
 

 

  
Abstract— Electromyography(EMG) serves many purposes in the 
biomedical field, from the diagnosis and analysis of patient medical 
conditions to use for patient rehabilitation. EMG usage in 
rehabilitation settings includes helping train patients who may have 
undergone trauma through accidents, or medical conditions. EMG 
signal analysis can also help in restoring patient ambulatory 
capability by modeling muscle function and creating adaptive models 
for use in assistive-technology hardware. Depending on the exact 
application, due to the amount of data obtainable from the EMG 
signal it is potentially more advantageous to decrease the amount of 
data required for the application, while maintaining the fidelity of the 
information contained in the data. This is particularly true when 
EMG data is used in assistive-technology devices. In this case it is 
desired to use a smaller subset of the raw data. This can be 
accomplished through correct modeling of the data. Two candidate 
methods for this analysis and modeling are the wavelet transform and 
autoregressive modeling. 
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I. INTRODUCTION 
 lectromyography (EMG) is a technique for evaluating and 
recording the electrical activity produced by the muscular 

system. EMG is performed using an electronic instrument 
called an electromyograph. The electromyograph measures the 
minute electrical signals created by the flexing and movement 
of muscles, i.e., by detecting the electrical potential generated 
by muscle cells when these cells are electrically or 
neurologically activated, and produces a record called an 
electromyogram. The recorded electrical signals can be 
viewed, interpreted, and processed to determine activation 
level or recruitment order, to detect medical abnormalities, or 
to analyze the function of human or animal movement. EMG 
analysis is used to not only detect disease states, but is also 
applied in the diagnosis of, i.e., sports injuries [1]. In [2], 
EMG is used to find the most useful exercises to fully activate 
the muscle groups used by major league pitchers, who have 
injured shoulder scapular muscles to help in the rehabilitation. 

Signal processing techniques such as the Short-Time Fourier 
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Transform (STFT) and wavelet transforms can be used for 
modeling EMG processes and parameter estimation for control 
system design. The models and parameters are utilized by the 
control system to determine the general diagnosis of the user. 

Electromyogram results are used for diagnosing muscular 
diseases, including neuropathies and myopathies. Neuropathy 
is any disease that damages the peripheral nerves present in 
and around the muscles.  Neuropathic disease has some 
defining EMG characteristics. One factor is a muscle signal 
whose action-potential amplitude is twice that of a normal 
muscle signal. This is due to the increased number of fibers-
per-motor-unit because of the compensation for dead or 
damaged fibers. This compensation is called reinnervation. 
Another factor is an increase in duration of the action 
potential, which decreases the frequency of the overall signal. 
The EMG associated with neuropathies shows very active 
motor unit action potentials (MUAPs) even at rest [3].  

Myopathy is any disease that causes damage to the muscle 
fibers. Myopathic diseases also have a few defining EMG 
characteristics, most notable are decreases in duration and 
area-to-amplitude ratio of the action potential. Patients with 
myopathy have a decrease in the number of motor units in the 
muscle.  

Fig. 1 shows three examples of EMG signals: 1) a healthy 
patient, 2) a patient with neuropathy, and 3) a patient with 
myopathy. The test point for all subjects was the same; the 
tibialis anterior muscle. It is located on the lower leg (the shin) 
and aids in moving the foot up, or the toes closer to the shin.  
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Fig. 1 normal, neuropathic, and myopathic EMG signals [4] 

II. EMG STRUCTURE 
A typical electromyograph (EMG) consists of three main 

parts: three electrodes, a multi-stage high gain amplifier, and 
some form of digital signal processing. Fig. 2 is a block 
diagram of what the structure of an electromyograph typically 
looks like. 

 

 
Fig. 2 general electromyograph structure 
 
There are two different types of EMG’s, classified based on 

the type of electrode used. Intramuscular electromyography 
(iEMG) is done by inserting needle electrodes or a needle 
containing two fine-wire electrodes through the skin into the 
muscle tissue. A trained professional is authorized to read the 
electrical signal activity after inserting the electrode. As a 
downside, intramuscular EMG may be considered too invasive 
and uncomfortable, especially for younger patients.  

Instead, a surface, or stick-on, electrode may be used to 
monitor the general function of the muscle's activation, instead 
of the activity of a select number of fibers [5]. Surface 
electromyography (sEMG) reads the muscle signals from the 
surface of the skin and can be a better choice since it is less 
invasive and does not cause electrical irritation in the muscles. 
This irritation, which is caused by insertion of the needle 
electrodes, can muddle the information obtained by the EMG. 

