
 

 

 

Abstract— Asthma is one of the top five chronic diseases 

globally and the most common chronic disease among children. It is 

the most likely cause of recurrent wheezing in children, so 

computerized respiratory sound analysis is an important diagnostic 

aid. This research compares the efficiency of the classification 

algorithms applied both on signals available on the internet and 

signals recorded on children in real-life clinical settings. The paper 

proves that the features with logarithmic distribution of energy filter 

bank along the frequency domain embedded in MFCC, result in 

better wheezes recognition in an auscultatory breathing signal than 

spectral features and the similar energy filter bank features which do 

not have logarithmic distribution along the frequency domain. 

Furthermore, the paper demonstrates that the SVM classifier 

performs better than other classifiers applied on signals acquired 

under ideal and suboptimal conditions. 
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I. INTRODUCTION 

sthma is a public health problem not just for high-income 

countries; it occurs in all countries regardless of the level 

of development. The World Health Organization (WHO) 

estimates a number of 235 million people currently suffering 

from asthma [1].  

Asthma is considered to be the most common chronic 

disease among children in nearly all industrialized countries 

[2]. It is more prevalent in children with a family history of 

atopy, and symptoms and worsening thereof are frequently 

provoked by a wide range of triggers, which can include viral 

infections, indoor and outdoor allergens, exercise, tobacco 

smoke and poor air quality. A large number of infants and 

preschool children experience recurrent episodes of bronchial 

symptoms, especially wheezing and coughing, beginning at a 

few months of age. Since a clinical diagnosis of asthma can 

usually be made with certainty by the age of 5, early diagnosis, 
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monitoring and treatment of respiratory symptoms are 

essential. 

Lung auscultation is helpful in providing information 

concerning the patient’s respiratory function. The presence of 

wheezing in infants is used as an important parameter in 

assessing the predisposition to asthma [3]. History of repeated 

episodes of wheezing is a symptom universally accepted as the 

starting point for asthma diagnosis in children [4]. The 

required number of such episodes is generally unspecified, 

although an arbitrary number of three or more has been 

proposed. Typical symptom patterns are significant in 

establishing the diagnosis.  

A wheeze can be described as an unintentional and 

continuous sound [5]. Acoustically, it is characterized by 

periodic waveforms with a dominant frequency usually over 

100 Hz (or 400Hz [6]) and with duration of ≥100 ms. Wheezes 

are usually associated with airways that are obstructed due to 

various causes. Wheezes with a single peak or with the 

harmonics of a single basal peak are called monophonic 

wheezes, while those with variable peaks that differ in 

harmonics are called polyphonic wheezes [7].  

Recently developed computer based respiratory sound 

analysis methods serve as a powerful tool to diagnose the 

whole spectrum of disorders and abnormalities in the lungs, 

including asthma.  

However, special attention should be made when this kind 

of analysis is applied to signals recorded on children. Due to 

their lack of cooperation, such signals have a number of 

artifacts and the usual methods of analysis often do not 

provide good results [8]. In this paper the efficiency of the 

classification algorithms applied both on signals available on 

the internet and signals recorded on children in real-life 

clinical settings are compared.  

The paper demonstrates that the SVM classifier performs 

better than other classifiers applied on signals acquired under 

ideal and suboptimal conditions. Additionally, it proves that 

the features with logarithmic distribution of energy filter bank 

along the frequency domain embedded in MFCC result in 

better wheeze recognition in an auscultatory breathing signal 

than spectral features and the similar energy filter bank 

features which do not have logarithmic distribution along the 

frequency domain. In the following section the problem is 

explained in detail and the possible risks of research goals are 
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stated. Section 3 describes applied measuring procedures, 

signal pre-processing techniques and the classification 

strategy. Same section presents the experimental results, while 

Section 4 concludes the paper. 

II. PROBLEM FORMULATION 

Phonopneumograms (acoustic breathing records) depend on 

anatomical and physiological parameters such as sex, age, type 

and stage of disease. Digital methods of collecting, processing 

and analyzing phonopneumograms have been in wide use for 

more than 30 years. Measuring systems consist, among others, 

of transducers that are put on the chest or trachea, which then 

collect acoustic signals during breathing. 

Several factors affect the results of auscultation signal 

analysis and make comparing the research results obtained at 

various institutions more difficult [9] due to the differences in 

age and corpulence of the patient, air volume changes in the 

lungs, location of sound capturing, breathing flow, position of 

the patient and characteristics of the measurement equipment.  

Differences due to age are all the more visible with infants. 

