
 

 

  
Abstract— Global outbreaks of human influenza occur from 

influenza A viruses with novel Hemagglutinin (HA) molecules to 
which  humans  have  no  immunity.  So  accurate  detection  of  
influenza  viral  origin  is  of  particular  importance to improve  
influenza  surveillance  and  vaccine development. Here, a total of 
1500 and 2349 protein sequences for Hemagglutinin (HA) and 
Neuraminidase (NA) respectively were selected to be involved in our 
study. We used two techniques to transfer the protein sequences into 
feature vectors firstly, the feature vector constructed from the 
composition of amino acids (AAC) and secondly the feature vector 
constructed from the Composition, Transition, Distribution (CTD). 
Both used separately for the training of machine learning algorithms. 
Host of origin classification models constructed using KNN and 
random forest based on AAC and CTD feature vectors. The results 
guarantee that the classification performance using AAC feature 
vector achieves slightly better performance than using CDT feature 
vector. Furthermore host classification using HA protein segment 
achieved higher accuracy results than NA. The highest host 
classification model was HA-human using random forest with 
accuracy 96.6% and 95.3% for AAC and CDT respectively. 
 
Keywords— Influenza A virus, machine learning, host 
classification, KNN,  random forest, composition of amino acids, 
Composition, Transition, Distribution (CTD). 

I. INTRODUCTION 
HIS Influenza  A  viruses  belong  to  the  
Orthomyxoviridae  family  of negative  sense,  single-
stranded,  segmented  RNA  viruses.  The RNA core  

consists  of  8  gene  segments.  Immunologically, the most 
significant  surface  proteins  include  Hemagglutinin  HA  (16 
subtypes)  and  Neuraminidase  NA  (9  subtypes).  Influenza  
A subtypes are usually identified by their HA and NA proteins 
[1]. The HA and NA proteins are  integral  membrane  
proteins and  consider  as  the  major  surface  antigen  of  the  
influenza  virus virion. The Hemagglutinin (HA) of influenza 
A viruses is a major surface glycoprotein that is responsible 
for attachment of the virus to the cell surface of host receptors.  
The  role  of  NA  is  to  free  virus  particles  from  host  cell 
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receptors,  to  allow  progeny  virions  to  escape  from  the  
cell  in which they arose, and so facilitate virus spread [2, 3].  
All known subtypes of influenza A viruses are found among 
avian species that serve as main reservoirs for these agents [4]. 
In general, an  influenza  virus  infects  only  a  single  species;  
however,  whole  viruses  may  occasionally  be transmitted 
from one species to another, and genetic reassortment between 
viruses from two different hosts can produce  a  new  virus  
capable  of  infecting  a  third  host.  Avian  influenza  viruses  
are  not  readily  introduced  into humans [5], possibly because  
humans do not possess the a(2,3)-sialyllactose (NeuAc-
2,3Gal) receptors required for  attachment  of  the  viruses  to  
epithelial  cells.  However,  individual  viral  genes  can  be  
transmitted  between humans and avian species, as 
demonstrated by avian  human  reassortant  viruses that caused 
the 1957 and 1968 influenza  pandemics  [6].  This finding  
suggested  that  an  middle  host  may  be  needed  for  genetic 
reassortment of human and avian viruses. Pigs are considered 
a logical candidate for this role because they can be infected 
by either avian or human viruses and because they possess 
both NeuAc-2,3Gal and NeuAc-2,6Gal receptors. In addition, 
there is good evidence that pigs are more frequently involved   
in interspecies transmission of influenza A viruses than are 
other animals [7, 8]. 