The surface electrodes are stuck to the skin at three points: at 
the middle of the muscle, at the end of the muscle, and at a 
bony portion of the limb, such as on the elbow or knee.  

Both iEMG and sEMG have their benefits and drawbacks. 
iEMG is typically viewed as the standard for assessing 
neurophysiological characteristics of neuromuscular diseases 
[1],[3].This is because of the benefit of an iEMG electrode to 
probe a particular muscle and very accurately determine the 
location of specific MUAPs. This can be particularly 
important when diagnosing myopathies, where only individual 
muscles might be affected, in a group of normally responsive 
muscles. The primary drawback is that iEMG is a clinical 
procedure requiring the necessity to insert the needle 
electrodes. 

sEMG techniques have the benefit of easily attachable 
electrodes. While still a very useful technique, sEMG has 
several drawbacks: the ability to measure only superficial 
muscles; the measurements include any muscle activity within 
the measurement periphery of the surface electrode, hence, 
making it difficult to isolate specific MUAPs associated with a 
particular muscle. 

Myoelectric signals are quite small, in the range of tens-of-
microvolts to tens-of-millivolts, depending on the muscle 
being measured. As such, the amplifier portion of the EMG is 
essential. One researched example of an electromyograph had 
a total gain of 1200V/V. Of special importance is the 
instrumentation amplifier, as its high common-mode rejection 
ratio cancels out much of the noise picked up by the natural 
antenna that is the human body. 

Other noise, including the 60 Hz frequency that is common 
to most AC-powered electrical equipment, must be filtered out 
using the digital signal processing stage of the EMG. The 60 
Hz band is removed using a band stop or notch filter. This type 
of filter must be used, as 60 Hz is in the middle of the 0-to-500 
Hz common range of frequency of the myoelectric signals [6]. 
The exact values differ based on whether the patient is healthy, 
or is suffering from myopathy or neuropathy. 

Other sources of noise or distortion include skin resistance 
or motion artifacts, clipping, baseline drift, and processing 
errors [7].  

III. SIGNAL ANALYSIS 
As shown in Fig. 1, three EMG signals were obtained from 

the PhysioNET database: one from a healthy patient, one from 
a patient with neuropathy and one from a patient with 
myopathy. The signals are analyzed to determine defining 
characteristics as well as relative differences between the three 
types. The modeling is done to create ideal signals to compare 
to the received voltages. Results of the comparison will 
provide information to the control system which correction 
maneuver, if any, should be done. For modeling, 
autoregressive, fuzzy logic, or neural network systems can be 
used to model various signals. In this case, autoregressive 
modeling was implemented. 
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To better assess the difference in signals, spectrogram 
analysis was performed on each of the signals using 
MATLAB. Creating a spectrogram using the Short-Time 
Fourier Transform (STFT) is a process in which data sampled 
in the time domain, is broken up into segments and Fourier-
transformed to calculate the magnitude of the frequency 
spectrum for each portion. Each piece then corresponds to a 
vertical line or block in the image. The pieces are then laid 
side by side to form the image. 

The continuous wavelet transform was also used on each 
signal. A wavelet transform (WT) is used to divide a 
continuous-time function into wavelets. In contrast to the 
STFT, the continuous wavelet transform possesses the ability 
to construct a time-frequency representation of a signal that 
allows frequency and amplitude to be located at a particular 
time. Analysis of the provided signals will aid in the modelling 
of clinically obtained muscular signals. 

The wavelet transform can be performed by using different 
wavelet families. Each of these families has a particularly 
shaped mother wavelet which is then compressed and/or 
dilated. These differing shapes allow the analyzer to get more 
information from the signal that is being studied. The wavelet 
family whose shape more similarly matches the original signal 
waveform will give more information about that signal. For 
each of these myoelectric signals, both the Morlet and 
Daubechies wavelets were utilized. In all three cases, the 
Morlet wavelet was found to give more accurate information 
about the original signal. 

For the healthy patient, when the muscle is smoothly 
contracted, action potentials begin to appear. As the strength 
and duration of the muscle contraction are increased, an 
increased number of muscle fibers produce action potentials. 
When the muscle is fully contracted, there should appear a 
non-periodic and apparently random group of action potentials 
of varying rates and amplitudes. When the muscle is not 
contracted, there should be no electrical activity whatsoever. 
Fig. 3 is the MATLAB-plotted values of a healthy tibialis 
anterior muscle obtained from PhysioNET.  

 

 
Fig. 3 EMG of a healthy subject 
 
 
 

Time (in seconds) is along the horizontal axis, and the 
voltage (in millivolts) is along the vertical axis. Fig. 4 shows 
the spectrogram of the healthy patient’s myoelectric signal. 

