
 

 

  
Abstract— The heart rate variability (HRV) signals, extracted from 
an electrocardiograph (ECG) signal, are strongly linked to the 
activities of the Autonomous Nervous System (ANS). In this work, 
we propose a method to compute the duration of the two ANS 
activities; Sympathetic and Parasympathetic as well as observing 
their instantaneous evolution in time. The HRV signal in the low 
frequency and high frequency bands is, naturally, non stationary due 
to the non steady state of the sympathetic and parasympathetic 
behavior. We believe that a steady state or steady behavior of the 
ANS is, in fact, a stationary state of the HRV signal, and it is the 
result of one activity dominance only and not an alternation of both 
of the two activities. We have, therefore, segmented the HRV signal 
into stationary segments, and henceforth each of them was 
represented by Gaussian white noise whose variance is also its Power 
Spectral Density (PSD). We have obtained good duration estimation 
and localization of the two activities using stationary segments with 
16 samples each. 
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I. INTRODUCTION 
eart rate variability (HRV) is a marker of sympathetic and 
parasympathetic influences on the modulation of heart 

rate [1].The heart rate may be increased by slow acting 
sympathetic activity or decreased by fast acting 
parasympathetic (vagal) activity. The heart rate is given by the 
reciprocal of the RR-interval (inter-beat) in units of beats per 
minute. In the literature spectral analysis of the RR tachogram 
is typically used to estimate the effect of the sympathetic and 
parasympathetic modulation of the RR-intervals. The two main 
frequency bands of interest are referred to as the Low-
Frequency (LF) band (0.04 to 0.15 Hz) and the High-
Frequency (HF) band (0.15 to 0.4 Hz) [1]. Sympathetic tone is 
believed to influence the LF component whereas both 
sympathetic and parasympathetic activities have an effect on 
the HF component [2], with the priority of the parasympathetic 
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activity. To localize these activities and estimate their 
duration, the power spectral density (PSD) cannot be used 
because it can only indicate the overall dominance of one 
activity over the other but it does not show when this 
dominance occurs and how long it lasts due to the PSD lack of 
information in the time. To overcome this problem, wavelets 
have been used due to their time frequency (scale) dependency 
[3,…,6]. However, despite their global consistency and their 
interesting results, difficulties in their implementation and the 
choice of an adequate wavelet may hamper their performances. 
To find the duration and the localization of the two ANS 
activities, we suggest, therefore, in this paper an alternative 
and simple method based on a segmentation of the HRV signal 
into small stationary segments modeled by a Gaussian white 
noise [7].  

II. DATA COLLECTION 
The analyzed data in this paper were obtained from a Fantasia 
Database in MIT-BIH arrhythmia database [8]. This collection 
consists of 10 heart beat time series; 5 young (Y) subjects and 
5 old (O) subjects rigorously screened healthy subjects 
underwent 120 min of continuous supine resting 
electrocardiograph (ECG) test. We analyzed the inter-beat 
interval time series using frequency domain. All subjects 
remained in a resting state in sinus rhythm while watching the 
movie Fantasia (Disney, 1940) to help maintain wakefulness. 
In this study, our analyses were based on only the R-R interval, 
the continuous ECG was digitized at 250 Hz. Each heartbeat 
was annotated using an automated arrhythmia detection 
algorithm. The R-R interval (inter-beat interval) time series for 
each subject was then computed. The characteristics of each 
subject are shown in Table 1. 
 
Table 1: Characteristics of each subject 
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III.  METHODS 

3.1 Gauss approximation 
The principle is based on dividing the HRV signal into several 
segments of even length (number of RR intervals or sample). 
Figure .1 shows a non stationary HRV signal. We can see in 
this figure that the interval [8 72] is non stationary because it is 
very long (64 samples). However, if we focus on a small 
interval of the same signal, then the curvature may not vary too 
much and, thus, it could be considered as approximately 
constant [7]. This is particularly illustrated in figure .2 by the 
small interval [8 24] (16 samples).  
 