 
Previous studies have also defined host specificity markers. 
For example, [9] predicted positions in the genome associated 
with human host specificity. However, the host markers that 
these workers identified in the surface glycoproteins HA and 
NA and in the polymerase protein PB1, as well as the alternate 
transcripts NS2, M2, and PB1-F2, were poor-quality host 
discriminators.  In a previous study, Host-specific  signatures 
were identified using class associative rule mining to identify  
and confirm  significant  variations  between  different 
influenza hosts with lower accuracy[10]. Another study [11] 
used random forest for the prediction of host tropism from 
both avian and human samples only. Another previous 
computational prediction model in [12] could successfully 
classify avian and human strains only using support vector 
machine (SVM). They had another drawback that, is the use of 
only inner proteins of influenza. This method ignores the 
importance of HA and NA in determining host tropism. 
Because of the important functional role of HA and NA in 
cell-receptor attachment, entry, and infectivity, our focus in 
this study was specifically on the host markers that were found 
only in HA and NA. 

Classification of Host Origin in Influenza A 
virus by Transferring Protein Sequences into 

Numerical Feature Vectors  
FAYROZ F.SHERIF*1, NOURHAN ZAYED1, MAHMOUD FAKHR1 

T 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017 

ISSN: 1998-4510 61

mailto:Fayroz_Farouk@eri.sci.eg


 

 

The aim of the present study was to establish accurate host of 
origin classifiers that are capable of indicating signatures in 
human, avian, and swine influenza viral genomes for HA and 
NA proteins, using two different feature vectors; Amino Acid 
Composition (AAC) and Composition/Transition / 
Distribution (CTD). KNN and Random forest classification 
models were used to classify viral sequences by host species.  
The paper is organized as follows. Section 2 describes the 
dataset used in this study, how to transfer the protein 
sequences into numerical feature vectors, describe in details 
the AAC and CTD methods and introduces KNN and random 
forest learning algorithms. Section 3 combines the results of 
HA and NA host models and compares them. Finally, Section 
4 presents our conclusions. 

II. MATERIALS AND METHODS 
     All protein sequences that isolated from human, avian and 
swine  hosts were  downloaded  from  the  NCBI's  Influenza  
Virus Resources (http://www.ncbi.nlm.nih.gov/genomes/ FLU 
/FLU.html). The downloaded sequences were forced  to  be  
non-redundant  and  complete isolation of HA and NA 
segments. A total of 1500 and 2345 HA and NA protein 
sequences respectively were selected to be involved in our 
study. 70% of the data is used for training and the remaining 
part is used for testing. We used amino acid sequences (20 
letter alphabet) because they are known to give more reliable 
results than nucleotide sequences when the sequence 
divergence is high.  
    To compare the genomic patterns of avian, swine and 
human influenza viruses with each other, we downloaded 
protein sequences of HA and NA from NCBI's Influenza 
Virus Resources, isolated from various host species. The 
detailed count of sequences used in this study for each host is 
indicated in table 1.  The sequences were  grouped  according  
to  host  type,  and  cover  all  the  viral  subtypes  found  in  
that  host. Downloaded FASTA format sequences were parsed 
into each category such as accession number, subtype, gene, 
host, occurring year, and other parameters. 
 
 

A. Transforming protein sequence into feature vectors  
A protein or peptide sequence with N amino acid residues 

could be generally represented as (R1, R2, . . . , Rn), where Ri 
represents the residue at the i-th position in the sequence. The 
labels i and j are used to index amino acid position in a 
sequence, and r, s, t are used to represent the amino acid type. 
Amino acids composition and amino acid physicochemical 
properties (Composition / Transition / Distribution) were 
extracted from protein sequences as numerical feature vectors 
to train the machine learning algorithms [13]. The following 
subsections present the details of the two methods. 