 
Fig 4 Spectrogram of the EMG of a healthy subject 
 
The spectrogram shows varying frequencies from 0-to-600 

Hz. Most are lower amplitudes but the darker color at two 
seconds, four seconds, and ten seconds shows higher-
amplitude signal components. This correlates with the data 
from the original signal. Fig. 5 shows the Continuous Wavelet 
Transform (CWT) of the healthy signal using the Daubechies 4 
wavelet.  

 

 
Fig. 5 Daubechies CWT of the EMG of a healthy subject. 
 
The CWT shows a three-dimensional view of the time-

frequency representation of our healthy signal. It is a smooth 
graph due to the difference in shape of the Daubechies 4 
wavelet as compared to the waveform of the EMG signal. Fig. 
6 shows another form of the CWT called the Morlet Wavelet. 
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Fig. 6 Morlet CWT of the EMG of a healthy subject. 
 
Here the signal has a more jagged response due to the 

Morlet wavelet being very similar to the shape of the healthy 
individual's muscular waveform. The wavelets verify the 
spectrogram results that there are varying frequencies present 
the whole time, most of which have low amplitudes. The only 
exceptions are those amplitudes located as illustrated in Fig.’s 
2 and 3, at times of two-, four-, and ten-seconds.  

A person suffering from myopathy has damage within the 
muscle itself. There is a decrease in the duration of the action 
potentials. The myopathy signal in Fig. 7 shows that the 
amplitude voltages change more quickly and that the action 
potential duration shortens.  

 

 
 Fig. 7 EMG of a myopathic subject 
 
The spectrogram of a myopathy signal is given in Fig. 8. 

The spectrogram shows varying frequencies with medium-to-
high amplitudes, with the highest amplitudes between the 
frequencies for 0-to-1000 Hz, which are present for the 
duration of the signal acquisition. 

 
 
 
 
 

  
Fig. 8 Spectrogram of the EMG of a myopathic subject 
 

The Daubechies wavelet, Fig. 9, shows a smoother 
representation of the myopathy signal, which still verifies the 
characteristics of a patient with myopathy.  

 

  
Fig. 9 Daubechies CWT of the EMG of a myopathic 

subject. 
 
The Morlet wavelet (Fig. 10) however, shows that the 

amplitudes are actually higher than the Daubechies results 
suggest.  

 
Fig. 10 Morlet CWT of myopathic signal 
 
 
A person who suffers from neuropathy has endured damage 
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to the nerves inside the muscles. An EMG of a person with 
neuropathy will show an increase in duration of the action 
potentials. It will also show a decrease in the reaction time of 
the remaining motor neurons because of the attempt to 
compensate for the damaged or missing ones. Fig. 11 shows 
the plotted data from the patient with neuropathy. 

 
Fig. 11 EMG signal for a neuropathic subject. 
 
It is unknown whether the higher-amplitude signal 

component starting at approximately eleven seconds is an error 
or part of the useful data. Fig. 12 is the spectrogram of the 
neuropathic patient’s electromyogram.  

 
Fig. 12 Spectrogram of the EMG signal for a neuropathic 

subject 
 
It shows medium-high amplitude frequency bands at 400 Hz 

and 1100 Hz, and a medium amplitude frequency band at 3000 
Hz. All amplitudes after twelve seconds are high and of 
varying frequencies, which correlates with the graphing of the 
raw data results. The wavelets shown were taken using scales 
from 25 to 225, which emphasizes the lower frequencies. Both 
are approximately the same shape, with low amplitudes up to 
the very high amplitude shown in the data and spectrogram. 
The Morlet CWT shows higher amplitude at that point than the 
Daubechies CWT shows (Fig. 13 and Fig. 14 respectively).  

 
 
 
 

Fig. 13 Morlet CWT of the EMG signal for a neuropathic 
subject. 

 
 

Fig. 14 Daubechies CWT of the EMG signal for a neuropathic 
subject. 

IV. SIGNAL MODELING 
In order to efficiently diagnose the various classes of 

pathologies, i.e., myopathies, neuropathologies, as well as 
normal functioning, it would be necessary to follow the prior 
modeling steps with a classifier stage such as, i.e., a state 
vector machine. It can be seen that autoregressive (AR) 
modeling could replace thousands of bytes of data with a 
model with as few as 10 – 30 AR coefficients. The results of 
the modeling are shown in Fig.’s 15 – 29, the modeled 
response illustrated with the thicker, smoother lines, and the 
original data, shown with a thinner, more variable line.  

