
 

  
Abstract—We introduce the idea of constructing hypothetical 

evolutionary trees using an incremental algorithm that inserts species 
one-by-one into the current evolutionary tree. The method of 
incremental phylogenetics by repeated insertions lead to an algorithm 
that can be used on DNA, RNA and amino acid sequences. 
According to experimental results on both synthetic and biological 
data, the new algorithm generates more accurate evolutionary trees 
than the UPGMA and the Neighbor Joining algorithms.  
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I. INTRODUCTION 
URRENT phylogenetic tree construction 
algorithms[1]-[3], [6], [10], [12] and [14] are not 

incremental and have to be rerun from the beginning whenever 
a new species is added to the database. Moreover, a rerun from 
the beginning is necessary even if the new species is aligned 
with the already used species. In this paper, we develop an 
incremental algorithm that inserts new species one-by-one into 
a growing phylogenetic tree. 

Our inspiration for such an incremental phylogenetic 
algorithm is the way biologists usually classify any newly 
discovered species. Starting from the root node of the existing 
classification tree, the newly discovered species is compared 
with existing species and always an appropriate branch is 
chosen to go one level down in the classification hierarchy. 
Eventually we reach one of the existing species, which is the 
closest relative. It is next to that nearest relative where the new 
species is normally inserted.  

Our aim is to develop a computer algorithm that uses the 
above paradigm but works with both DNA sequences and 
proteins. As the genomes of a growing number of species are 
sequenced and become part of DNA and protein databases [5], 
[13], molecular biology increasingly augments, although not 
completely replaces, morphological considerations. 

Reliable phylogenetic tree constructions are needed for a 
diverse set of studies, including theoretical studies on the rate 
of evolution in various phyla [11] and applied studies aimed at 
developing medical diagnosis methods [7] and pharmaceutical 
development. Our algorithm has two main benefits compared 
to previous algorithms: 
 

Peter Z. Revesz is with the Department of Computer Science and 
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA 
(revesz@cse.unl.edu). 

Zhiqiang Li is with the Department of Computer Science and Engineering, 
University of Nebraska-Lincoln, Lincoln, NE 68588, USA (zli@cse.unl.edu). 

 

 
1) Faster because it can be used incrementally if the new 

sequence is aligned with the other sequences. 
2) Generates more accurate phylogenetic trees as indicated 

by the computer experiments presented in Section 4. 
 

This paper is organized as follows. Section II presents some 
related work. Section III describes the incremental 
phylogenetic tree algorithm. Section IV presents some 
experimental results. Finally Section V gives some 
conclusions and directions for future work.  

II. RELATED WORK 
The UPGMA [11] and the Neighbor Joining (NJ) [10] 

algorithms are commonly used and familiar to most 
users.  The maximum likelihood method is also well known, 
although it seems less frequently used that UPGMA and 
Neighbor Joining in practice because it requires more 
computational time. All of these algorithms are reviewed in 
textbooks, such as [1]-[3]. 

Revesz [6] introduced the Common Mutations Similarity 
Matrix algorithm, which has O(n3) time complexity, where n 
is the number of sequences. We briefly review this algorithm 
as a related work, which will also be used in the experimental 
results section of this paper. Table 1 below shows seven DNA 
sequences, S1…S7, each with a length fifteen nucleotides 
displayed by groups of five nucleotides per column. 
 

Table 1 Seven input DNA sequences and a common ancestor µ 
 

S1 AGCTA CTAGT AATCA 
S2 AGCTA CGAGT AATCA 
S3 ATCCA CTAGT ACACT 
S4 ATCCA CTAGT ATACT 
S5 CGGTA TTTGT AAGCT 
S6 CGGTT CATCA AATGC 
S7 AGGTA CTTGA AATCC 
µ AGCTA CTAGT AATCT 

 

Let Si[k] denote the kth nucleotide of Si. The Hamming 
distance between two DNA sequences Si and Sj each with 
length n, denoted δ (Si, Sj), is defined as the number of 
corresponding nucleotide pairs that are different, that is, Σ1 ≤ 
k ≤ n Si [k] ≠ Sj[k]. µ is the common ancestor of seven 
sequences. 