 
 
 

Table 1 The count of sequences used for each host of the HA and NA 
 

Protein Segment Human Avian Swine Total 

HA 500 500 500 1500 

NA 1213 757 379 2349 

 

1. Amino Acid Composition (AAC) 
Composition of amino acids were extracted from protein 
sequences as feature vectors for the training of machine 
learning algorithms. These feature vectors represent the 
composition of each individual amino acid in the protein 
sequence. The Amino Acid Composition (AAC) is the fraction 
of each amino acid type within a protein. Composition of each 
of the 20 standard amino acids was first computed, yielding 20 
feature vectors. This was performed by calculating the 
frequency of each amino acid along the length of the entire 
protein sequence.  
The fractions of all 20 natural amino acids are calculated as: 

                       
   𝑓𝑓(𝑟𝑟) =  𝑁𝑁𝑟𝑟

𝑁𝑁
             r = 1, 2, . . . , 20. 

 
where Nr is the number of the amino acid type r and N is the 
length of the sequence. 
 

2. Composition/ Transition/ Distribution (CTD) 
 

   We generate another feature vectors based on the overall 
Composition, Transition and Distribution (CTD) of amino 
acid into three groups, for each attribute of these seven 
attributes: hydrophobicity, polarizability, normalized van der 
Waals volume, secondary structure, polarizability, charge, and 
solvent accessibility of the protein sequences. The amino acids 
are divided in three classes according to its attribute and each 
amino acid is encoded by one of the indices 1, 2, 3 according 
to which class it belonged. The corresponding division is 
shown in the table 2. The detailed computational procedures 
are illustrated as follows. 
 
Composition (C) 
Composition is the total percent for each encoded class in the 
sequence. It can be defined as the number of amino acids of a 
specific property divided by the whole number of amino acids. 
Number of vectors = 21 (3 groups * 7 attributes) 
 

                        𝐶𝐶𝑟𝑟 =  𝑛𝑛𝑟𝑟
𝑛𝑛

    𝑟𝑟 = 1, 2, 3 
 
 Transition (T) 
Transition descriptor characterizes the percent frequency with 
which amino acids of a specific property is followed by amino 
acids of a different property. Transition descriptor can be 
calculated as 
                                      𝑇𝑇𝑟𝑟𝑟𝑟 =  𝑛𝑛𝑟𝑟𝑟𝑟+𝑛𝑛𝑟𝑟𝑟𝑟

𝑁𝑁−1
       

𝑟𝑟𝑟𝑟 =′ 12′ , ′13′ , ′23′ 
 
Table 2 The amino acid attributes and division of the amino acids to 

groups 
 

 Group 1 Group 2 Group 3 
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Attribute 
 

Hydrophobicity 
Polar 

{Q, E, R, K, 
D, N} 

Neutral 
{G, P, H, A, S, 

T,Y} 

Hydrophobic 
{C, V, F, L, I, 

M,W} 

Polarizability 
(0-1.08) 

{S, D, G, A, 
T} 

(0.128-0.186) 
{C, Q, I, P, N, 

V, E L} 

(0.219-0.409) 
{Y, M, K, 
R,H, F,W} 

Normalized van 
der Waals 

volume 

(0-2.78) 
{S, C, G, 

A,T, P, D} 

(2.95-4.0) 
{E, Q, N, V, I, 

L} 

(2.95-4.0) 
{K, F, M, H, 

R, Y, W} 

Polarity 
(4.9-6.2) 

{W, C, L, I, 
F,M, V, Y} 

(8.0-9.2) 
{T, G, P, A, S} 

(10.4-13.0) 
{K, N, H, Q, 

R,E, D} 

Solvent 
accessibility 

Buried 
{A, L, F, C, 
G, I, V, W } 

Exposed 
{R, K, Q, E, N, 

D } 

Intermediate 
{M, S, P, T, 

H, Y } 

Secondary 
structure 

Hel
ix 

{E, A, L, M, 
Q, K, R, H} 

Strand 
{V, I, Y, C, W, 

F, T } 

Coil 
{G, N, P, S, 

D } 

Charge Positive 
{K, R} 

Neutral 
{A, N, C, Q, G, 
H, I, L, M, F, 
P, S, T, W, Y, 

V} 

Negative 
{D, E} 

 
 

where nrs and nsr are the numbers of dipeptide encoded as ’rs’ 
and ‘sr’ respectively in the sequence.  N is the length of the 
sequence. Number of vectors = 21 (3 groups * 7 attributes) 
 
