signal generated by the acoustic stimuli 
that are employed in sound therapy. 

A. Model equations without plasticity 

Without plasticity, in other words, when all the values of 
coupling strength are constant in time, the model is 
expressed by the following equations, 

€ 

dx1
dt

= c(y1 + x1 −
1
3
x1
3) +C12z2 −C13z3 + S

dy1
dt

= −
1
c
(x1 + by1 − a)

,                        (1) 

€ 

dx2
dt

= c(y2 + x2 −
1
3
x2
3) +C21z1

dy2
dt

= −
1
c
(x2 + by2 − a)

,                                         (2) 

€ 

dx3
dt

= c(y3 + x3 −
1
3
x3
3) +C31z1 +C32z2

dy3
dt

= −
1
c
(x3 + by3 − a)

,                            (3) 

employing BVP equations, where xj and yj are state variables 
of the neurons. The xj is associated with the membrane 
potential of a neuron, yj  is associate with the activation of 
sodium ion channel, and zj is the output of neuron j and 
expressed as 

€ 

z j = {
1 (x j ≥ v f )
0 (x j < v f )

                            (4) 

where vf is a threshold for the output to postsynaptic 
neurons. 

B. Plasticity formulation and input 
We incorporate HP in the model for the tinnitus 

generation and the inhibition of oscillation after feeding 
input. The plasticity is introduced to one of the values of the 
coupling strength C12 for simplicity as 

€ 

dC12
dt

=
−C12 +CS − pz1

τ
 ,                                                    (5) 

where CS is the stationary value of C12 when E1 does not fire, 
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p is a parameter that gives the quantity of the modification 
of C12, and τ is the time constant of the plastic change. 

III. RESULTS 
We performed computer simulation of the model. 

Throughout the simulation the parameter values a=0.1, 
b=0.1, c=0.2, vf=0.16, C13=C21=C31=C32=0.04 were used. 

A. Solution in the model with neither plasticity nor input 
In the model with neither plasticity nor input, two stable 

solutions exist. One is an equilibrium and the other is an 
oscillatory solution. In the former one the neurons do not 
fire and in the latter the neurons fire periodically. They are 
bistable for a certain parameter region. 

We performed computer simulation changing the value of 
the coupling strength C12 at the interval of 0.02 for the range 

€ 

0 ≤ C12 ≤ 0.3 . The equilibrium exits stably where 

€ 

0 ≤ C12 ≤ 0.22 , while the oscillatory solution exists stably 
where 

€ 

0.12 ≤ C12 ≤ 0.3 . Where 

€ 

0.12 ≤ C12 ≤ 0.22 , two 
solutions exist stably. Which solution emerges depends 
upon the initial values of the state variables, xj and yj (j=1, 2, 
3). 

  
(a) 

 

  

(b) 

Fig. 2 Simulation results with constant input. (a) Inhibition is 
accomplished. (b) Inhibition is not accomplished. 

 
This results are in accord with the fact that most patients 

of tinnitus claim that they do not always perceive tinnitus. 
 

B. Analysis of the model with plasticity and constant input 
We performed computer simulations of the model with 

plasticity feeding temporarily constant input with amplitude 
I. We employed the parameter values, CS=0.17 and 
τ=20[ms]. 

Fig. 2 shows examples of the results of the computer 
simulations. Fig. 2(a) is an example when the inhibition of 
oscillation is accomplished, where p=0.04, I=0.1 and the 
duration of input is 50ms. The initial value of the coupling 
strength C12 is 0.08 and the neurons in the model do not fire. 
The coupling strength C12 increases according to Eq. (3). It 
approaches to CS. The neurons do not fire since both the 
equilibrium and the oscillatory solution exist when C12=0.17. 
At time t=100[ms], a short triggering input is applied to the 
neuron E1. Then the sustained oscillation of the state 
variables begins and the neurons start to fire repeatedly. 
From time t=150[ms] to t=200[ms], temporarily constant 
input with the amplitude I=0.1 is applied to neuron E1. The 
model continues to oscillate while the input is applied. 
However, after the input is removed, the oscillation stops. It 
is because the coupling strength C12 decreased by the input 
according to Eq. (3). It can be stated that this result is a 
reproduction of the inhibition of tinnitus by sound therapy. 
Fig. 2(b) is an example when the inhibition of oscillation is 
not accomplished, where p=0.06, I=0.2 and the duration of 
input is 50ms. 

