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Incremental Phylogenetics by Repeated
Insertions: An Evolutionary Tree Algorithm

Peter Z. Revesz, Zhigiang Li

Abstract—We introduce the idea of constructing hypothetical
evolutionary trees using an incremental algorithm that inserts species
one-by-one into the current evolutionary tree. The method of
incremental phylogenetics by repeated insertions lead to an algorithm
that can be used on DNA, RNA and amino acid sequences.
According to experimental results on both synthetic and biological
data, the new algorithm generates more accurate evolutionary trees
than the UPGMA and the Neighbor Joining algorithms.
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I. INTRODUCTION

URRENT phylogenetic tree construction

algorithms[1]-[3], [6], [10], [12] and [14] are not
incremental and have to be rerun from the beginning whenever
a new species is added to the database. Moreover, a rerun from
the beginning is necessary even if the new species is aligned
with the already used species. In this paper, we develop an
incremental algorithm that inserts new species one-by-one into
a growing phylogenetic tree.

Our inspiration for such an incremental phylogenetic
algorithm is the way biologists usually classify any newly
discovered species. Starting from the root node of the existing
classification tree, the newly discovered species is compared
with existing species and always an appropriate branch is
chosen to go one level down in the classification hierarchy.
Eventually we reach one of the existing species, which is the
closest relative. It is next to that nearest relative where the new
species is normally inserted.

Our aim is to develop a computer algorithm that uses the
above paradigm but works with both DNA sequences and
proteins. As the genomes of a growing number of species are
sequenced and become part of DNA and protein databases [5],
[13], molecular biology increasingly augments, although not
completely replaces, morphological considerations.

Reliable phylogenetic tree constructions are needed for a
diverse set of studies, including theoretical studies on the rate
of evolution in various phyla [11] and applied studies aimed at
developing medical diagnosis methods [7] and pharmaceutical
development. Our algorithm has two main benefits compared
to previous algorithms:
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1) Faster because it can be used incrementally if the new
sequence is aligned with the other sequences.
2) Generates more accurate phylogenetic trees as indicated

by the computer experiments presented in Section 4.

This paper is organized as follows. Section II presents some
related work. Section III describes the incremental
phylogenetic tree algorithm. Section IV presents some
experimental results. Finally Section V gives some
conclusions and directions for future work.

II. RELATED WORK

The UPGMA [11] and the Neighbor Joining (NJ) [10]
algorithms are commonly used and familiar to most
users. The maximum likelihood method is also well known,
although it seems less frequently used that UPGMA and
Neighbor Joining in practice because it requires more
computational time. All of these algorithms are reviewed in
textbooks, such as [1]-[3].

Revesz [6] introduced the Common Mutations Similarity
Matrix algorithm, which has O(n®) time complexity, where n
is the number of sequences. We briefly review this algorithm
as a related work, which will also be used in the experimental
results section of this paper. Table 1 below shows seven DNA
sequences, S;...S;, each with a length fifteen nucleotides
displayed by groups of five nucleotides per column.

Table 1 Seven input DNA sequences and a common ancestor p

S1 | AGCTA | CTAGT | AATCA
S2 | AGCTA | CGAGT | AATCA
S3 | ATCCA | CTAGT | ACACT
S4 | ATCCA | CTAGT | ATACT
S5 | CGGTA | TTTGT | AAGCT
S6 | CGGTT | CATCA | AATGC
S7 | AGGTA | CTTGA | AATCC
p | AGCTA | CTAGT | AATCT

Let Si[k] denote the kth nucleotide of Si. The Hamming
distance between two DNA sequences Si and Sj each with
length n, denoted & (Si, Sj), is defined as the number of
corresponding nucleotide pairs that are different, that is, 1 <
k < n Si [k] # Sj[k]. p is the common ancestor of seven
sequences.