Distribution (D) 
     The distribution descriptor describes the distribution of 
each attribute in the sequence. It measures the chain length 
within which the first, 25, 50, 75 and 100% of the amino acids 
of a specific property is located respectively.  Number of 
vectors = 105 (3 groups * 7 attributes * 5 distribution 
positions). The complete parameter vector for these three 
descriptors contains 21(C)+21(T)+105(D)=147 scalar 
components. This means that each protein sequence was 
represented by 147 biochemical and physicochemical features. 
  
 

B. Training Machine Learning classifiers 
    There is imperfect classifications and there is no perfect 
classifier for all dataset. It is helpful to compare the 
performance of various classifiers to determine which one 
works better on a given data. The performance of the classifier 
is often evaluated using test set to predict the class labels of 
unknown samples. This section reviews some of the classifiers 
commonly used for building host prediction models. Two 
popular classification techniques including K-nearest 
neighbors (KNN) and random forest (RF) were applied to 
identify the model that best fit the dataset and correctly predict 
the host of test set.  
 

1. K-nearest neighbor (KNN) 
KNN is a simple method for classifying objects based on 

closest training points in the feature space. KNN assumes that 
objects, which are close together, are probable to have the 
same classification. The chance that a point x belongs to a 
class can be estimated by the majority voting for the training 
data sets.  in a specified neighborhood of x that belong to that 
class. The Euclidean distance that calculate the distances from 
x to all points in the training set is the most common distance 
metric used in K-nearest neighbor [14]. 
 

2. Random Forest (RF) 
   RF is a classification method based on a collection of 
decision trees CART classifiers. RF uses bootstrap samples 
from the dataset to build a set of trees. To classify a new 
sample, a majority vote method is utilized to make a decision 
about class label. RF has better performance over the single 
(CART) [15, 16]. 
 

C. Model Evaluations  
    Performance of prediction models were evaluated from a 
number of measures including prediction accuracy, sensitivity, 
specificity. Prediction accuracy measures of the overall 
accuracy of the classifier by calculating the number of 
correctly classified human, avian or swine samples over the 
total number of samples in the dataset. Sensitivity and 
specificity summarize the accuracies of positive and negative 
predictions respectively where sensitivity calculates the ratio 
of samples correctly predicted among all positive samples in 
the dataset and specificity describes the ratio of samples 
correctly predicted among all negative samples in the dataset. 
 
 

III. RESULTS AND DISCUSSION  
    Our results confirm that the applied machine learning 
algorithms; KNN and random forest can successfully be used 
for classifying all  Influenza  A  strains  through  identifying 
Hemaglutinin  (HA)  and  Neuraminidase  (NA)  segments 
with  high  accuracy. 
Host classification of any viral sequence as human, avian or 
swine, varied according to HA and NA segments. In general 
host classification using HA achieved higher accuracy than 
NA. Figures 1, and 2 compare the performance of the two 
classifiers; KNN and random forest in terms of accuracy, 
sensitivity and specificity in HA and NA models respectively 
using amino acid composition (AAC). However Figures 3, and 
4 compare the performance of the same classifiers using 
Composition ,Transition, Distribution (CTD) in HA and NA 
models respectively. 
The classification models constructed from Amino Acid 
Composition (AAC) feature vectors and Composition, 
Transition and Distribution (CTD), all achieved high 
prediction performance that indicate clear difference in 
human, avian and swine proteins. 
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Figure 1. HA classification results using AAC 

 

   
 

Figure 2. NA classification results using AAC 

 

 

   
 

 
 

Figure 3. HA classification results using CDT 
 

 
  

 
Figure 4. NA classification results using CDT 

 

