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Abstract—The epidemiology of X-linked recessive dis-
eases, a class of genetic disorders, is modeled with a discrete-
time, structured, mathematical model. The model accounts
for both de novo mutations and different reproduction rates
of procreating couples depending on their health conditions.
Relying on Lyapunov theory, asymptotic stability properties
of equilibrium points of the model are demonstrated. The
model describes the spread over time in the population of
any recessive genetic disorder transmitted through the X-
chromosome.
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I. MOTIVATION

We study a specific class of genetic disorders named
X-linked recessive diseases; these conditions include the
serious diseases hemophilia A, Duchenne-Becker muscular
dystrophy, and Lesch-Nyhan syndrome as well as common
and less serious conditions such as male pattern baldness
and red-green color blindness. A major reason for devoting
attention to this topic is the inadequacy of the currently used
mathematical instruments to describe the transmission of a
genetic disease within a predefined population.

Related studies analyzed the inheritance mechanism of any
gene —not necessarily responsible for a genetic disease—
placed on the X-chromosome ([1], [2], [3]); they belong to
the field of population genetics. In these works genotypes
frequencies —i.e., the frequency or proportion of genotypes
in a population— are frequently chosen as model’s variables.
Under the hypothesis of infinite population and starting from
a genotypes’ distribution, the genotypes’ proportions in the
next generation are evaluated according to the inheritance
mechanism and to the effects of selection or mutation. The
average fitness (see [4] pag. 385-387) is frequently studied as
a suitable Lyapunov function candidate to analyze stability
properties of model’s equilibrium points.

Even in this generic scenario seldom contributions ex-
amine the combined effects of selection and mutation on
population’s dynamics and equilibrium (see [5], [6], [7]
and reference therein). Moreover, results of these researches
cannot be applied to epidemiological studies. In fact the
ultimate goal of genetic epidemiology is to predict the
number of individuals carrying the disease responsible gene,

1 Dipartimento di Ingegneria, Università
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this number can not be inferred from genotypes’ frequency
distribution when assuming infinite population size.

The results in this paper are an extension of some pre-
vious preliminary works on the same topic ([8], [9]). The
major original result of our work is to model the peculiar
inheritance mechanism of X-linked diseases while taking
into account the reduced reproduction capacity of affected
individuals as well as the occurrence of the diseases in
healthy couple progeny due to de novo genetic mutations.
This represents an advancement over current epidemiological
models, and could be exploited to better understand the
epidemiology of X-linked genetic diseases; moreover, it
could be generalized to allow application to other classes of
genetic disorders. Although the mathematical model devel-
oped to describe the epidemiology of these diseases within
a population is nonlinear, it is suitable for analyses using
classical nonlinear instruments to gain information about
system behavior and equilibrium properties.

The paper is structured as follows: a brief description of X-
linked genetic diseases and their peculiar inheritance pattern
is provided in Section II-A. We pose our model and we
derive general system properties and solutions characteristic
in Sections II-B and III.Finally, we discuss the physiological
implications corresponding to the mathematical properties
derived from our model and some special model cases.

II. MATHEMATICAL MODEL OF X-LINKED RECESSIVE
DISEASES

A. The transmission mechanism of X-linked recessive dis-
eases

An X-linked recessive disease may be inherited as per the
following rules (see [9] for details):
• Affected males never spread the disease to their sons,

as no male-to-male transmission of the X chromosome
occurs.

• Affected males pass the abnormal X chromosome to
all of their daughters, who are described as obligate
carriers.

• On average, female carriers pass a defective X chro-
mosome to half of their sons (who will born affected)
and half of their daughters (who become carriers). The
remaining half of their siblings inherit a normal copy
of the chromosome.

• Affected females are the rare result of an affected male
and a carrier female mating.

Figures 1 and 2 depict the inheritance patterns described
above.

X-linked recessive conditions include the serious diseases
Duchenne/Becker muscular dystrophy, hemophilia A, and
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Fig. 1. Inheritance pattern
of affected father and healthy
mother.
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Fig. 2. Inheritance pattern
of healthy father and carrier
mother.

Lesch-Nyhan syndrome as well as common and less serious
conditions such as male pattern baldness and red-green color
blindness. X-linked dominant diseases are very uncommon,
although some inherited forms of rickets are transmitted in
this manner. Unlike the recessive diseases discussed above,
the prevalence of X-linked dominant diseases is similar in
males and females, even though the absence of male-to-male
transmission distinguishes them from autosomal dominant
diseases.

Other than the result of the described, well characterized
patterns of inheritance, the spread of genetic disorders within
a given population is influenced by additional factors, includ-
ing sporadic mutations and prenatal diagnosis.