Evolutionary tree construction algorithms generally start
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from a Hamming distance matrix to recursively combine pairs
of sequences (rows and columns) until only a single combined
sequence remains. For example, the UPGMA (unweighted
pair group method with arithmetic mean) [12] method would
always search for the closest pairs to combine. When several
pairs are equally distant, then an arbitrary choice is made. In
this case, the closest pairs are S1 and S2 and S3 and S4
because 6 (S1, S2) = 1 and & (S3, S4) = 1. The Neighbor
Joining [10] method is a more sophisticated and commonly
used method that is also based on distance matrices.

Instead of distance matrices, Revesz [6] introduced a
common mutations similarity matrix (CMSM). The motivation
behind looking for common mutations is that in practice rare
but shared features, such as rare mutations, often provide
useful markers of similarity among a set of closely related
items. Moreover, if mutations are rare, then it may be more
efficient to count their occurrences than finding the Hamming
distances for long sequences. Assuming that the seven DNA
sequences in Table 1 are related, we can find the most likely
common ancestor sequence, denoted i, as the mode of each
column. If there is no most frequent nucleotide in a column,
then we arbitrarily chose one of the most frequent nucleotides
in it.

The Common Mutations Similarity Matrix (CMSM)
algorithm records for each pair of sequences the mutations that
they share in common with respect to a global average p,
which is taken as the most likely common ancestor sequence.

Example 1. Given seven nucleotide sequences in Table 1
below (rows S1 to S7 where the sequences are displayed in
groups of five), the common ancestor sequence L is calculated
in [6] as the most frequent in each column.

Alternatively, if S1 to S7 are considered amino acid
sequences where A, C, G and T now stand for the amino acids
Alanine, Cysteine, Glycine and Threonine, respectively, then
the common ancestor sequence p can be defined as in each
column as the amino acid x out of the set S of twenty amino
acids used in most proteins such that x is overall closest to the
set of amino acids in that column. We make this statement
more precise below using as an example the PAM250 amino
acid similarity matrix. Let

PAM250[AminoAcid1, AminoAcid2] a

= (D
denotes that AminoAcidl and AminoAcid2 have a similarity
score of a. For example, PAM250 [A, G] = 1 means that
Alanine and Glycine are slightly similar to each other. Then
for the ith column,
ulil=x€s ()
such that
Yj-4 PAM250[Si[j], x] (3)

is maximum.
For example, we can see that the value of p[1] changed

from A to C because C is the amino acid that is overall closest
to the each of the amino acids in the first column.
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Table 2 Common ancestor p from the new algorithm

S1 | AGCTA | CTAGT | AATCA
S2 | AGCTA | CGAGT | AATCA
S3 | ATCCA | CTAGT | ACACT
S4 | ATCCA | CTAGT | ATACT
S5 | CGGTA | TTTGT | AAGCT
S6 | CGGTT | CATCA | AATGC
S7 | AGGTA | CTTGA | AATCC
p | CGCCA | CTTGT | AATCC

It can be assumed that in each sequence Si those amino
acids (or nucleotides) that do not match the corresponding
amino acid (or nucleotide) in p were mutated at some point
during evolution. Intuitively, the more common mutations two
sequences Si and Sj share, the closer they are likely to be in an
evolutionary tree. For the above set of sequences, the common
mutations similarity matrix is shown in Table 3:

Table 3 Initial CMSM matrix

S1 [ S2 | S3|S4 |S5 |S6 |87
S1 |0 4 2 2 1 1 2
S2 | 4 0 2 2 1 1 2
S3 |2 2 0 5 1 0 1
S4 |2 2 5 0 1 0 1
S5 |1 1 1 1 0 2 2
S6 |1 1 0 0 2 0 3
S7 |2 2 1 1 2 3 0

According to the common mutations similarity matrix, the
closest pair of sequences is S3 and S4. Hence these will be
merged. When we merge two sequences Si and Sj, in the
merged sequence the kth element will be equal to the amino
acid (or nucleotide) in the two sequences if Si[k] = Sj[k] and
will be equal to p[k] otherwise. Hence the matrix of sequences
will be updated as Table 4:

Table 4 The updated sequences

S1 AGCTA | CTAGT | AATCA
S2 | AGCTA | CGAGT | AATCA
S34 | ATCCA | CTAGT | AAACT
S5 | CGGTA | TTTGT | AAGCT
S6 | CGGTT | CATCA | AATGC
S7 | AGGTA | CTTGA | AATCC
u CGCCA | CTTGT | AATCC

For example, since S3[12] = C # T = S4[12], by the above
merging rule S34[12] = u[12] = A.

