
 

  
Abstract—Electrical measurement of liquid zones and boundaries 

formed in active neuron is presented. In advance, modelling of an 
active neuron is shown with three zones and two boundaries. Basic 
equations are shown to calculate transmission and reflection 
components for a section with a boundary and two different zones in a 
transmission line. Then an inhomogeneous transmission line with 
uniform three zones and two boundaries is considered. Velocity in 
each zone is given at each zone. A system configuration is then shown 
for measurement of three zones and two boundaries in an active 
neuron.  

This system is composed of the chirp method for conversion of 
distance to time-frequency difference with the chirp method and the 
proposed method for fine resolution of zone potential and boundary 
reflection in a neuron.  
 

Keywords—Active neuron model, liquid zone and boundary, 
inhomogeneous transmission line, transmission and reflection 
components.  

I. INTRODUCTION 
 modeling and analysis of an active neuron has been given 
by the authors [1-11,15,16]. This model is shown with 

three zones and two depletion layers for motion of charges in 
cytoplasm of a neuron. This model was given electro-physically 
by referring relations of behaviors by unicellular organism and a 
neuron [12-14]. In spite existence of depletion layers is not 
proved in experiments, it is expected to be proved in 
experiments.  

A measurement scheme is now given in this paper for 
measurement of two boundaries in an active neuron using plural 
glass electrodes inserted in a neuron.   

This paper presents fundamental equation to measure first 
position of a boundary in a section in liquid medium. 

This paper then presents a measurement system composed of 
the Chirp method and proposed scheme with cascading 
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connection. This system is applied to measure electrical 
behavior in zones and position of boundaries formed in a neuron 
and paramecium of unicellular organism.  

The theory and measurement method given in this paper is 
applied widely to not only a neuron but also other excitatory 
cells of secretory cell, muscle cell, and neuron.  

 

II. ELECTRO-PHYSICAL MODELLING OF AN ACTIVE NEURON  
 

A. Electrical Modeling of Activity of Neuron  
 
g0 ~ g4 are small glass electrodes to be inserted in a neuron for 

electrical measurement.  
id is current through forward diode nd at the dendrite, and ia 

is current through reverse diode na at the axon. ic is current 
through resistance rc of the central part. α is current 
multiplication factor and   α ∙ id  is equivalent current source to 
the axon.  

The directions of nd and na correspond to directions of 
current id and ia . Current source α ∙ id corresponds just to 
activity of this model. 

 
 

B. Equivalent Electrical Circuit of Active Neuron  
 
Equivalent electrical circuit of activity and active neuron is 

shown in Fig. 2 and 3.  
The points of d0, a0 are outside of membrane. c0 is a virtual 

point taken in the central part. rd and ra are resistances of 
forward diode nd and reverse diode na, rc is the resistance at the 
central part to outside of a neuron. Rd and Ra are external 
resistances of synapses sd and sa.  

 
rd << Rd  and ra << Ra. rc is approximately zero.  
 
The capacitances Cd and Ca are caused by the first and 

second depletion layers respectively. Input and output synapses 
sd and sa.are shown as forward diodes for excitatory synapses 
(p-ions). These synapses work as backward diodes for 
inhibitory synapses (n-ions).  
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Fig. 1 Electro-physical modelling of an active neuron for positive pulse generation.  
g0 ~ g5 are small glass electrodes to be inserted in a neuron for electrical measurement.  

A pair electrodes in each zone are first inserted.  
 
 

 
 

 
 
 
 
 

 
 

Fig. 2  Electrical modeling of activity of a neuron for positive 
pulse generation.  
 
 
 
 
 
 

 
 
Fig. 3 Electrical modeling of an active neuron for positive pulse 
generation.  

 
 
 

 

III. ELECTRICAL SIGNAL TRANSMISSION AND REFLECTION IN 
LIQUID TRANSMISSION LINE  

 

A. Velocity and Transmission Time  
 
Relative dielectric constant εr(y) is assumed depending on 

position y. The velocity c(y) is given as follows,  
 

                                    (1)  

 
where, c0 is the vacum light velocity. Electrical signal 
trasmission time T is given as follows.  

 

                               (2)  

 
 

B. Signal Transmission in Discontinuous Medium  
 
An electrical transmission line is shown in Fig. 4.  
Small glass electrodes are inserted into the line at points pk (k 

= 1, .. , N) along y axis.  Section k is deined between points pk-1 
and pk, and length of section k is xk .  

It is assumed that a boundary is included in section n, and any 
boundary is not included in the other sections. pBn is the 
boundary position in section n.  is the distance from point 
pn-1. 
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The average velocity ck in the section k is given as;  
 

k

k
k t

xc =                                                 (3)  

 
where, xk tk are distance and passing time in the section k.  