A genetic disease that occurs when neither parent is
affected or a carrier of any genetic defect is called sporadic
mutation or de novo gene mutation. These cases arise via
random genetic mutations within the DNA sequence; the
mutation can occur in the the germ-line cell population —
i.e. in eggs and sperm cells— in subjects without any prior
genetic defect and can be transmitted down to one of the
offspring. The genetic mutation can also occur in the zygote
cell, i.e. the initial cell formed when two gametes cell are
joined. A sporadic mutation can be the cause of an X-linked
recessive disease (whereas it is unlikely for an autosomal
recessive disorder) as a single mutation is enough in males
to cause the disease. Males can be born affected due to a
spontaneous gene mutation as a single abnormal gene copy
is enough for the disease to become symptomatic; females
can also be born carriers owing to random mutations.

The rate of de novo mutations varies widely among
different genetic regions, and depends on a number of factors,
including environmental exposure to mutagenic agents, the
length of the gene sequence and ability of the cell machinery
to actually repair or correct the mutations. For instance,
the dystrophin gene, whose mutations may give rise to
Duchenne/Becker muscular dystrophy, is particularly prone
to de novo mutations due to its massive length ([10]). It is
estimated that up to a third of all cases of this disorder are
due to de novo mutations, a rate considerably higher than any
other X-linked disorder. Not all mutations in X-chromosome
genes confer sufficient survival fitness to give rise to a viable
embryo. Therefore, an individual born affected due to de
novo mutations may not pass on the affected gene to progeny

due to premature, spontaneous intrauterine death.
In modern population genetics, prenatal diagnosis and

birth control measures can play a major role and significantly
influence the rate of affected cases in a given generation.
Couples with a family history of X-linked genetic disorders
often access prenatal or pre-implantation embryonic genetic
screening, with the consequent negative selection of affected
ones or selective therapeutic abortion.

B. Model formulation

In this section we present a mathematical model we
have developed to describe the epidemiology of genetic
diseases linked to the X chromosome. Our model fits in the
category of structured models. In these models, a population
is divided into homogeneous groups according to some major
parameters, such as subject’s age, sex or health conditions
with respect to a disease. The model dynamics describes
the distribution of the population over time according to the
chosen parameters ([11], [12]).
Population dynamic models differ depending on assumptions
regarding population size and mating rules among groups.
The population is often assumed to be isolated (i.e. migration
and selection are not modeled) and of constant finite size.
This allows mathematical tractability. However, models with
variable population size or including selection factors (such
as the early death of affected individuals, or selection due to
prenatal diagnosis) are definitely more realistic.
The most frequently adopted rule for mating is that individ-
uals in the population mix randomly, i.e. individuals mate
according to the product rule of probability; this is more
realistic in large populations and assumes that the studied
trait does not influence reproduction ([13]).

We have developed a discrete-time dynamic model to
describe the inheritance mechanism of X-linked recessive
diseases in a finite size population grouped by sex and health
condition with respect to the disease.

We divide the population into four classes, namely healthy
and affected males, healthy and carrier females. We do not
consider affected females as they very rarely occur in nature.
Thus our model has four variables:
• x1(k) : the number of healthy males at time k
• x2(k) : the number of affected males at time k
• x3(k) : the number of healthy females at time k
• x4(k) : the number of carrier females at time k.

We make the following assumptions.
• In each generation there is an equal number of males

and females; thus there is the the same number of males
and females in newborn children.

• Each person breeds with a person of the opposite sex
from his/her own generation.

• The number of sons (which is equal the number of
daughters) of each couple varies according to the par-
ents’ health conditions and is modeled through the
fertility factors wij .

• Spontaneous genetic mutations are modeled; they are
assumed to occur in the zygote cells; a child of a healthy
couple can be born affected or a carrier due to mutation.
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The number of males (and females in view of the first
assumption above) born to a person of class i ∈ {1, 2}
breeding with a person of class j ∈ {3, 4} is

1

2
wij

xi
(x1 + x2)

xj
(x3 + x4)

(x1 + x2 + x3 + x4), (1)

where
wij ≥ 0 (2)

is the fertility factor, procreation rate or reproduction rate
of couples of type (i, j). The parameters wij are bounded
by clinical considerations; the more severe the disease the
smaller its value in couples formed by affected males and/or
carrier females. A son (daughter) is a healthy or affected
male (healthy or carrier female) depending on the health
conditions of his (her) parents. As an example consider sons
born from couples formed by a healthy father (an individual
of class 1) and a carrier mother (an individual of class 4).
According to the inheritance patterns of X-linked recessive
diseases (see Figure 2), half of these sons (on average) will
be affected and half will be healthy. Hence the number of
affected males in the next generation due to such couples is

1

4
w14

x1
(x1 + x2)

x4
(x3 + x4)

(x1 + x2 + x3 + x4)

which is the same as the number of healthy males in the next
generation due to these couples.