After the merge, the common mutations matrix needs to be
recalculated. The merge does not change p, but the entries in
the common mutations similarity matrix that are related to the
newly merged sequence S34 need to be calculated. The values
for S3 and S4 should be deleted. In this case, Table 5 shows
the updated common mutation matrix.
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Table 5 The updated CMSM matrix

S1 S2 S34 S5 S6 S7
S1 0 4 2 1 1 2
S2 4 0 2 1 1 2
S34 2 2 0 1 0 1
S5 1 1 1 0 2 2
S6 1 1 0 2 0 3
S7 2 2 1 2 3 0

Now the closest pair is S1 and S2 with a value of 4 common
mutations. Hence those two will be merged next. The merging
will continue until there is only one sequence left. The CMSM
evolutionary tree algorithm can be summarized as shown in
Fig. 1.

ALGORITHM CMSM (S1...Sn, n)
1 Form n clusters of sequences, each with a single sequence.
2 Find the putative common ancestor p of the sequences.
3 Construct a graph T with a node for each n cluster and for p.
4 While (there is more than one cluster)

5 Find the common mutations similarity matrix.
6 If (exist distinct Si and Sj with some common mutations)
7 Merge a closest distinct Si and Sj pair into a new
8 cluster Sij and create a node for Sij.
9 Connect the nodes for Si and Sj with parent node Sij.
10 Else
11 Connect the remaining clusters’ nodes to parent .
11 Return T.
12 Return T.

Fig. 1 The CMSM algorithm

Note: Alternatively, instead of only recording the values,
the actual set of common mutations can be put into each entry
of the common mutations similarity matrix. Clearly, the
cardinality of the sets in the second representation determines
the numerical values in the first representation.

III. INCREMENTAL PHYLOGENETICS BY REPEATED
INSERTIONS

A. A New Phylogenetic Tree Algorithm

Suppose that we have n number of amino acid sequences
S1, ..., Sn. The sequences and the number n are the inputs to
the following algorithm that constructs an evolutionary tree by
repeated addition of new species that are represented by the
amino acid sequences. We call the new algorithm IPRI
(incremental phylogenetic by repeated insertions). A
pseudo-code of the IPRI algorithm is shown in Fig. 2.

In the algorithm, the closest pair can be found by minimum
Hamming distance if the sequences are DNA or RNA strings.
If the sequences are proteins, then the closest pair can be
found by using a PAM or a BLOSUM substitution matrix. The
running time is O(n’m) where m is the length of the sequences
because there are n insertions, and each insertion requires n
comparisons between two strings of length m.
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ALGORITHM IPRI(S1...Sn, n)
1 Create an independent node Nk for each sequence Sk.
2LetN={Nk:1<k<n}
3 Find the closest pair of nodes Nj and Nj.
4 Create a tree T with root R, left child Ni and right child Nj.
5N=N\{Ni, Nj}
6 While (N is not empty)

7 Find the closest pair of nodes Ni EN and Mj €T
8 If (Mj is not the root of T)

9 P = parent of Mj.

10 Delete P as a parent of Mj.

11 Create a node R.

12 Make P the parent of R.

13 Make R the parent of Ni and M.
14 Else

15 Create a node R.

16 Make R the parent of Ni and M.
17 N =N\ {Ni}.

18 Return T.

Fig. 2 The IPRI algorithm

The two major cases of insertion in the IPRI algorithm are
illustrated in Fig. 3 and Fig. 4, respectively.