 
 
Fig.1: Non stationary signal, the interval [8, 72] is very large, hence 
non stationary. 
        

 
 
Fig.2: Non stationary signal, the interval [8, 24] is small enough to be 
considered as stationary. 
 
This approximation is known as Gauss approximation. It is 
possible, therefore, to divide the signal into many small 
stationary intervals. The latter were, in addition, modeled by a 
Gaussian model. 
 
3.2 Spectral analysis 
The goal of our spectral analysis is to make a separation 
between the two autonomic nervous system activities for each 
interval; the main idea is that over a short period of time, the 
autonomic nervous system is under the dominance of either the 
sympathetic activity or the parasympathetic activity and not an 
alternation of both activities. 
The time series constructed from all available RR intervals is 
clearly not equidistantly sampled, but has to be presented as a 

function of time, i.e. as values        [t(i),RR(i)], and we know 
that the regular PSD estimators implicitly assume equidistant 
sampling and thus, the RR interval series is converted to 
equidistantly sampled series by interpolation methods prior to 
PSD estimation [9]. In the analysis of the HRV, three main 
alternatives have been used to get around this problem: a) by 
assuming that HRV signals to be evenly sampled, b) by using 
direct spectral estimation methods from the irregular sampled 
signal and c) by using interpolation methods to recover an 
evenly sampled signal from the irregularly spaced samples 
prior to the PSD estimation [6].    
Various spectral methods [11] have been applied since the late 
1960s. Although the Task Force of the European Society of 
Cardiology and the North American Society of Pacing 
Electrophysiology [1] provided an extensive overview of HRV 
estimation methods and the associated experimental protocols 
in 1996. The PSD estimation is generally carried out using 
either Fast Fourier Transform (FFT) methods or Auto-
regressive (AR) modeling methods. In the literature the use of 
the FFT with linear or cubic spline interpolation for beat 
replacement and re-sampling are considered standard methods 
for spectral HRV analysis [10]. Therefore in this work, the 
HRV spectrum is calculated with FFT based on cubic spline 
interpolation method, where the sampling rate of the 
interpolation is equal to 4Hz. 
 To compute the PSD, we have used Welch Periodogram 
method for some advantages such as reducing the number of 
calculations and basic storage requirements, and practical 
application in the non-stationary test [12].  
 The Welch Periodogram is a method by which a large time-
sampled waveform can be frequency-transformed by 
partitioning the data into shorter segments, transforming each 
segment, then, averaging the results over all the segments to 
create a composite frequency-space waveform as described in 
[13]. In order to create a PSD profile, window sizes and 
overlap size need to be considered [14], in our case, we have 
chosen the value of the window (number of samples) equal to 
the width of the interval obtained by the Gaussian 
approximation combined with the cubic spline interpolation. 
The problem of using data segments is that taking FFTs of 
various data segments can introduce discontinuities at the 
segment boundaries or edges. To reduce these spurious 
components, a windowing function tapers the data down to 
zero at each end of the data segments. The window is 
multiplied by the data segment and has a width equal to the 
segment length [15].   
 

IV.  RESULTS AND DISCUSSION 
The aim is to obtain stationary segments of even length from 
the HRV signal and each of them can be represented by a 
Gaussian white noise model [7]. The number of these intervals 
and the adequate model depend on how the reconstructed 
version is close to the original HRV signal. We have, 
therefore, plotted in each of the following figures, the original 
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HRV signal and its reconstructed version. We have, in 
addition, calculated the mean square error (MSE) between 
each original and its corresponding reconstructed signal for 
four different numbers of intervals. These results obtained for 
HRV signal of 512 samples, are presented in Table 2.  
 