 
In general, the classifications results using AAC exceed the 
CDT method with small differences. By comparing the results 
of AAC method we found that, HA-human model  achieved  
the  highest  accuracy  in  host classification (96.6%) over HA-
avian and HA-swine (89.2% and 95.7%) respectively using 
random forest method. And NA-avian model achieved the 
highest accuracy (92.7%) in host classification over NA-
human and NA-swine (91.1% and 92.3%) respectively using 
KNN method as shown in table 3.  
For CTD method we found that, HA-human model  also 
achieved  a  higher  accuracy  in host classification (95.3%) 
over HA-avian and HA-swine (89.7% and 95.1%) resistively 
using random forest method. And NA-avian model also 
achieved a higher accuracy (92.8%) in host classification over 
NA-human and NA-swine (89.6% and 79%) respectively 
using KNN method as shown in table 4. These results seem 
sensible so that cross species infections  are  usually  taken  
place  in  these  segments of different hosts. This study 
revealed that AAC achieved higher performance than CTD 
although it had little feature vectors (only 20) compared with 
CTD (147 features). So it is recommended for computational 
time efficiency and simplicity. The power of this influenza 
host prediction method lies not in its almost high prediction 
accuracy, but rather when it makes a mistake in classifying 
human, avian or swine proteins. The rate of misclassified hosts 
that range from (0.9 % to 6.4%) in HA and (1% to 11.9 %) in 
NA. 
 
Our results achieved a higher accuracy than the accuracy 
reported in a related work used the protein sequences and 
nucleotide sequences in their research without transformation. 
The research in [7] yielded accuracies ranging from 50 % to 
95% for host classification, depending on HA subtype. 
Decision tree (DT) in [9] gave higher host classification 
accuracies, ranging from 91.2 % to 94.6 %, as opposed to 
HMMs. However this was done for some HA subtypes only as 
(H1, H2, H3, H5 and H9). 
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Table 3 Comparative performance of HA and NA using AAC 

Hemaglutinin  (HA) 

 Human Avian Swine 
KNN 93.0 % 93.1 % 96.1% 

Random forest 96.6 % 89.2 % 95.7 % 

Neuraminidase  (NA) 

 Human Avian Swine 
KNN 91.1 % 92.7 % 82.3 % 

Random forest 92.2 % 88.3 % 92.4 % 

 
 
 

Table 4 Comparative performance of HA and NA using 
CTD. 

Hemaglutinin  (HA) 

 Human Avian Swine 
KNN 93.4 % 92.7 % 95.1 % 

Random forest 95.3 % 89.7 % 95.1 % 

Neuraminidase  (NA) 

 Human Avian Swine 
KNN 89.6% 92.8% 79% 

Random forest 92.3% 88% 86.9% 

 
 

IV. CONCLUSION 

 
Accurate  detection  of  influenza  viral  origin  can 
significantly  improve  influenza  surveillance  and  vaccine 
development. This study provides prediction models for HA 
and NA influenza proteins determining host of origin 
classification for virus strains. Here we introduced many 
varieties in our study, first through using Hemaglutinin  (HA) 
and Neuraminidase (NA) segments, second by using two 
feature extraction methods; Amino Acid Composition (AAC) 
and Composition/Transition / Distribution (CTD) and finally 
by utilizing two different machine learning techniques; 
random forest and KNN. These varieties confirm that we can 
successfully classify all  Influenza  host strains as human, 
avian or swine using AAC or CTD with  high  accuracy. In 
general host classification using HA achieved higher  accuracy 
than NA. The highest host-origin model was HA-human 
model using random forest with accuracy 96.6%. 
Interestingly, This study revealed that the simple AAC 
achieved higher performance than CTD with HA and NA 
proteins despite its little parameters, consequently it is 
preferable to use it in modeling the evolution of the influenza 
A through different hosts and in understanding its specificity. 
We hope that our work will facilitate reliable detection of 

influenza viral origin to improve influenza surveillance and 
vaccine development. 
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