Fig. 3 shows the case when the new node to be inserted,
node 3, is closest to the root node R. In this case, the IPRI
algorithm creates a new root called P and makes both the old
root R and the newly inserted node 3 the children of P.

Fig. 4 shows the case when the new node, again numbered
node 3, is closest to node 2. In this case, the IPRI algorithm
creates a new node P, which becomes a child of R, while both
nodes 2 and 3 become children of P. The case when node 3 is
closest to node 1 is a symmetric case, which is not illustrated
separately.

Fo-

Fig. 3 Case of insertion when the new node is closest to the root

.x.-»

Fig. 4 Case of insertion when the new node is closest to one of
the children of node R
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IV. EXPERIMENTAL RESULTS

A. Experiments with Simulated Data

We compared the algorithms on simulated evolutionary data
as follows. We assumed that the original protein consists of a
chain of one thousand Alanine amino acids. We mutated this
original string two ways to generate to children. Both children
were generated by first randomly selecting one percent of the
amino acids. Then we changed the selected amino acids to one
of the twenty amino acids. That is, each of the selected amino
acids had a five percent chance of remaining A and ninety five
percent chance of changing into another amino acid, with five
percent chance of changing into C, five percent chance of
changing into D and so on.

Next both of the children were further mutated to generate
four grandchildren of the original protein. Then we general
additional levels of the tree so that after N levels we had 2"
leaves.

With the above process of evolutionary tree generation, two
siblings can be expected to differ from each other on twenty
amino acids. Two first cousins can be expected to differ from
each other on forty amino acids. Two seconds can be
expected to differ from each other on sixty amino acids, and
S0 on.

We ran ten tests on evolutionary trees with height four (and
sixteen leaves). We implemented the CMSM and the IPRA
algorithms in  MATLAB. We used ClustalW2’s
implementation of the UPGMA and NJ algorithms. We chose
on the ClustalW2 website the default parameters, that is, a gap
open penalty of 10, a gap extension penalty of 0.2, and a
maximum gap distance of 5. The results can be summarized in
the Table 8, where ''Perfect’”” means that the reconstructed
tree is the same as the original evolutionary tree. When a
reconstructed tree had errors, we checked only how many of
the sibling pairs (SPs) were correctly handled.

Table 8 Experimental comparisons of the algorithms

Test | CMSM IPRA UPGMA | NJ
1 | Perfect Perfect 8 SPs 8 SPs
2 | Perfect Perfect 7 SPs 7 SPs
3 | Perfect Perfect 7 SPs 7 SPs
4 | Perfect Perfect 6 SPs 7 SPs
5 | Perfect Perfect 7 SPs 7 SPs
6 | Perfect Perfect 7 SPs 7 SPs
7 | Perfect Perfect 8 SPs 8 SPs
8 | Perfect Perfect 8 SPs 8 SPs
9 | Perfect Perfect 6 SPs 6 SPs
10 | Perfect Perfect 7 SPs 7 SPs

As an example, Fig. 5 shows the output of the IPRA
algorithm in case 4. As a comparison, Fig. 6 shows the output
of the UPGMA algorithm in the same case.

B. Experiments with Biological Data

In this section, we describe experiments with both
telomerase protein and telomerase RNA data.
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Telomerase Protein Experiments: We investigated the
telomerase (TERT) protein family. Telomerase help protect
eukaryote chromosomes during duplication. From the website
http://telomerase.asu.edu we obtained 14 vertebrate telomerase
proteins as our input data. After alignment, the length of each
amino acid sequence was 1353.
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Fig. 5 Sample evolutionary tree reconstructed by the IPRA
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Fig. 6 Sample evolutionary tree reconstructed by the UPGMA
algorithm

The IPRI algorithm, which we implemented in MATLAB,
with the gap penalty value -1, gave the phylogenetic tree
shown in Fig. 7. Using ClustalW2 with gap penalty 10 and gap
extension 0.1 and the same telomerase RNA input data we
also generated the UPGMA and the Neighbor Joining
phylogenetic trees, which are shown in Fig. 8 and Fig. 9,
respectively. We also implemented the CMSM algorithm in
MATLAB. The CMSM phylogenetic tree is shown in Fig. 10.