Audible respiratory sounds in early childhood have acoustic 

characteristics which are recognizably different from those 

generally heard in adults.  Therefore, Mazic et al. [10] propose 

to use more objective methods to automatically detect 

wheezing in asthmatics infants, during forced breathing. 

Many methods were used by previous researchers during the 

past three decades to process the lung sounds for detecting 

wheezing [11].  Various types of extracted features have been 

used, such as the time-frequency spectrum, entropy, Mel 

Frequency Cepstral Coefficients (MFCC), power spectral 

density (PSD), standard deviation (SD), Peak Frequency (FP), 

ske Most authors used phonopneumograms to automatically 

detect wheezing from different internet databases (INT) or 

media [12] [13] [14], the purpose of which is first and 

foremost education, so the data about the measuring system, 

transducers, position of the measuring point, the age of the 

subject and breathing technique were mostly not published. A 

2D spectrogram of such a signal [12] is shown on Fig. 1. 

It is clear from the spectrogram that inspiration lasts almost 

as long as expiration in which wheezing is present. The signal 

to noise ratio (S/N), breathing regularity, the 

expiration/inspiration time ratio, as well as the presence of 

wheezing in all expirations point to the conclusion that this is a 

state of controlled forced breathing of an adult in ideal 

laboratory conditions. It is not possible to achieve these 

conditions with children under the age of 6. 

 In this paper, we compare the predictive abilities of models 

built from publicly available phonopneumograms (internet and 

CDs) to those built from phonopneumograms recorded in the 

Dubrovnik General Hospital (DGH) in realistic, suboptimal 

conditions with children aged from one to six.  

Phonopneumograms recorded with children contain not only 

muscular and cardiovascular sounds, but also many 

physiological and non-physiological artifacts, such as sounds 

which are results of forced breathing, or stridor and wheezing 

which do not originate in the bronchia, but are the 

consequence of infections in the upper part of the respiratory 

system, which is a common occurrence with children of that 

age. All these signals are superimposed in the transducer, 

which only adds to the difficulty of their recognition and 

classification. Additionally, to ensure sufficient acoustic power 

for the respiratory sound, the children were usually encouraged 

to perform forced breathing, which often resulted in specific 

physiological artifacts such as inspiratory stridor, which 

sounds similar to asthmatic wheezes.  

It can be expected that recording lung sounds in a noisy 

hospital versus laboratories under controlled conditions can 

demand more rigorous preprocessing techniques to combat the 

noise and other artifacts present in the acoustic signal.  Also, 

there is the possibility that the classification algorithms are less 

effective.wness, kurtosis, etc. There is no consensus on which 

features are the best to be extracted, because the final system 

performance and classification accuracy are a consequence of 

different signal processing and classification techniques 

applied. 

 
Fig. 1  2D spectrogram of the signal from INT dataset 
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III. MODELLING AND CLASSIFICATION 

Phonopneumograms from the above mentioned internet 

databases included 1026 samples (signal segments) of 

wheezes, and 1374 samples of breathing without wheezes. 

Each signal segment lasts 100 ms. The signal segments were 

obtained using 50% overlapping windows along the distinctive 

signal sequences. 

The measuring equipment for DGH samples consists of a 

transducer, 4m long microphone cable, preamplifier, stable 5V 

source, and a personal computer with an integrated audio card 

[15]. The resolution of the AD/DA converter is 16 bits, signal-

to-noise ratio (SNR) is 90 dB, and the total harmonic 

distortion at 1 VRMS was 0.01%. Sampling rate is 8 KHz. 

During a few weeks 369 samples (signal segments) of wheezes 

were recorded, and 495 samples of breathing without wheezes. 

Fig. 2. shows a 3D spectrogram of a three-year-old child 

breathing. During forced breathing an inspiratory stridor was 

also recorded. To reduce the impact of cardiovascular and 

muscular noise, phonopneumograms were first filtered with the 

Yule–Walker 50th-order high pass filter, with the lower cut-off 

frequency of 100 Hz. Then, STFT is performed with 50% 

overlapping Hamming window, using 256 samples, which 

corresponds to 32 ms frame size. 

Fig. 3. shows a 2D spectrogram of the same 

phonopneumogram, where the acoustic power of the 

inspiratory stridor and wheezing within the same order of 

magnitude can be seen, while the 3D spectrogram shows that 

the inspiratory stridor appears at lower frequencies than the 

wheezing, which does not always appear to be the case. 