For ease in describing our model we introduce the state
vector

x := [x1 x2 x3 x4]T .

According to the previous assumptions and to the inheritance
pattern of X-linked recessive disease described in Section
II-A, the population dynamics is described by the following
non-linear discrete-time system:

x(k + 1) = f(x(k)) (3)

where the vector function f = [f1 f2 f3 f4]T is given by

f1(x) = P (x)
[
(1− α)w13x1x3 + w23x2x3 +

1

2
w14x1x4 +

1

2
w24x2x4

]
(4a)

f2(x) = P (x)
[
αw13x1x3 +

1

2
w14x1x4 +

1

2
w24x2x4

]
(4b)

f3(x) = P (x)
[
(1− β)w13x1x3 +

1

2
w14x1x4

]
(4c)

f4(x) = P (x)
[
βw13x1x3 + w23x2x3 +

1

2
w14x1x4 +

w24x2x4

]
(4d)

with
P (x) :=

x1 + x2 + x3 + x4
2(x1 + x2)(x3 + x4)

. (5)

The term αw13 (βw13) is the fraction of affected sons
(carrier daughters) born from healthy parents due to de novo
gene mutation; thus α and β model the spontaneous mutation

rate of the disease in males and females respectively. Their
values strictly depend on the genetic disease and they range
between 10−3 and 10−8 ([14]). We will consider α and
β to be strictly less then 1

2 ; otherwise spontaneous genetic
mutation would be more relevant than the ordinary disease
transmission mechanism; in contrast setting β = 0 and α = 0
implies that gene mutations do not apply to the disease. Thus
in what follows α and β will range in [0, 12 ).

Finally we explicitly note that once system (3)-(4) is
initialized with all state variables non-negative (that is, non-
negative initial populations) —the state variables remain
nonnegative for all times k ≥ 0:

xi(k) ≥ 0 for i = 1, 2, 3, 4 when xi0 := xi(0) ≥ 0
(6)

for i = 1, . . . , 4. Hence we are dealing with a positive system.
Due to the model hypotheses discussed above —each

couple procreates an equal number of males and females—
one can easily see that

x1(k) + x2(k) = x3(k) + x4(k) (7)

for all k > 0. Hence P (x) in equation (5) simplifies to

P (x) =
1

x1 + x2
=

1

x3 + x4

that is, P (x) is the inverse of half the total population. Since
wij ≥ 0 for i = 1, 2 and j = 3, 4 and assuming wij > 0 for
at least one couple (i, j), it is not difficult to show that

x1(k) + x2(k) > 0 for all k when x10 + x20 > 0 .
(8)

This guarantees that P (x(k)) is always well defined. Let

X := {x : xi ≥ 0 for i = 1, . . . , 4 andx1+x2 = x3+x4 > 0}.

Then this set is invariant for system (3)-(4), that is, if the
state starts in this set, it never leaves it.

The model presented in this paper is a generalization
of previous models in ([8], [9]). It significantly improves
the modeling of de novo mutations (i.e. affected or carrier
children born to healthy parents) and reproduction rates
consistent with the health conditions of reproducing couples.
These model features, enabling the modeling of any X-linked
disease, were not included in the first version ([8]). Moreover
the results we gain on system equilibrium, stability and
convergence properties are more general than those in [9]
where only the special case of negligible de novo mutations
and few combinations of reproduction rates values could be
analyzed. Finally in this paper the sporadic genetic mutation
can affect sons and daughters born from healthy couples with
different rates α and β; in [9] it was assumed that only males
could be born affected due to a spontaneous mutation.

III. SOME SYSTEM PROPERTIES

A. A Lyapunov function

Noting that

x1 = P (x)(x1x3 + x1x4), x2 = P (x)(x2x3 + x2x4)
x3 = P (x)(x1x3 + x2x3), x4 = P (x)(x1x4 + x2x4)

(9)
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system (3)-(4) can be described by

x(k + 1) = x(k) + g(x(k)) (10)

where g = [g1 g2 g3 g4]T and

g1(x) = P (x)
[
((1− α)w13 − 1)x1x3 +(w14

2
− 1
)
x1x4 + w23x2x3 +

w24

2
x2x4

]
g2(x) = P (x)

[
αw13x1x3 +

1

2
w14x1x4 − x2x3 +(w24

2
− 1
)
x2x4

]
g3(x) = P (x)

[
((1− β)w13 − 1)x1x3 +

1

2
w14x1x4 − x2x3

]
g4(x) = P (x)

[
βw13x1x3 +

(w14

2
− 1
)
x1x4 +

w23x2x3 + (w24 − 1)x2x4

]
.