Telomerase RNA Experiments: We also investigated the
telomerase RNA (TR) family. From the website
http://telomerase.asu.edu we obtained 42 vertebrate telomerase
RNA as our input data. After alignment, the length of each
RNA sequence was 741.

The IPRI algorithm gave the phylogenetic tree shown in
Fig. 11. Using ClustalW2 and the same telomerase input data
we obtained the UPGMA and the Neighbor Joining
phylogenetic trees shown in Fig. 12 and Fig. 13, respectively.
Finally, Fig. 14 shows the CMSM phylogenetic tree.
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@ 6 Bos taurus - cattle

21
20
= @ 1 Homo sapiens - human
19
© 5 Canis familiaris - dog
18
© 2 Mesocricetus auratus - golden hamster
@ 4 Rattus norvegicus - brown rat
‘ . -
© 3 Mus musculus- mouse
@ 14 Danio rerio - fish
16 27
@ 13 Takifugu rubripes - fish
24
: 2 11 Oryzias melastigma - fish
23 26
22 25
= = @ 10 Oryzias latipes - fish

15

=@ 12 Epinephelus coioides - fish

= 9 Xenopus laevis - frog

© 8 Gallus gallus - bird

© 7 Coturnix japonica - bird

Fig. 7 The IPRI phylogenetic tree based on vertebrate telomerase protein data
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7_Coturnix__japonica 0.03033
8__Gallus_gallus 0.03151

9_Xenopus_laevis 0.26156
12_Epinephelus_coioides 0.11004
13_Takifugu_rubripes 0.1218
10_Oryzias_latipes 0.1013

11_ Oryzias_melastigma 0.13161

14_Danio_rerio 0.26752
3__Mus_musculus 0.07188
4 _Brown_rat 0.0734

2_Mesocricetus__auratus 0.09957

1_Homo_sapiens 0.1366

5_Canis_familiaris 0.13284

Fig. 8 The UPGMA phylogeneti

—L

6_Bos_taurus 0.13639
c tree based on vertebrate telomerase protein data

7_Coturnix__japonica 0.03045
8__Gallus_gallus 0.0314

—L
—

9_Xenopus_laevis 0.26094
10__Oryzias_ latipes 0.10227

11 Oryzias_melastigma 0.13063
12_ Epinephelus_coioides 0.11043
13_Takifugu_rubripes 0.12141

1L

14 _Danio_rerio 0.26686
3__Mus_musculus 0.07207
4_Brown_rat 0.07321

2__Mesocricetus__auratus 0.10036

1_Homo_sapiens 0.13609

5_Canis_familiaris 0.13303

6_Bos_taurus 0.1362

Fig. 9 The Neighbor Joining phylogenetic tree based on vertebrate telomerase protein data

Bos taurus - Cattle

Canis familiaris - Dog
Homo sapiens - Human
Rattus Nnorvegicus - Brown rat
Mus musculus- Mouse
Mesocricetus auratus - Golden hamster
S allus gallus - Bird
Coturmix japonica - Bird
Xenopus laevis - Frog

T akifugu rubripes - Fish

Epinephelus coioides - Fish
Oryzias melastigma - Fish

Oryzias latipes - Fish

Danio rerio - Fish

Fig. 10 The CMSM phylogenetic tree based on vertebrate telomerase protein data
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81 @ 37 Tetraodon nigroviridis - Fish
= = 36 Takifugu rubripes - Fish
= 35 Gasterosteus aculeatus - Fish
73 @ 32 Herpele squalostoma - Herpele
2 =31 Dermophis mexicanus - Dermophis
© 33 Typhlonectes natans - Typhlonectes
562 23 Trichechus manatus - Manatee
g 2 22 Elephas maximus - Elephant
53517 Sus scrofa - Pig
e 16 Bos taurus - Cow
70‘ @ 25 Anodorhynchus hyacinthinus - Macaw
= = 24 Gallus gallus - Chick
2 26 Chelydra serpentina - Turtle