Table 2: MSE for different numbers Ni of intervals in each of 
the ten HRV signals 

Subjects MSE 
(Ni=4) 

MSE 
(Ni=8) 

MSE 
(Ni=16) 

MSE 
(Ni=32) 

Young1 0.0094 0.0084 0.0096 0.0099 
Young2 0.0125 0.0127 0.0138 0.0117 
Young3 0.0075 0.0051 0.0046 0.0037 
Young4 0.02 0.0179 0.0183 0.0145 
Young5 0.0047 0.0048 0.004 0.0043 
Old1 0.0023 0.0024 0.0019 0.0012 
Old2 0.0005 0.0005 0.0004 0.0003 
Old3 0.0021 0.0023 0.0021 0.001 
Old4 0.0048 0.0043 0.0044 0.003 
Old5 0.001 0.0008 0.0007 0.0004 

 
 

 
 
Fig.3: HRV signal with their reconstructed signal, for a number of 
intervals Ni=4 
 
 

   
 
Fig. 4. HRV signal with their reconstructed signal, for a number of 
intervals Ni=8 

 
 
Fig.5 HRV signal with their reconstructed signal, for number of 
intervals Ni=16. 
 

 
Fig. 6. HRV signal with their reconstructed signal, for number of 
intervals Ni=32 
 
We have plotted in each of the previous 3 to 6 figures, four 
original HRV signals and their corresponding reconstructed 
versions using our Gaussian white noise approach. In order to 
see the quality of this approximation, we have presented the 
results corresponding to ¶two young and two old only. 
The aim is to obtain stationary intervals in the HRV signal 
such that the reconstructed HRV from these intervals should 
represent its original version as good as possible. Once this is 
achieved, the interval duration should be, roughly, that of any 
steady HRV behaviour. So, to obtain the best reconstructed 
HRV to the original version, we have reduced gradually the 
interval length by dividing the HRV into more many intervals 
as indicated in figures 3,4,5,6. Initially looking at figure 3 
(look in the circle) we can say that there is a large difference 
observed between the two signals (original and reconstructed). 
This error is in fact due to the length of the interval (4 intervals 
so there are 128 samples in each interval) since it is not 
stationary. However we see that when the interval length is 
more reduced by dividing each signal into 8 intervals (fig. 4), 
the reconstructed signal is getting closer to the original signal 
but there is still a significant difference. In figure 5, we can say 
that there is a significant improvement; the two signals are 
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closer. In figure 3, corresponding to 8 intervals in the case of 
young 3 represented by the second curve from the top, we can 
say that there is a slight difference between the HRV signal 
and its reconstructed version whereas in figure 6, 
corresponding to 32 intervals, the two signals are almost 
concurrent ( see in the circle). This can be, further, clarified by 
the mean square error (MSE) given in Table 2. Notice that the 
size of the vector representing the Gaussian model in each case 
is (2xNi), while the original vector size is 512. (2xNi) is the 
number of the model parameters; the variances and mean 
values. After setting the previous parameters, described in the 
paragraph 3.1, we now proceed to calculate the PSD but 
according to The European and North American Task force on 
standards in HRV [1] which suggested that the shortest time 
period over which HRV metrics should be assessed is 5 
minutes.  As a result, the lowest frequency that can be resolved 
is 1/300≈0.003Hz (just above the lower limit of the VLF 
region). On the other side, we are only interested to low and 
high frequency which can be determined in the interval [0.04 
0.4] to study the sympathetic and parasympathetic activities. 
So we can reduce the interval length if it is desired. With the 
result obtained in 3.1 we have chosen to work with only the 
value of Ni=16 and Ni = 32 since they present the best results 
in terms of the error and also the duration of the interval. For 
practical reasons, we can’t present the simulations of the PSD 
for each interval in the two cases (Ni = 16, Ni = 32) and for 10 
subjects, for this reason, we choose to do the calculations for 
every subject, but we simulate just 4 PSDs for the subject 
Young 3 in both cases (Ni = 16, Ni = 32). 
We can notice in figure 7 corresponding to Ni=16 (segments 
less stationary), that there are alternation of dominance of the 
two activities, whereas in figure 8 with Ni=32 (segments more 
stationary), we can observe that there is only one dominant 
activity and no alternation of both. This is, indeed, a fairly firm 
confirmation that our suggestion based on stationary segments 
method for estimating the duration as well as localizing the 
ANS activities, is more accurate and efficient than the wavelet 
method. The main problem, however, lays in the fact that the 
lowest frequency that can be resolved is best when the signal is 
divided into 16 intervals (long and less stationary) according 
to Heisenberg Principle. This is mainly due to the fact that in 
 