Evolutionary tree construction algorithms generally start 
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from a Hamming distance matrix to recursively combine pairs 
of sequences (rows and columns) until only a single combined 
sequence remains. For example, the UPGMA (unweighted 
pair group method with arithmetic mean) [12] method would 
always search for the closest pairs to combine. When several 
pairs are equally distant, then an arbitrary choice is made. In 
this case, the closest pairs are S1 and S2 and S3 and S4 
because δ (S1, S2) = 1 and δ (S3, S4) = 1. The Neighbor 
Joining [10] method is a more sophisticated and commonly 
used method that is also based on distance matrices.  

Instead of distance matrices, Revesz [6] introduced a 
common mutations similarity matrix (CMSM). The motivation 
behind looking for common mutations is that in practice rare 
but shared features, such as rare mutations, often provide 
useful markers of similarity among a set of closely related 
items. Moreover, if mutations are rare, then it may be more 
efficient to count their occurrences than finding the Hamming 
distances for long sequences.  Assuming that the seven DNA 
sequences in Table 1 are related, we can find the most likely 
common ancestor sequence, denoted µ, as the mode of each 
column. If there is no most frequent nucleotide in a column, 
then we arbitrarily chose one of the most frequent nucleotides 
in it. 

The Common Mutations Similarity Matrix (CMSM) 
algorithm records for each pair of sequences the mutations that 
they share in common with respect to a global average µ, 
which is taken as the most likely common ancestor sequence. 

 
Example 1. Given seven nucleotide sequences in Table 1 

below (rows S1 to S7 where the sequences are displayed in 
groups of five), the common ancestor sequence µ is calculated 
in [6] as the most frequent in each column.  
  Alternatively, if S1 to S7 are considered amino acid 
sequences where A, C, G and T now stand for the amino acids 
Alanine, Cysteine, Glycine and Threonine, respectively, then 
the common ancestor sequence µ can be defined as in each 
column as the amino acid x out of the set S of twenty amino 
acids used in most proteins such that x is overall closest to the 
set of amino acids in that column.  We make this statement 
more precise below using as an example the PAM250 amino 
acid similarity matrix. Let 
 

PAM250[AminoAcid1,AminoAcid2]  =  a         (1) 
 
denotes that AminoAcid1 and AminoAcid2 have a similarity 
score of a.  For example, PAM250 [A, G] = 1 means that 
Alanine and Glycine are slightly similar to each other.  Then 
for the ith column,  

µ 𝑖 = 𝑥 ∈ 𝑆                                       (2) 
such that   

 𝑃𝐴𝑀250[𝑆𝑖 𝑗 , 𝑥]!
!!!                               (3) 

is maximum. 
 
For example, we can see that the value of µ[1] changed 

from A to C because C is the amino acid that is overall closest 
to the each of the amino acids in the first column.  
 

Table 2 Common ancestor µ from the new algorithm 
 

S1 AGCTA CTAGT AATCA 
S2 AGCTA CGAGT AATCA 
S3 ATCCA CTAGT ACACT 
S4 ATCCA CTAGT ATACT 
S5 CGGTA TTTGT AAGCT 
S6 CGGTT CATCA AATGC 
S7 AGGTA CTTGA AATCC 
µ CGCCA CTTGT AATCC 

 
It can be assumed that in each sequence Si those amino 

acids (or nucleotides) that do not match the corresponding 
amino acid (or nucleotide) in µ were mutated at some point 
during evolution. Intuitively, the more common mutations two 
sequences Si and Sj share, the closer they are likely to be in an 
evolutionary tree. For the above set of sequences, the common 
mutations similarity matrix is shown in Table 3: 

 
Table 3 Initial CMSM matrix 

 
 S1 S2 S3 S4 S5 S6 S7 
S1 0 4 2 2 1 1 2 
S2 4 0 2 2 1 1 2 
S3 2 2 0 5 1 0 1 
S4 2 2 5 0 1 0 1 
S5 1 1 1 1 0 2 2 
S6 1 1 0 0 2 0 3 
S7 2 2 1 1 2 3 0 

  

According to the common mutations similarity matrix, the 
closest pair of sequences is S3 and S4. Hence these will be 
merged. When we merge two sequences Si and Sj, in the 
merged sequence the kth element will be equal to the amino 
acid (or nucleotide) in the two sequences if Si[k] = Sj[k] and 
will be equal to µ[k] otherwise. Hence the matrix of sequences 
will be updated as Table 4: 

 
Table 4 The updated sequences    

S1 AGCTA CTAGT AATCA 
S2 AGCTA CGAGT AATCA 
S34 ATCCA CTAGT AAACT 
S5 CGGTA TTTGT AAGCT 
S6 CGGTT CATCA AATGC 
S7 AGGTA CTTGA AATCC 
µ CGCCA CTTGT AATCC 

 
    For example, since S3[12] = C  ≠  T = S4[12], by the above 
merging rule S34[12] = µ[12] = A. 