64311 Mus musculus castaneus - Mouse

65
63 = =9 Mus musculus - Mouse
n = 10 Mus spretus - Mouse
75 " © 12 Rattus norvegicus - Rat
o g .' = 8 Cricetulus griseus - Hamster
& 3 =7 Microtus ochrogaster - Vole
33 57 - 51 @ 14 Procyon lotor - Raccoon
43 7 60 : 51

=13 Mustela putorius furo - Ferret

=15 Felis catus - Cat

33

© 18 Suncus murinus - Shrew
© 21 Dasyurus hallucatus - Quoll
© 28 Xenopus laevis - Frog
2 27 Bombina japonica - Toad

@ 30 Pyxicephalus adspersus - Bullfrog
© 29 Ceratophrys ornata - Horned Frog
=19 Equus caballus - Horse

59@ 5 Chinchilla brevicaudata - Chinchilla

re

75 = 4 Cavia porcellus - GuineaPig

13

4220 Dasypus novemcinctus - Armadilo
§ =1 Homo sapiens - Human
© 3 Oryctolagus cuniculus - Rabbit
2 2 Tupaia glis belangeri - TreeShrew
26 Geomys breviceps - Gopher

455 42 Rhinoptera bonasus - Cownose Ray

=

6

= 41 Dasyatis sabina - Stingray

© 39 Rhizoprionodon porosus - Shark
© 34 Oryzias latipes - Rice Fish

© 38 Danio rerio - Fish

240 Mustelus canis - Dogfish Shark
Fig. 11 The IPRI phylogenetic tree based on vertebrate telomerase RNA data
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9_Mus_musculus_Mouse 0
11_Mus_musculus_castaneus_Mous 0
10_Mus_spretus_Mouse 0.01042
12_Rattus_norvegicus_Rat 0.06252
8_Cricetulus_griseus_Hamster 0.06472
7_Microtus_ochrogaster_Vole 0.09388
39_Rhizoprionodon_porosus_Shar 0.02595
40_Mustelus_canis_Dogfish_Shar 0.02149
41 Dasyatis_sabina_Stingray 0.02244

42 _Rhinoptera_bonasus_Cownose_ 0.02767
31_Dermophis_mexicanus_Dermoph 0.07361
32_Herpele_squalostoma_Herpele 0.07%01
33 Typhlonectes_natans_Typhlon 0.09394
36_Takifugu_rubripes_Fish 0.08702

37 _Tetracdon_nigroviridis_Fish 0.05496
35_Gasterosteus_aculeatus_Fish 0.11437
34 Oryzias_latipes_Rice_Fish 0.12897

38 _Danio_rerio_Fish 0.19722
29_Ceratophrys_ornata_Horned_F 0.15397
30 _Pyxicephalus_adspersus_Bull 0.13984
28_Xenopus_laevis_Frog 0.17068

27 _Bombina_japonica_Toad 0.17135
25_Anodorhynchus_hyacinthinus_ 0.10375
24_Gallus_gallus_Chick 0.15542
26_Chelydra_serpentina_Turtle 0.11535
21 Dasyurus_hallucatus_Quoll 0.16773
6_Geomys_breviceps_Gopher 0.12455
18_Suncus_murinus_Shrew 0.13578
4_Cavia_porcellus_GuineaPig 0.06225
5_Chinchilla_brevicaudata_Chin 0.06933
22 _Elephas_maximus_Elephant 0.03434
23 _Tnchechus_manatus_Manatee 0.04602
2_Tupala_glis_belangeri_TreeSh 0.09806
3_Oryctolagus_cuniculus_Rabbit 0.06025
13 Mustela_putorius_furo_Ferre 0.02324
14_Procyon_lotor_Raccoon 0.01984