In investigating the behavior of system (3)-(4) the function
V1 defined by

V1(x) = x1 + x2 (12)

is very useful. This is simply the total male population which
is the same as the total female population, that is,

V1(x) = x3 + x4. (13)

This function will be called a Lyapunov function. The change
in this population from one stage k to the next stage k + 1
is given by

V1(x(k + 1))− V1(x(k)) = ∆V1(x(k)) (14)

where

∆V1(x) := V1(f(x))− V1(x)

= g1(x) + g2(x)

= −P (x)[(1−w13)x1x3 + (1−w14)x1x4 +

+ (1−w23)x2x3 + (1−w24)x2x4].

(15)

If wij ≤ 1 for all i, j then, for all k ≥ 0, we have
∆V1(x(k)) ≤ 0 and

V1(x(k + 1)) ≤ V1(x(k)) . (16)

Therefore
V1(x(k)) ≤ V1(0) (17)

for all k ≥ 0. That is the total population is bounded by the
initial population. We can now readily obtain the following
boundedness result. Noting that

xi(k) 6 V1(k) for i = 1, . . . , 4.

we obtain our first result.

Proposition 3.1: Consider system (3)-(4) with 0 ≤ wij ≤
1 for i = 1, 2 and j = 3, 4. If the initial state x0 lies in X ,
then, for all k ≥ 0, x(k) ∈ X and

x1(k) + x2(k) 6 x10 + x20 (18)
x3(k) + x4(k) 6 x30 + x40 (19)

xi(k) 6 x10 + x20 for i = 1, . . . , 4. (20)

a) Special case: wij = 1 for all i and j: In this case,
∆V1(x) = 0 for all x; hence V (x(k + 1) = V (x(k)) for all
k which implies that V1(x(k)) = V1(x(0)), that is,

x1(k) + x2(k) = x10 + x20 (21)

for all k. This means that the total male (hence female)
population remains constant. We examine this special case in
further detail in Section IV Now we consider what happens
when wij < 1 for at least one ij.

B. Some convergence properties

Our first result tells us that if one of the fertility rates wij is
strictly less than one, then the state converges to a limit with
the number of the affected males and carrier males equal to
zero. If in addition w13 < 1 or there is a non-zero mutation
rate then the whole population goes to zero.

Proposition 3.2: Consider system (3)-(4) with initial stat
x0 in X and 0 < wij ≤ 1 for i = 1, 2 and j = 3, 4.

If wij < 1 for at least one ij, then

lim
k→∞

x2(k) = lim
k→∞

x4(k) = 0 (22)

and

lim
k→∞

x1(k) = lim
k→∞

x3(k) = x1 for some x1 ≥ 0. (23)

If either w13 < 1 or α > 0 or β > 0 then x1 = 0, that is,

lim
k→∞

x(k) = 0.

Proof: Since wij ≤ 1 for all i and j, it follows that
(16) holds, that is, {V1(x(k))} is a non-increasing sequence.
Since this sequence is bounded below by zero, it converges
that is

lim
k→∞

V1(k) = V1 (24)

for some V1 ≥ 0. Hence

lim
k→∞

∆V1(x(k)) = lim
k→∞

V1(x(k + 1))− lim
k→∞

V1(x(k))

= V1 − V1
= 0 . (25)

Suppose that wij < 1 for some ij. Since wij ≤ 1 for all
ij it follows from (15) that

∆V1(x(k)) 6 −P (x(k))(1− wij)xi(k)xj(k) ≤ 0

Since ∆V1(x(k)) → 0, it now follows that
P (x(k))xi(k)xj(k) tends to 0. Noting that P (x(k)) ≥
P (x(0)) we obtain that xi(k)xj(k) goes to zero. This
implies that fi(x(k))fj(x(k)) = xi(k + 1)xj(k + 1) also
converges to zero.
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First suppose that w14 < 1. Then

P (x(k))x1(k)x4(k)→ 0 . (26)

Also f1(x(k))f4(x(k))→ 0. Since all terms in (4a) and (4d)
are non-negative we must have

P (x(k))x2(k)x3(k)→ 0 and P (x(k))x2(k)x4(k)→ 0 .
(27)

Using the second relationship in (9) it follows from (27)
that x2(k) → 0 and, recalling (24), we also have x1(k) →
x1 := V1. The fourth relationship in (9) along with (26)
and the second condition in (27) imply that x4(k)→ 0 and,
recalling (24), we also have x3(k)→ x1.

Now suppose that β > 0. Since f1(x(k))f4(x(k)) → 0
equations (4a) and (4d) imply that

P (x(k))x1(k)x3(k)→ 0. (28)

When α > 0, the fact that f2(x(k)) = x2(k + 1) → 0 and
(4b) also implies (28). Using (28) and (26) along with the
first relationship in (9) we obtain that x1(k) → 0, that is,
x1 = 0.