After the merge, the common mutations matrix needs to be 
recalculated. The merge does not change µ, but the entries in 
the common mutations similarity matrix that are related to the 
newly merged sequence S34 need to be calculated. The values 
for S3 and S4 should be deleted. In this case, Table 5 shows 
the updated common mutation matrix. 
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Table 5 The updated CMSM matrix 
 

 S1 S2 S34 S5 S6 S7 
S1 0 4 2 1 1 2 
S2 4 0 2 1 1 2 
S34 2 2 0 1 0 1 
S5 1 1 1 0 2 2 
S6 1 1 0 2 0 3 
S7 2 2 1 2 3 0 

 
Now the closest pair is S1 and S2 with a value of 4 common 

mutations. Hence those two will be merged next. The merging 
will continue until there is only one sequence left. The CMSM 
evolutionary tree algorithm can be summarized as shown in 
Fig. 1.  

 
 
ALGORITHM CMSM (S1…Sn, n) 

  1 Form n clusters of sequences, each with a single sequence. 
  2 Find the putative common ancestor µ of the sequences. 
  3 Construct a graph T with a node for each n cluster and for µ. 
  4 While (there is more than one cluster) 
  5        Find the common mutations similarity matrix. 
  6        If (exist distinct Si and Sj with some common mutations)  
  7            Merge a closest distinct Si and Sj pair into a new 
  8            cluster Sij and create a node for Sij. 
  9            Connect the nodes for Si and Sj with parent node Sij. 
10        Else 
11                Connect the remaining clusters’ nodes to parent µ. 
11                Return T. 
12 Return T. 

 
Fig. 1 The CMSM algorithm 

 
Note: Alternatively, instead of only recording the values, 

the actual set of common mutations can be put into each entry 
of the common mutations similarity matrix. Clearly, the 
cardinality of the sets in the second representation determines 
the numerical values in the first representation. 
 

III. INCREMENTAL PHYLOGENETICS BY REPEATED 
INSERTIONS 

A. A New Phylogenetic Tree Algorithm 
Suppose that we have n number of amino acid sequences 

S1, . . ., Sn. The sequences and the number n are the inputs to 
the following algorithm that constructs an evolutionary tree by 
repeated addition of new species that are represented by the 
amino acid sequences. We call the new algorithm IPRI 
(incremental phylogenetic by repeated insertions).  A 
pseudo-code of the IPRI algorithm is shown in Fig. 2.  

In the algorithm, the closest pair can be found by minimum 
Hamming distance if the sequences are DNA or RNA strings. 
If the sequences are proteins, then the closest pair can be 
found by using a PAM or a BLOSUM substitution matrix. The 
running time is O(n2m) where m is the length of the sequences 
because there are n insertions, and each insertion requires n 
comparisons between two strings of length m. 

ALGORITHM IPRI(S1…Sn, n) 
  1 Create an independent node Nk for each sequence Sk.  
  2 Let N = { Nk : 1 ≤ k ≤ n } 
  3 Find the closest pair of nodes Nj and Nj.  
  4 Create a tree T with root R, left child Ni and right child Nj.  
  5 N = N \ {Ni, Nj} 
  6 While (N is not empty) 

  7        Find the closest pair of  nodes Ni N  and Mj T.  
  8        If (Mj is not the root of T) 
  9         P = parent of Mj. 
 10               Delete P as a parent of Mj. 
 11               Create a node R. 
 12               Make P the parent of R. 
 13               Make R the parent of Ni and Mj. 
 14        Else 
 15               Create a node R. 
 16               Make R the parent of Ni and Mj. 
 17        N = N \ {Ni}. 
 18 Return T. 
	

Fig. 2 The IPRI algorithm 

The two major cases of insertion in the IPRI algorithm are 
illustrated in Fig. 3 and Fig. 4, respectively.   