We examined the inhibition of oscillation changing the 
value of the parameter p at the interval of 0.02 for the range 

€ 

0.02 ≤ p ≤ 0.12  for the amplitude of input I=0.1 and 0.2 
with input duration 50ms and 100ms. The results are 
summarized in Table 1. When I=0.1, the inhibition was 
accomplished in all cases, while the inhibition was not 
accomplished in some p values for input duration 50ms and 
all p values for input duration 100ms. When p=0.12, I=0.2 
and input duration is 100ms, the inhibition occurred during 
the input is fed. This does not correspond to the clinical 
scenario. 

 
Table 1. Inhibition of oscillation with constant input. O: 
Inhibition is accomplished. X: Inhibition is not 
accomplished. 
 

Input 
duration 

[ms] 
I 

p 

0.02 0.04 0.06 0.08 0.10 0.12 

50 
0.1 O O O O O O 
0.2 O O X X X O 

100 0.1 O O O O O O 
0.2 X X X X X  

 

C. Analysis of the model with plasticity and sinusoidal 
input 
We performed computer simulations of the model with 

plasticity feeding sinusoidal input as 

€ 

S = Im sin 2πft  ,                   (5) 
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where Im and f denote the amplitude and frequency of the 
input, respectively. We employed the parameter values, 
CS=0.17 and τ=20[ms] same as the case for temporarily 
constant input. The frequency f of the input was set to the 
value that is approximately equal to the frequency of the 
autonomous oscillation. 

  
 (a) 

 

  
(b) 

Fig. 3 Simulation results with sinusoidal input. (a) Inhibition is 
accomplished. p=0.14, Im=0.1. (b) Inhibition is not 
accomplished. p=0.06, Im=0.2. 

 
Table 2. Inhibition of oscillation with sinusoidal input. O: 
Inhibition is accomplished. X: Inhibition is not 
accomplished. 
 

Input 
duration 

[ms] 

p 

Im 0.2 0.6 1.0 1.4 1.8 2.2 

50 
0.1 X X X O O O 
0.2 X X X O O O 

100 
0.1 X X X O O O 
0.2 X X X O O O 

 
 
Fig. 3 shows examples of the results of the computer 
simulation. Figure 3(a) is an example when the inhibition of 

oscillation is accomplished, where p=0.14, Im=0.1 and the 
duration of input is 50ms. Figure 3(b) is an example when 
the inhibition of oscillation is not accomplished, where 
p=0.06, Im=0.2. The initial value of the coupling strength is 
0.08.  

We examined the inhibition of oscillation changing the 
value of the parameter p at the interval of 0.02 for the range 

€ 

0.02 ≤ p ≤ 0.22  for the amplitude of input Im=0.1 and 0.2 
with input duration 50ms and 100ms. The results are 
summarized in Table 2. For both values of Im and input 
duration, the inhibition was accomplished when p is equal to 
or larger than 0.14, while the inhibition was not 
accomplished p is equal to or smaller than 0.12. 

 

IV. CONCLUSION 
A dynamical neural network model for tinnitus generation 

with hearing loss and its relief by sound therapy was 
proposed in this paper. BVP model was employed for the 
neuron in the model as a simple model neuron. This is a 
preliminary step of modeling tonotopic organization. In 
order to demonstrate plasticity, homeostatic plasticity was 
employed. The results of the computer simulation of the 
model show that the model can replicate the generation of 
the tinnitus with hearing loss and it can represent the 
temporal cessation and inhibition of tinnitus sensation 
following therapeutic acoustic stimulation. 

For future studies, our team will expand the present 
model to include the auditory centers that encompass 
tonotopic organization and will model their role in the 
generation of tinnitus. 
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