Now suppose that w24 < 1. Then f2(x(k))f4(x(k)) → 0
and it follows from (4b) and (4d) that (26) holds and as we
have just shown this results in (22) and (23) with x1 = 0
when either α > 0 or β > 0.

In a similar fashion one can show that if w23 < 1 then,
(22) and (23) hold with x1 = 0 when either α > 0 or β > 0.

Finally suppose w13 < 1. Then f1(x(k))f3(x(k)) → 0
and it follows from (4a) and (4c) that (26) and (28) hold.
From this we can conclude as before that (22) and (23) hold
with x1 = 0

The next result tells us that even if wij = 1 for all ij,
properties (22) and (23) still hold. To prove this we need to
introduce a new function V2.

Proposition 3.3: Consider system (3)-(4) with initial state
x0 in X and 0 < wij ≤ 1 for i = 1, 2 and j = 3, 4. If
α = β = 0 then (22) and (23) hold.

Proof: To prove this result we consider the behavior of
the following function:

V2(x) := x2 + x4 (29)

Along any solution x(·) we have

V2(x(k + 1)) = V2(x(k)) + ∆V2(x(k)) (30)

and with α = β = 0 we have

∆V2(x) = g2(x) + g4(x)

= −P (x)
[
(1− w14)x1x4 +

(1− w23)x2x3 + (2− 3w24

2
)x2x4

]
6 −P (x)(2− 3w24

2
)x2x4 6 0.

Proceeding as in the proof of Propositions 3.2, we can show
that we must have

P (x(k))x2(k)x4(k)→ 0, (31)

and from this we can deduce that

f2(x(k))f4(x(k))→ 0. (32)

It follows from (32) that

P (x(k))x1(k)x4(k)→ 0. (33)

Using the fourth relationship in (9) it follows from (31) and
(33) that x4(k)→ 0. It now follows that f4(x(k)) = x4(k+
1) goes to zero and, hence

P (x(k))x2(k)x3(k)→ 0 (34)

Using the second relationship in (9) it follows from (31) and
(34) that x2(k) → 0. The proof of (23) is the same as that
in Proposition 3.2

b) The special case: w13 = 1 and α, β = 0: In this
special x(k) does not always converge to zero; only x2(k)
and x4(k) always converge to zero. This can be seen by
observing that, in this case, any state of the form [x1 0 x3 0]T

is an equilibrium state of system (3)-(4). If the system starts
in one of these equilibrium states it remains there. Such a
state corresponds to all the population being healthy.

When all wij are strictly less than one, the next result
claims that the population exponentially decays to zero.

Proposition 3.4: Consider system (3)-(4) with wij < 1
for i = 1, 2 and j = 3, 4 and let

w̄ := max{wij} < 1.

If the initial state x0 lies in X then, for all k ≥ 0,

x1(k) + x2(k) 6 w̄k(x10 + x20) (35)
x3(k) + x4(k) 6 w̄k(x30 + x40) (36)

xi(k) 6 w̄k(x10 + x20) for i = 1, . . . , 4.(37)
Proof: It follows from (15) that

∆V1(x) 6 − 1

V1
(1− w̄)(x1x3 + x1x4 + x2x3 + x2x4)

= − (1− w̄)

V1
[(x1 + x2)(x3 + x4)]

= (−1 + w̄)V1(x).

It now follows from (14) that V1(x(k + 1)) 6 w̄V1(x(k))
and, consequently, V1(x(k)) 6 w̄kV1(x(0)) which yields the
desired results.

Remark 1: Note that the results in propositions 3.1 and
3.4 are independent of the mutation rates α and β. Hence,
these results hold for any α and β in [0, 12 ).

Now we derive system’ solutions upper and lower bounds
and provide the exact solutions in some specific cases.
Comments on the medical implications of the mathematical
results can be found in the Discussion Section.
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C. Lower bound on convergence values of x1 and x3

To obtain estimates of the values to which x1 and x3
converge, consider

V3(x) = x1 + x3 − x2 − x4.

Along any solution x(·) we have V3(x(k+1)) = V3(x(k))+
∆V3(x(k)) where

∆V3 = g1(x) + g3(x)− g2(x)− g4(x)

= P (x)(2− w24)x2x4

> 0.

This guarantees that V3 does not decrease. If x1 and x3 are
the values to which x1 and x3 converge, then

x1 = x3 >
1

2
V3(x0) =

1

2
[x10 + x30 − x20 − x40].