15 _Felis_catus_Cat 0.04065
16_Bos_taurus_Cow 0.06017

17 _Sus_scrofa_Pig 0.03733

Bl o T 5t L

19 _Equus_caballus_Horse 0.05451
1_Homo_sapiens_Human 0.05864

20_Dasypus_novemcinctus_Armadi 0.08592
Fig. 12 The UPGMA phylogenetic tree based on vertebrate telomerase RNA data
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24_Gallus_gallus_Chick 0.14308
25_Anodorhynchus_hyacinthinus_ 0.10872
26_Chelydra_serpentina_Turtle 0.12297
31_Dermophis_mexicanus_Dermoph 0.07502
33 Typhlonectes_natans_Typhlon 0.0848
32 _Herpele_squalostoma_Herpele 0.08232
36_Takifugu_rubripes_Fish 0.07932

37 _Tetracdon_nigroviridis_Fish 0.06266
35_Gasterosteus_aculeatus_Fish 0.10911
34 Oryzias_latipes_Rice_Fish 0.13357
38_Danic_rerio_Fish 0.19101
39_Rhizoprionodon_porosus_Shar 0.02578
40_Mustelus_canis_Dogfish_Shar 0.02166
41_Dasyatis_sabina_Stingray 0.023

42 Rhinoptera_bonasus_Cownose_ 0.02711
29 _Ceratophrys_ornata_Horned_F 0.15534
30_Pyxicephalus_adspersus_Bull 0.13847
28_Xenopus_laevis_Frog 0.16281

27 _Bombina_japonica_Toad 0.174

21 Dasyurus_hallucatus_Quoll 0.17454
9_Mus_musculus_Mouse 0

11 _Mus_musculus_castaneus_Mous 0
10_Mus_spretus_Mouse 0.01119
12_Rattus_norvegicus_Rat 0.06205
8_Cricetulus_griseus_Hamster 0.06646
7_Microtus_ochrogaster_Vole 0.09976
18_Suncus_murinus_Shrew 0.13085
6_Geomys_breviceps_Gopher 0.12572
4_Cavia_porcellus_GuineaPig 0.0635
5_Chinchilla_brevicaudata_Chin 0.06808
22 _Elephas_maximus_Elephant 0.03426
23 _Trichechus_manatus_Manatee 0.04609
20_Dasypus_novemcinctus_Armadi 0.07898
3_Oryctolagus_cuniculus_Rabbit 0.05988
2_Tupala_glis_belangeri_TreeSh 0.09862
1_Homo_sapiens_Human 0.05791

13 _Mustela_putorius_furo_Ferre 0.02353
14_Procyon_lotor_Raccoon 0.01955
15_Felis_catus_Cat 0.04055

19 _Equus_caballus_Horse 0.05547
16_Bos_taurus_Cow 0.05987

17 _Sus_scrofa_Pig 0.03764

Fig. 13 The NJ phylogenetic tree based on vertebrate telomerase RNA data

nlnin

salels

s AN, *

ISSN: 1998-4510 156



INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

)

T4

T2

79

71

X

70

53

59

O

6

49

3 Oryctolagus cuniculus - Rabbit

2 Tupaia glis belangeri - TreeShrew

20

Dasypus novemcinctus - Armadilo

1 Homo sapiens - Human

23
22
17
16
19
15
14
13

Trichechus manatus - Manatee
Elephas maximus - Elephant
Sus scrofa - Pig

Bos taurus - Cow

Equus caballus - Horse

Felis catus - Cat

Procyon lotor - Raccoon

Mustela putorius furo - Ferret

5 Chinchilla brevicaudata - Chinchilla

4 Cavia porcellus - GuineaPig

6 Geomys breviceps - Gopher

21

18
25
24
26
42
41

40
39
32
31

33
28
27
30
29
11

Dasyurus hallucatus - Quoll

Suncus murinus - Shrew
Anodorhynchus hyacinthinus - Macaw
Gallus gallus - Chick

Chelydra serpentina - Turtle
Rhinoptera bonasus - Cownose Ray
Dasyatis sabina - Stingray