      
a) Interval number =4                 b) Interval number =8 

       
c) Interval number =12                d) Interval number =16 
  Fig. 7. The PSDs in the case Ni=16 
 

       
a) Interval number =8                b) Interval number =16 
 

       
c) Interval number =24               d) Interval number =32 
Fig.  8. The PSDs for the case Ni=32. 
 
 this interval, the shortest time for the ten subjects is equal to 
23.7920s, indicating that the lowest frequency that can be 
resolved is 1/ 23.792≈ 0.042Hz, whereas in the case of 32 
intervals, the shortest time is equal to 11.388, which means 
that the lowest frequency that can be resolved is 1/ 11.38≈ 
0.0878Hz. As it is known the peak of the LF wave is 
approximately situated around 0.1Hz [16], hence we can detect 
this wave in the two cases. In order to choose the necessary 
and adequate number of intervals, we must balance the 
requirement of stationary versus the time required to resolve 
the information that is present. We have, therefore, chosen to 
make the temporal estimation with Ni=32 segments. 
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To determine the duration of the sympathetic nerve activity or 
the parasympathetic, we compute the PSD in each interval, and 
since the duration of each interval is short, then we consider 
that each interval is under the influence of the sympathetic 
nerve activity if the peak LF > peak HF and under the 
influence of the parasympathetic activity if the peak HF > peak 
LF. For example in the figure 8b (Interval number =16) the 
sympathetic nerve activity (grey curve) is dominant, whereas 
in figure 8a, the parasympathetic effect is clearly dominant 
(dark curve). Overall activity dominance duration for each 
subject is shown in table 3. 
  
Table 3: Duration of time of the two activities and for the ten 
subjects 

 Total 
duration 

Duration of 
sympathetic 
activity 

Duration of the 
parasympathetic 
activity 

Y 1 395.464 111.288 284.176 
Y 2 501.964 155.564 346.4 
Y 3 465.364 103.008 362.356 
Y 4 676.888 273.44 403.448 
Y 5 494.208 108.336 385.872 
O 1 498.392 155.272 343.12 
O 2 513.4 128.008 385.392 
O 3 495.688 141.976 353.712 
O 4 597.716 147.828 449.888 
O 5 537.988 117.896 420.092 

 
We observe in table 3 that for the ten subjects most of the 
duration of the test is influenced by the parasympathetic 
activity. This is, probably, due the fact that the subjects 
watching a movie, are at rest.  We have illustrated, in figure 9, 
the evolution of both activities (sympathetic and 
parasympathetic) corresponding respectively to LF and HF 
PSD peaks.   

 
Fig.9 Temporal localization of the PSD for LF and HF peaks (y1) 
 
The most important information, given by this example, is the 
temporal localization of the influence of the two autonomous 
nervous system activities. This localization is useful to link the 
activity to the external cause. We note here that we applied a 
cubic spline interpolation with freq = 16 Hz, and each graph is 
a mixture of the PSD of HF peaks (above) and LF peaks 
(below). 

V.  CONCLUSION 
We have proposed a method to estimate the duration of the 
ANS sympathetic and parasympathetic behaviours as well as 
localizing them in time. This method is based on dividing the 
HRV signal into stationary Gaussian white noise even 
segments. This localization in time is useful to link, accurately, 
a specific activity to its corresponding external cause. 
Furthermore, this method can be used, particularly in 
psychological problems, to observe the behaviour of 
individuals in real time. 
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