For the above bound to be positive, it must hold

x10 + x30 > x20 + x40,

that is in the initial population distribution the number of
healthy people must be greater or equal to the number
of affected and carrier one. This hypothesis is reasonable
and consistent with the epidemiological observation of the
diseases.

D. Upper bound on convergence values of x1 and x3

To obtain an upper bound on x1 and x3 consider

V4(x) = V3(x) +
(4− 2w24

4− 3w24

)
V2(x)

= x1 + x3 +
( w24

4− 3w24

)
(x2 + x4).

Along any solution x(·) we have V4(x(k+1)) = V4(x(k))+
∆V4(x(k)) where

∆V4 = ∆V3(x) +
(4− 2w24

4− 3w24

)
∆V2(x)

= P (x)(2− w24)x2x4 −(4− 2w24

4− 3w24

)
P (x)[(1− w14)x1x4 + (1− w23)x2x3]−(4− 2w24

4− 3w24

)
P (x)

(
2− 3w24

2

)
x2x4

= −
(4− 2w24

4− 3w24

)
P (x)[(1− w14)x1x4 +

(1− w23)x2x3] (38)
6 0

This implies that V4 does not increase and yields the upper
bounds:

x1 = x3 6
1

2

[
x10 + x30 +

( w24

4− 3w24

)
(x20 + x40)

]

E. A special case

Consider the case in which w13 = w14=w23=1 that
correspond to diseases where the fertility is altered only in
couples formed by affected males and carrier females, that
is only w24 ranges in [0, 1]. In this case from (38) we can
deduce that V4 is constant; hence

x1 = x3 =
1

2

[
x10 + x30 +

( w24

4− 3w24

)
(x20 + x40)

]
,

which is positive for non-zero initial conditions.
Another interesting case is when w13 = 1, w14 in

[0,1] and w23 = w24 = 0. This models the reproduction
scenario for severe X-linked recessive diseases such as
the aforementioned hemophilia A and ectodermal dysplasia
where healthy males and females always contribute to next
generation, while healthy males and carrier women have
a variable reproduction capacity (w14) depending on the
disease gravity. Affected males do not contribute to next
generation, independently from the females health condition
as they rarely reach the reproduction age.

For this combination of reproduction rates the exact solu-
tion of system (3)-(4) is:

x1(k) = A1

∏k
i=1

(
2ix30 +

∑i
j=1 2(i−j)wj

14x40

)
∏k−1

i=1

(
2i−1x30 +

∑i
p=1

(∏i−p−1
j=1 2

)
wp

14x40

)
x2(k) = A2

∏k−1
i=1

(
2ix30 +

∑i
j=1 2i−jwj

14x40

)
∏k−1

i=1

(
2i−1x30 +

∑i
p=1

(∏i−p−1
j=1 2

)
wp

14x40

)
x3(k) = A1

∏k
i=1

(
2ix30 +

∑i
j=1 2(i−j)wj

14x40

)
∏k−1

i=1

(
2i−1x30 +

∑i
p=1

(∏i−p−1
j=1 2

)
wp

14x40

)
x4(k) = A2

∏k−1
i=1

(
2ix30 +

∑i
j=1 2i−jwj

14x40

)
∏k−1

i=1

(
2i−1x30 +

∑i
p=1

(∏i−p−1
j=1 2

)
wp

14x40

)
where

A1 =
x10(x10 + x20 + x30 + x40)

22k(x10 + x20)(x30 + x40)

A2 =
wk

14x10x40(x10 + x20 + x30 + x40)

22k(x10 + x20)(x30 + x40)
.

The demonstration is straightforward and can be easily
obtained substituting the previous solution in system (3)-(4).

IV. SPECIAL CASE: UNITARY FERTILITY FACTORS

In this section we consider a special case of model (3)-(4).
This case is obtained setting all reproduction rates equal to
one (wij ≡ 1), thus modeling non-disabling diseases which
do not affect the fertility of affected/carrier couples.

When wij = 1 for i = 1, 2 and j = 3, 4, the functions fi
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in (4) simplify to

f1(x) = P (x)
[
(1− α)x1x3 + x2x3 +

1

2
x1x4 +

1

2
x2x4

]
(40a)

f2(x) = P (x)
[
αx1x3 +

1

2
x1x4 +

1

2
x2x4

]
(40b)

f3(x) = P (x)
[
(1− β)x1x3 +

1

2
x1x4

]
(40c)

f4(x) = P (x)
[
βx1x3 + x2x3 +

1

2
x1x4 + x2x4

]
.(40d)

It follows from Section III-A that x1(k + 1) + x2(k + 1) =
x1(k) + x2(k) for all k, that is, that the number of males,
equal to the number of females at each generation is constant.
Consider a population of 2N individuals; the following
constraints apply:

x1(k) + x2(k) = N for all k, (41a)
x3(k) + x4(k) = N for all k; (41b)

thus system dynamics can be rewritten using one state
variable of the male population (i.e. x1 or x2) and one
variable of the female population (i.e. x3 or x4); moreover,

P (x) as given (5) simplifies to P =
1

N
.