Researchers show that by using MFCC as features [16] [17] 

18], wheezing detection can achieve an accuracy higher than 

95%. There is no standard number of MFCCs for recognizing 

the lung sounds. For both dataset sources (INT, DGH) we 

experimented to obtain the optimal number of MFCCs 

resulting in the maximum classification accuracy. For the INT 

signals, we also investigated previous works that are directly 

related to this topic [19]. Finally, we used 15 MFCCs for the 

INT signals in frequency range from 100 Hz to 1500 Hz, and 

12 MFCCs for our DGH signals in frequency range from 100 

Hz to 1000 Hz.  

For comparison purposes, we also used standard statistical 

features computed from  spectral components calculated using 

FFT : Renyi entropy, Kurtosis, Spectral Flatness (SF), 

Skewness, Mean Crossing Irregularity (MCI), Standard 

Deviation (SD) and f50/f90 ratio [20]. 

The models are built based on several known machine 

learning methods: Support Vector Machine (SVM) [21], k-

nearest neighbor algorithm (k-NN) [22], Neural Network (NN) 

[23], Random Forests (RF) [24], Logistic Regression (LR) 

[25], Naive Bayes (NB) [26]. 

For the aforementioned machine learning methods and both 

datasets, an optimization of important parameters which 

influence the model build was made. For some algorithms, this 

is a very important step, such as the SVM with RBF kernel, for 

which it is important to set the C and gamma parameters. This 

is why a grid search using cross-validation was used to find 

optimal values in a parameter space [27]. 

 
Fig. 2  3D spectrogram of a three-year-old's breathing 
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A. Results  

Fig. 4. shows the results of the grid search procedure used to 

determine the optimal gamma and C parameters for the SVM 

algorithm (RBF kernel). One can see that it is very important 

to pay attention to the choice of values for the mentioned 

parameters for the SVM algorithm. Despite this, many papers 

comparing the SVM algorithm to other algorithms can be 

found which have no clear methodology of the parameter 

optimization. 

Fig. 5. shows the results of the classification for both 

datasets based on 7 statistical features. The best results 

(accuracy 93.62% for INT signals, or 91.77% for DGH 

signals) were achieved with the Neural network algorithm with 

2 hidden layers. The SVM and k-NN algorithms, pointed out 

in numerous articles as a good choice for pulmonary acoustic 

signals classification, scored somewhat lesser results here 

(accuracy between 80% and 85%). Looking at all 6 algorithms, 

one can conclude that the classification is only marginally 

more successful with internet data. 

On the other hand, Fig. 6. shows the classification results for 

both datasets based on MFCC features. The results are, as 

expected, much better, and the most successful classifiers are 

SVM and k-NN, which had the accuracy of 99%. At the same 

time, all classifiers have achieved somewhat better results for 

DGH signals. 

Additionally, Fig. 7. shows the performance of binary 

classifiers for DGH signals (MFCC features) in the form of 

Receiver Operating Characteristic (ROC) curves [28]. By 

analyzing the shown curves, as well as the Area Under the 

Curve (AUC), it can be seen that the best results are achieved 

with the SVM algorithm. 

 

 

 
Fig. 3  2D spectrogram of a three-year-old's breathing 

 

 
Fig. 4  Results of the grid search procedure 

 

 
Fig. 5  Classification accuracy for INT/DGH signals 

represented with 7 statistical features 

 

 
Fig. 6  Classification accuracy for INT/DGH signals 

represented with MFCC features 
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B. Comparison of classification performance for different 

energy filter bank features 

High value evaluation measures for wheeze classification 

using MFCC justified our expectations, with feature-based 

models providing good wheeze recognition. However, in 

addition, we were interested in which of these feature 

components has the greatest influence on the results of 

classification. Therefore, a different experiment was 

performed in which the classification efficacy was compared 

using three different features, whose values were defined 

through the energies of the respective frequency bands. 

The classification obtained with these features was 

compared to the classification results obtained with the 

features described for MFCC. The three new features include 

(Fig. 8): filter based energy coefficients - FBECMEL, energies 

in evenly distributed overlapping “db4” filters using wavelet 

packet transform - FBECWPT, and energies in evenly 

distributed non-overlapping rectangular filters - FBECR. 

Below are the values of the four aforementioned features, and 

at the end of this subsection the conclusion will emphasize the 

advantages of specific features based on MFCC.  

 
The accuracies of wheezing recognition (1) achieved with 

the SVM classifier and multiple sets of features were 

compared using standard k-fold (k=10) cross-validation [29]. 

TP denotes the number of true positives, TN the number of 

true negatives, FP the number of false positives, and FN the 

number of false negatives. 