Fig. 3 shows the case when the new node to be inserted, 
node 3, is closest to the root node R. In this case, the IPRI 
algorithm creates a new root called P and makes both the old 
root R and the newly inserted node 3 the children of P.   

Fig. 4 shows the case when the new node, again numbered 
node 3, is closest to node 2. In this case, the IPRI algorithm 
creates a new node P, which becomes a child of R, while both 
nodes 2 and 3 become children of P. The case when node 3 is 
closest to node 1 is a symmetric case, which is not illustrated 
separately.  

 

∈ ∈

 
Fig. 3 Case of insertion when the new node is closest to the root 

R 

 

 
Fig. 4 Case of insertion when the new node is closest to one of 

the children of node R  
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IV. EXPERIMENTAL RESULTS  

A. Experiments with Simulated Data 
We compared the algorithms on simulated evolutionary data 

as follows. We assumed that the original protein consists of a 
chain of one thousand Alanine amino acids. We mutated this 
original string two ways to generate to children. Both children 
were generated by first randomly selecting one percent of the 
amino acids. Then we changed the selected amino acids to one 
of the twenty amino acids. That is, each of the selected amino 
acids had a five percent chance of remaining A and ninety five 
percent chance of changing into another amino acid, with five 
percent chance of changing into C, five percent chance of 
changing into D and so on.   

Next both of the children were further mutated to generate 
four grandchildren of the original protein.  Then we general 
additional levels of the tree so that after N levels we had 2N   

leaves. 
With the above process of evolutionary tree generation, two 

siblings can be expected to differ from each other on twenty 
amino acids. Two first cousins can be expected to differ from 
each other on forty amino acids.  Two seconds can be 
expected to differ from each other on sixty amino acids, and 
so on.  

We ran ten tests on evolutionary trees with height four (and 
sixteen leaves).  We implemented the CMSM and the IPRA 
algorithms in MATLAB. We used ClustalW2’s 
implementation of the UPGMA and NJ algorithms. We chose 
on the ClustalW2 website the default parameters, that is, a gap 
open penalty of 10, a gap extension penalty of 0.2, and a 
maximum gap distance of 5. The results can be summarized in 
the Table 8, where ``Perfect’’ means that the reconstructed 
tree is the same as the original evolutionary tree.  When a 
reconstructed tree had errors, we checked only how many of 
the sibling pairs (SPs) were correctly handled. 
 

Table 8 Experimental comparisons of the algorithms 
 

Test  CMSM IPRA UPGMA NJ 
1 Perfect Perfect 8 SPs 8 SPs 
2 Perfect Perfect 7 SPs 7 SPs 
3 Perfect Perfect 7 SPs 7 SPs 
4 Perfect Perfect 6 SPs 7 SPs 
5 Perfect Perfect 7 SPs 7 SPs 
6 Perfect Perfect 7 SPs 7 SPs 
7 Perfect Perfect 8 SPs 8 SPs 
8 Perfect Perfect 8 SPs 8 SPs 
9 Perfect Perfect 6 SPs 6 SPs 

10 Perfect Perfect 7 SPs 7 SPs 
 

As an example, Fig. 5 shows the output of the IPRA 
algorithm in case 4.  As a comparison, Fig. 6 shows the output 
of the UPGMA algorithm in the same case.   
 

B. Experiments with Biological Data 
In this section, we describe experiments with both 

telomerase protein and telomerase RNA data.  

Telomerase Protein Experiments: We investigated the 
telomerase (TERT) protein family. Telomerase help protect 
eukaryote chromosomes during duplication. From the website 
http://telomerase.asu.edu we obtained 14 vertebrate telomerase 
proteins as our input data. After alignment, the length of each 
amino acid sequence was 1353.  

The IPRI algorithm, which we implemented in MATLAB, 
with the gap penalty value -1, gave the phylogenetic tree 
shown in Fig. 7. Using ClustalW2 with gap penalty 10 and gap 
extension 0.1 and the same telomerase RNA input data we 
also generated the UPGMA and the Neighbor Joining 
phylogenetic trees, which are shown in Fig. 8 and Fig. 9, 
respectively.  We also implemented the CMSM algorithm in 
MATLAB. The CMSM phylogenetic tree is shown in Fig. 10.  

Telomerase RNA Experiments: We also investigated the 
telomerase RNA (TR) family. From the website 
http://telomerase.asu.edu we obtained 42 vertebrate telomerase 
RNA as our input data. After alignment, the length of each 
RNA sequence was 741. 