We normalize the system states by introducing z =
[z1 z2 z3 z4]T where

zi :=
xi
N

for i = 1, . . . , 4

The evolution of z is governed by

z(k + 1) = h(z(k)) (42)

where h = [h1 h2 h3 h4]T with

h1(z) = (1− α)z1z3 + z2z3 +
1

2
z1z4 +

1

2
z2z4(43a)

h2(z) = αz1z3 +
1

2
z1z2 +

1

2
z2z4 (43b)

h3(z) = (1− β) z1z3 +
1

2
z1z4 (43c)

h4(z) = βz1z3 + z2z3 +
1

2
z1z4 + z2z4 . (43d)

Exploiting constraints (41), formulas (43) can be rewritten
as

h2(z) = q2(z2, z4) = −αz2 +

(
1

2
− α

)
z4 + αz2z4 + α

h4(z) = q4(z2, z4)

= (1− β) z2 +

(
1

2
− β

)
z4 −

(
1

2
− β

)
z2z4 + β

h1(z) = 1− q2(z2, z4)

h3(z) = 1− q4(z2, z4)

The stability analysis of system (3)-(40) can be achieved by
studying the stability properties of system (42)-(44).

Proposition 4.1: The set {z|z1+z2 = z3+z4} is invariant
for system z(k + 1) = h(z(k)) and contains a unique
exponentially globally stable equilibrium point.

Proof: The first part of the proposition can be straight-
forwardly derived from the previous discussions on system
properties.

Consider now any two pairs (z2, z4) and (z̄2, z̄4) with
z2, z4, z̄2, z̄4 in [0, 1] and let

z̃2 , z2 − z̄2 , z̃4 , z4 − z̄4

and

q̃2 , q2(z2, z4)−q2(z̄2, z̄4) , q̃4 , q4(z2, z4)−q4(z̄2, z̄4)

Using equation (44) one can easily show that

q̃2 =

(
1

2
− α

)
z̃4 − αz̃2 + α(z2z4 − z̄2z̄4) (45a)

q̃4 =

(
1

2
− β

)
z̃4 + (1− β)z̃2 −(

1

2
− β

)
(z2z4 − z̄2z̄4) . (45b)

The term (z2z4 − z̄2z̄4) can be factorized as z̃2z4 + z̄2z̃4;
substitution in (45) gives

q̃2 = −α(1− z4)z̃2 +

[
1

2
− α(1− z̄2)

]
z̃4

q̃4 =

[
1− β −

(
1

2
− β

)
z4

]
z̃2 +

(
1

2
− β

)
(1− z̄2)z̃4.

Recalling that 0 6 z2 6 1,

|q̃2| 6 α(1− z4)|z̃2|+
(

1

2
− α

)
|z̃4|

6 α|z̃2|+
(

1

2
− α

)
|z̃4|.

Last inequality holds because of z2 and α bounds. Similarly
we have that

|q̃4| 6 (1− β)|z̃2|+
(

1

2
− β

)
|z̃4|

when β < 1
2 . Note that different factorizations of (z2z4 −

z̄2z̄4) would give the same bounds for |q̃2| and |q̃4|. Using
Lemma 7.1 in the appendix one can deduce there exists a
κ < 1 such that

λ|q̃2|+ |q̃4| 6 κ(λ|z̃2|+ |z̃4|) (46)

for λ ∈
(

1− β
1− α

,
1 + 2β

1− 2α

)
and for any α and β in [0, 12 ].

Hence q = (q2, q4) is a contraction in [0, 1] × [0, 1] with
respect to the norm

V5(z2, z4) = λ|z2|+ |z4|.

From this we conclude that q possesses an attractive fixed
point (z̄2, z̄4),that is

q2(z̄2, z̄4) = z̄2, q4(z̄2, z̄4) = z̄4.