Mustelus canis - Dogfish Shark
Rhizoprionodon porosus - Shark
Herpele squalostoma - Herpele
Dermophis mexicanus - Dermophis
Typhlonectes natans - Typhlonectes
Xenopus laevis - Frog

Bombina japonica - Toad
Pyxicephalus adspersus - Bullfrog
Ceratophrys ornata - Horned Frog

Mus musculus castaneus - Mouse
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9 Mus musculus - Mouse

10 Mus spretus - Mouse

S 12 Rattus norvegicus - Rat

= 8 Cricetulus griseus - Hamster
7 Microtus ochrogaster - Vole
= 38 Danio rerio - Fish

= 34 Oryzias latipes - Rice Fish
37 Tetraodon nigroviridis - Fish
36

= 35

546 © Takifugu rubripes - Fish
Gasterosteus aculeatus - Fish

Fig. 14 The CMSM phylogenetic tree based on vertebrate telomerase RNA data
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C. Discussion of the Experimental Results

We divide the discussion into three parts. In the first part we
discuss the simulated data results, in the second part the
protein results, and in the third part the RNA results.

1. Simulated Data Results: The simulated data results
suggested that the new IPRA algorithm is an improvement
over the older UPGMA algorithm. For example, as can be
seen from Fig. 5 and Fig. 6, the IPRA algorithm has given
back the original evolutionary tree in both cases. On the other
hand, the UPGMA algorithm made a mistake in some of the
sibling pairs. In particular, the leaves 26 and 27 and the leaves
18 and 19 are not paired correctly. In addition, there are more
mistakes in grouping together cousin leaves. For example, the
sibling leaves 16 and 17 are paired correctly, but they are not
grouped correctly with their cousin leaves 18 and 19.

2. Telomerase Protein (TERT) Results: The UPGMA and
the Neighbor Joining phylogenetic trees suppose that
vertebrate evolution started with the mammals. According to
Fig. 8 and Fig. 9, the mammals started to diverge early on and
all the other non-mammal vertebrates are like one small
branch of the big mammalian evolutionary tree. In contrast,
the IPRI phylogenetic tree in Fig. 7 separates the mammals
and the non-mammals into two parallel branches. The CMSM
tree in Fig. 10 has the fish branch out first, then the reptiles
and the birds and finally the mammals. Hence the IPRI and the
CMSM phylogenetic trees are more realistic. However, it is
possible that the UPGMA and the Neighbor Joining results
would improve if we considered a larger set of proteins from
the same protein family.

3. Telomerase RNA (TR) Results: In this case, as shown
in Fig. 11, the IPRI algorithm followed well the accepted
evolutionary theory. In the IPRI algorithm, the fish is the
earliest vertebrate group that separates from the other
vertebrates, followed by the amphibians. The subtree with root
68 consists of all the mammals. In contrast, the UPGMA and
the Neighbor Joining phylogenetic trees still make the mistake
of assuming that mammals were the earliest vertebrate group.
Therefore the UPGMA and the Neighbor Joining phylogenetic
trees run completely counter to the accepted order of
vertebrate evolutionary history. Finally, the CMSM result was
also unrealistic because, for example, it put together in the
subtree rooted at node 75 some fish and various mice.

V. CONCLUSIONS AND FUTURE WORK

The new incremental phylogenetic tree algorithm has a
potential to improve the general phylogenetic trees and our
understanding of evolutionary history, as can be inferred based
on molecular biology. Generally, all phylogenetic tree
algorithms improve with greater data size both with the
number of species and in the length of the sequences. In the
future, we plan to study additional protein families and their
DNA and amino acid sequences. Finally, it would be
interesting to look at the evolution of biological vision in order
to learn from it ideas that may improve digital cameras [4].
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