The IPRI algorithm gave the phylogenetic tree shown in 
Fig. 11. Using ClustalW2 and the same telomerase input data 
we obtained the UPGMA and the Neighbor Joining 
phylogenetic trees shown in Fig. 12 and Fig. 13, respectively. 
Finally, Fig. 14 shows the CMSM phylogenetic tree. 

 
Fig. 6 Sample evolutionary tree reconstructed by the UPGMA 

algorithm 
 
 
 
 
 
 
 

 
Fig. 5 Sample evolutionary tree reconstructed by the IPRA 

algorithm 
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Fig. 7 The IPRI phylogenetic tree based on vertebrate telomerase protein data 
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Fig. 8 The UPGMA phylogenetic tree based on vertebrate telomerase protein data 

 

 
Fig. 9 The Neighbor Joining phylogenetic tree based on vertebrate telomerase protein data 

 
Fig. 10 The CMSM phylogenetic tree based on vertebrate telomerase protein data 
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Fig. 11 The IPRI phylogenetic tree based on vertebrate telomerase RNA data 
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Fig. 12 The UPGMA phylogenetic tree based on vertebrate telomerase RNA data 
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Fig. 13 The NJ phylogenetic tree based on vertebrate telomerase RNA data 
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Fig. 14 The CMSM phylogenetic tree based on vertebrate telomerase RNA data 
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C. Discussion of the Experimental Results 
We divide the discussion into three parts. In the first part we 

discuss the simulated data results, in the second part the 
protein results, and in the third part the RNA results.  

 
1. Simulated Data Results: The simulated data results 

suggested that the new IPRA algorithm is an improvement 
over the older UPGMA algorithm.  For example, as can be 
seen from Fig. 5 and Fig. 6, the IPRA algorithm has given 
back the original evolutionary tree in both cases. On the other 
hand, the UPGMA algorithm made a mistake in some of the 
sibling pairs. In particular, the leaves 26 and 27 and the leaves 
18 and 19 are not paired correctly.  In addition, there are more 
mistakes in grouping together cousin leaves.  For example, the 
sibling leaves 16 and 17 are paired correctly, but they are not 
grouped correctly with their cousin leaves 18 and 19.  

2. Telomerase Protein (TERT) Results: The UPGMA and 
the Neighbor Joining phylogenetic trees suppose that 
vertebrate evolution started with the mammals. According to 
Fig. 8 and Fig. 9, the mammals started to diverge early on and 
all the other non-mammal vertebrates are like one small 
branch of the big mammalian evolutionary tree. In contrast, 
the IPRI phylogenetic tree in Fig. 7 separates the mammals 
and the non-mammals into two parallel branches. The CMSM 
tree in Fig. 10 has the fish branch out first, then the reptiles 
and the birds and finally the mammals. Hence the IPRI and the 
CMSM phylogenetic trees are more realistic. However, it is 
possible that the UPGMA and the Neighbor Joining results 
would improve if we considered a larger set of proteins from 
the same protein family.  

3. Telomerase RNA (TR) Results:  In this case, as shown 
in Fig. 11, the IPRI algorithm followed well the accepted 
evolutionary theory. In the IPRI algorithm, the fish is the 
earliest vertebrate group that separates from the other 
vertebrates, followed by the amphibians. The subtree with root 
68 consists of all the mammals. In contrast, the UPGMA and 
the Neighbor Joining phylogenetic trees still make the mistake 
of assuming that mammals were the earliest vertebrate group. 
Therefore the UPGMA and the Neighbor Joining phylogenetic 
trees run completely counter to the accepted order of 
vertebrate evolutionary history. Finally, the CMSM result was 
also unrealistic because, for example, it put together in the 
subtree rooted at node 75 some fish and various mice. 

V. CONCLUSIONS AND FUTURE WORK 
The new incremental phylogenetic tree algorithm has a 

potential to improve the general phylogenetic trees and our 
understanding of evolutionary history, as can be inferred based 
on molecular biology. Generally, all phylogenetic tree 
algorithms improve with greater data size both with the 
number of species and in the length of the sequences. In the 
future, we plan to study additional protein families and their 
DNA and amino acid sequences. Finally, it would be 
interesting to look at the evolution of biological vision in order 
to learn from it ideas that may improve digital cameras [4]. 
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