C. Analysis using Mel Filter Bank Energy Coefficients – 

FBECMEL 

When, instead of using the MFCC, we used the coefficients 

obtained at the end of step 4 (see Fig. 8), FBE (various filter 

bank energies), the results in Table I were gained. Comparing 

the first three rows of Table I (MFCC features) with rows 4, 5 

and 6 (FBECMEL features), it is evident that the results 

obtained with MFCC are better than the results achieved with 

FBECMEL. The results are also shown in Fig. 9. The difference 

in the calculation of MFCC and FBECMEL is that logarithms 

and the DCT onto power signal are not applied in the mel 

filters in the FBECMEL calculation. The output of DCT 

represents a cepstrum coefficient. 

 

 Table I  Classification accuracy for various filter bank 

energy filters 

 

Row 

no. 

Features Accuracy 

1 32 MFCC 98.50 

2 16 MFCC 98.95 

3 8 MFCC 97.82  

4 32 FBECMEL 98.00  

5 16 FBECMEL 97.84  

6 8 FBECMEL 97.11  

7 32 FBECWPT 97.04  

8 16 FBECWPT 97.19  

9 8 FBECWPT 94.49  

10 32 FBECR 93.33  

11 16 FBECR 93.70  

12 8 FBECR 93.81  

13 8 FBECDWT 86.58  

 

 
Fig. 7  ROC curves for binary classifiers (DGH signals) 
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D. Analysis using features derived from the energies of 

rectangular and WPT filters 

FBECWPT were obtained using the third, fourth and fifth 

levels of decomposition with a ”db4” wavelet. Generally, each 

level results in 2
level

 coefficients. Therefore, using an 

appropriate scale function and the ”db4” wavelet, 8, 16 and 32 

coefficients were obtained, from which coefficients of lowpass 

L and highpass H filters were obtained. Summing the squares 

of sequences at the output of the appropriate decomposition 

level, the energy contained in the WPT filters was obtained, 

i.e., FBECWPT. 

From Table I (rows 7, 8 and 9) and Fig. 8, it is evident that 

the highest overall accuracy of 97.19% occurs with 16 WPT 

filters. The worst results were obtained using evenly 

distributed energies in non-overlapping rectangular filters, 

shown in rows 10, 11 and 12 in Table I, and appropriate bars 

in Fig. 9. 

From Fig. 9 it is clear that there are three key steps to 

obtaining high classification accuracy. The first step is 

calculating energies in logarithmically distributed overlapping 

triangular filters. The second step is using cepstrum 

coefficients as the output of DCT, and the third step assumes 

improvements achieved by optimizing the number of 

coefficients used (filter banks).  

To confirm the importance of logarithmic distribution along 

the frequency axis of filter banks, the energy distributed along 

the frequency bands defined by discrete wavelet 

 
 

Fig. 8  The algorithm scheme obtaining the energy filter bank features used for classification efficacy comparisons 

 

 
 

Fig. 9  Comparison of classification accuracy for different 

energy filter bank features calculated with appropriate 

numbers of filters 
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transformations was calculated. Filter banks were determined 

by iteratively dividing the low-frequency bands into two equal 

parts. The last row of Table I indicates that the classification 

accuracy is the worst using 8 FBECDWT coefficients. 

IV. CONCLUSION 

The results of wheeze detection based on signals available 

on the internet were compared to the signals recorded in the 

Dubrovnik General Hospital. The signals were recorded using 

equipment comprised of standard components, with children in 

realistic conditions, including the effects of ambient sounds, 

cardiovascular and muscular noise, and other physiological 

and non-physiological artifacts. Different pattern recognition 

methods were used to classify both datasets of respiratory 

sounds into normal and wheeze classes. The experiments show 

that, by properly filtering and preprocessing the entry data, and 

using MFCC features, signals recorded in suboptimal 

conditions can achieve good results, very similar to those 

collected from the internet. That is an important prerequisite 

for the construction of a low cost automated system for 

monitoring asthma, based on a mobile device and the 

appropriate application, in which raw data from a transducer is 

processed and analyzed. 

We also compared classification accuracy of the three new 

features (FBECMEL, FBECWPT and FBECR) with the results 

obtained with the features described for MFCC. Our results 

show that the features with logarithmic distribution of energy 

filter bank along the frequency domain embedded in MFCC 

result in better asthmatic wheezes recognition than spectral 

features and the similar energy filter bank features, which do 

not have logarithmic distribution along the frequency domain. 

Having in mind that the human auditory system has 

logarithmic characteristics, the performed experiment clearly 

shows that MFCCs represent features adapted to the auditory 

system. Therefore, the artificial system recognized precisely 

the pattern that people hear, like most similar patterns with 

which the system was trained. Although the superiority of the 

MFCC coefficients is well known from the literature, our 

experiment presented in this paper shows what contributes the 

most to MFCC importance.  
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