It follows from (46) that

V5(z̃2(k), z̃4(k)) ≤ κkV (z̃2(0), z̃4(0))

for all k ≥ 0. This yields the desired result.
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V. DISCUSSION

There are about 1,098 genes on the human X-chromosome.
Most of them code for characteristics other than female
anatomical traits. Many of the non-sex determining X-
linked genes are responsible for abnormal conditions such
as hemophilia A, Duchenne muscular dystrophy, fragile-
X syndrome, some high blood pressure dysfunctionalities,
congenital night blindness, G6PD deficiency, and the most
common human genetic disorder, red-green color blindness.
X-linked genes are also responsible for a common form of
baldness referred to as “male pattern baldness”.
Some of these diseases are severely disabling and affected
people usually do not reach the reproduction age. Model
(3)–(4) reproduces the severity of the X-linked recessive
diseases through an appropriate choice of reproduction rates
wij . Disabling diseases such as hemophilia A and Duchenne
muscular dystrophy can be modeled by assigning small
values or zero to reproduction rates w23 and w24.
Less serious conditions (such as the red and green color
blindness or male pattern baldness) do not cause premature
death of affected males and these males usually reach re-
production age. System (3)–(4) could also be exploited to
model these diseases by setting all wij to the same value.
However in these cases the number of affected women in
the population should also be considered; in fact affected
daughters can be born from affected fathers and carrier or
affected mothers; they can reach the reproduction age and
contribute to the next generation. Model (3)–(4) does not
consider affected woman thus it is more suitable to model the
epidemiology of severe X-linked diseases. The development
of a model with a five vector state comprising the class of
affected woman is the object of current research.

We present some numerical results obtained simulating the
distribution of hemophilia A disease, a hereditary bleeding
disorder caused by a lack of the blood clotting factor VIII,
a protein encoded by gene F8 on the X-chromosome. It is
largely an inherited disorder; affected males show a reduced
reproduction capacity related to the severity of the disease
symptoms; carrier females do not usually show any sign
of the disease ([15]). The spontaneous mutation rate of the
disease is very small; it has been approximately evaluated to
be 2.67 · 10−5 for both males and females ([16]).

Relying on clinical observations we assigned a reproduc-
tion rate of w13 = w14 = 1 to couples formed by a healthy
male and a carrier woman, while we choose w23 = w24 =
0.62. The following initial values have been assigned

x(0) = [29323162 3275 29320437 6000]T

The initial distribution of males and females (i.e. x1(0) and
x3(0)) has been chosen according to the Italian population
(58652874 in 2008 according to [17]). According to the
census in [18], 3275 males were affected by hemophilia A.
Simulation results are reported in Figure 3; note that, accord-
ing to the theoretical results we demonstrated (Proposition
3.3), the simulation depicts the extinction of the population;
particularly this should happen in a very long period (105

generations).

(a) Trend of x1 and x3.

(b) Trend of x2 and x4.

Fig. 3. An example of state evolutions for hemophilia A.

VI. CONCLUSIONS

We have presented a discrete-time nonlinear model for
X-linked recessive diseases aiming at describing the spread
of such diseases in a population; the model takes into
account the role of sporadic or de novo mutations on the
inheritance pattern and distinct reproduction rates according
to the health conditions of breeding couples. We analyzed
system properties and performed stability analysis of the
equilibrium point using Lyapunov functions. Future studies
will also need to take into account carrier females who could
contribute to disease spread in less severe diseases, as well
as the effects on the population of control actions such as
prenatal diagnosis.
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VII. APPENDIX

Lemma 7.1: Consider two real-valued functions g1 and g2
of two real variables y1 and y2, and suppose that there are
scalars aij > 0, i, j = 1, 2 with

aii < 1 and a12a21 < (1− a11)(1− a22)
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such that for any (y1, y2), (ȳ1, ȳ2),

|g̃1| 6 a11|ỹ1|+ a12|ỹ2| (47a)
|g̃2| 6 a21|ỹ1|+ a22|ỹ2|. (47b)

where

ỹ1 , y1 − ȳ1 ỹ2 , y2 − ȳ2
g̃1 , g1(y1, y2)− g1(ȳ1, ȳ2) g̃2 , g2(y1, y2)− g2(ȳ1, ȳ2)

Then for any

λ ∈
(

a21
1− a11

,
1− a22
a12

)
there exists a κ < 1 such that

λ|g̃1|+ |g̃2| 6 κ(λ|ỹ1|+ |ỹ2|).
Proof: If λ > 0, combining inequalities (47) yields:

λ|g̃1|+ |g̃2| 6
(
a11 +

a21
λ

)
λ|ỹ1|+ (λa12 + a22)|ỹ2|

Define κ = max(κ1, κ2) with κ1 = a11 +
a21
λ

and κ2 =

λa12+a22; clearly κ > 0 and the following inequality holds:

λ|g̃1|+ |g̃2| 6 κ(λ|ỹ1|+ |ỹ2|). (48)

It is straightforward to verify that if

a12a21 < (1−a11)(1−a22) and
a21

1− a11
< λ <

1− a22
a12

then κ1, κ2 < 1 ; hence κ < 1 and the desired result follows.

Notice that the function g = [g1 g2]T satisfying the hypothe-
ses of the above lemma is a contraction under a suitable
norm.
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