Each model uses the Yule-Walker autoregressive method to 
obtain its coefficients. This method estimates the power 
spectral density of the signal by creating an autoregressive 
model that fits the sectioned or windowed input data [8]. 
Human speech, the most complicated commonly-modeled 
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signal, requires a model order of fourteen coefficients to create 
a sufficient model, thus for the EMG modeling an initial model 
order of 20 was utilized to give some flexibility margin to the 
estimator. Model orders of 10, 15, 25, and 30 were also tried 
to provide comparison and contrast. Due to the amount of 
variation in the signals as a whole, the modeling would need to 
be performed on blocks of data. Ideally, several larger sets of 
data could be utilized to come up with ranges for the average 
values of the modeled parameters, thus adding robustness to 
the classifier. 

 

Fig. 15 10th- order autoregressive model of healthy EMG 
 
 
 

Fig. 16 15th-order autoregressive model (healthy) 
 
 
 
 
 
 
 
 

Fig. 17 twentieth order autoregressive model (EMG) 
 
 
 

Fig. 18 25th-order AR model (healthy) 
 
 

Fig. 19 30th-order AR model (healthy) 
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There is an obvious progression in the quality of the model 
as the order, or number of coefficients, increases from ten to 
thirty. Processing 30 coefficients is not a problem for, i.e., a 
desktop computer, but for use in an embedded environment 
such as controlling the assistive device, the minimum number 
of coefficients to successfully control the device should be 
determined. While not explored in this work, the Akaike 
Information Criteria (AIC) could be used to determine 
optimum model order. To determine the exact pathological 
condition, the signal processing techniques explored here – 
wavelet analysis [9], autoregressive (AR), or even 
autoregressive-moving average (ARMA) models could be 
combined with a support vector machine (SVM) [10]. 

 
Fig. 20 10th-order autoregressive model of myopathic EMG 
 

 
 
Fig. 21 15th-order autoregressive model (myopathic) 
 

Fig. 22 20th-order AR model (myopathic) 
 

Fig. 23 25th-order AR model (myopathic) 
 
 

Fig. 24 30th-order AR model (myopathic) 
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Fig. 25 10th-order AR model of neuropathic EMG 
 
 
 

Fig. 26 15th-order autoregressive model (neuropathic) 
 
 

 
Fig. 27 20th-order AR model (neuropathic) 
 

Fig. 28 25th-order AR model (neuropathic) 
 

Fig. 29 30th-order AR model (neuropathic) 
 
 

V. CONTROL SYSTEM 
A control system utilizing the results of the signal modeling 

and analysis can be implemented in a number of different 
ways. Ideally, the autoregressive models would be compared, 
but the same could be done with the spectrograms or wavelet 
transforms.  

The spectrograms – and, the autoregressive models in 
particular – work well for this application. They give general 
information about the signal, which allows for the natural 
differences between various patients. Without this 
generalization, it would be nearly impossible to be able to 
match any two signals, and even more difficult to ensure that 
the correct match (i.e., diagnosis of myopathy or neuropathy) 
would be made.  

In a clinical setting, the electromyograph would record ten 
seconds of muscle activity data, which was the approximate 
length of the data sets from PhysioNET. The microcontroller 
would then take a few different sections of the data, modeling 
them with the same autoregressive technique used here. It 
would then compare these models in succession to those stored 
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of a healthy individual, an individual with myopathy, and an 
individual with neuropathy.  

The matching process would have a slight variance to 
provide allowance for differences between patients. With a 
75% match or better, the braces would be adjusted for one of 
three actions. If the models matched that of a healthy patient, 
no additive processing would occur for the braces. Generally, 
no corrective action would be needed for a healthy individual, 
but the data would still be available to the device for 
comparison purposes. If the models of the received signal 
matched that of a patient with myopathy, the braces would be 
setup to provide the maximum support. This action was chosen 
because myopathy causes more weakness in the muscles than 
neuropathy causes. If the models matched that of a patient with 
neuropathy, then the braces would be setup to provide a slight 
amount of additional support and stability, as maximum 
support would be unnecessary. If no match is made, the doctor 
or clinician would be alerted by the braces that more 
information is needed or that there is some sort of error in the 
processing. 

VI. CONCLUSION 
Signal processing and analysis play an important part in 

utilizing electromyograms to control a rehabilitative or 
assistive device. In particular, parameter estimation can be 
used to create models that can be utilized by the assistive 
technology’s control system to aid in increasing the patient’s 
ability to perambulate on their own.  
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