 
The passing time in the section k without boundary is given 

as;  
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The transmission time in the section n including a boundary is 

given as follows, using the velocities cn-1 and cn+1 at the 
preceeding and post sections adjacent to the section n. 
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The position of the boundary at yBn in the section n is given as 

follows;  
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C. Measurement of Boundary Positions  
 
Three pairs of glass electodes is considered to be inserted in a 

cell. By a pair of electrodes (g0, g1), (g2, g3), and (g4, g5) in 
each zone, uniform velocities are measured at input and output 
zones without boundary.  
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Then the positions of two boundaries enclosing the central 

part are calculated as;  
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The positions pB2 and pB3 in section 2 and 3 are obtained by 

substituting Eq (14) and (15) into Eq.(8).  
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Fig.4 Structure of a section n with a boundary at point pBn.  
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IV. OBSERVATION OF ZONES AND BOUNDARIES IN A NEURON  
 

A. System Configuration  
 
A measurement system is shown in Fig. 5. Which is 

composed with parts for chirp method and proposed methods. 
The measurement sample of active neuron is shown above. 
Three sets of pair electrodes are inserted into individual zones.  

Each reflection time 2Tk from each electrode is measured by 
the chirp method. Each position yB of each boundary is 
calculated by the proposed method.  

 

B. Transmission Time by the Chirp Method  
 
Each position of glass electrode for reflection is measured by 

the difference ∆ f between transmission and reception 
frequencies.  

 

krt Tfff α2=−=∆              (14)  
 

α =｛ ft (max) – ft (min) ｝/ T0    (15)  
 

where, ft , fr are transmission and reception frequencies. α is the 
chirp modulation constant defined by ft (max) and  ft (min). T0 is 
time length of a triangle wave for chirp modulation.  

Transmission time kT  from reference point g0 to reflecting 
point gk is given by ;  

 
α2fTk ∆=                            (16)  

 
 

C. Boundary Position by the Proposed Method  
 
Boundary positions yB2 and yB4 are calculated by the 

proposed method using transmission times Tk and section length 
xk . The calculation process as follows;  

 
(i) Velocities in sections ck are calculated by reflection times Tk 
and section length xk .  
(ii) Boundary section n is taken up by variation of ck for k. Here, 
bigger change should be at c2 and c4.  
(iii) The distance 2Bδ  and 4Bδ  is calculated by Eq. (10). Then 

boundary positions yB2 and yB4 are calculatobtaned.  
 
When three electrodes are inused, these electrodes are 

assigned for input, control (ground), and output ports. Input, 
central, and output potentials are measured for dynamic 
operation in time-space domain.  
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Fig. 5 System configuration of electrical measurement scheme.  
Transmission times to boundaries measured by the chirp method.  
Positions of boundaries are measured by the proposed method.  

 
 

 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 9, 2015

ISSN: 1998-4510 45



 

 

V. ELECTRICAL MEASUREMENT OF ZONES AND BOUNDARIES 
IN PARAMECIUM 

 
Schematic figure of Paramecium is shown in Fig. 6. This 

animal moves backward (downward) for stimulus given at the 
anterior end. On the contorary, the animal moves forward 
(upward) for stimulus given at the posterior end.  

The function of stimulus reception is regarded as a 
"swimming receptor cell". And the function of effector for 
motion of cillia is regarded as a "swimming neuron".  

The motion of cillia is driven by increase of density of Ca2+ 
ions inside the cell. It is pointed that the receptor for stimulus 
depends on the position outside and inside of the cell of the 
animal. The signal is transmitted along the surface of cytoplasm 
under the membrane.  

Dynamic porcess is found in common between a neuron and 
paramecium except the difference of positive charges. Na+ in 
Fig.2 is replaced by Ca2+. By the way, Ca2+ channels at the 
central part and the entrance of the axon are assumed to be 
deleted from the electro-physical modelling.  

The advantage of paramecium is superior for multiple 
electrode insertion for testing because of its larger size 
compared to that of a neuron in brain.  
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Fig. 6 Unicellular organisms, Paramecium caudatum, body 
length: 250 μm and width: 50 μm, approx., length of cilia: 15 
μm, thickness: 0.2μm.  
 
 
 

VI. CONCLUSION 
 
The electrical system was proposed for measurement of 

potential in zones and positions of boundaries in electrical 
medium of cytoplasm. Three electrodes are proposed to be 
inserted in a neuron. This system is essentially obtained by 
counting transmission and reflection component of signal at 
zones and boundaries.  
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