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Abstract—This paper demonstrates a computer-aided diag-
nosis (CAD) system for lung cancer classification of CT scans
with unmarked nodules, a dataset from the Kaggle Data Science
Bowl 2017. Thresholding was used as an initial segmentation
approach to segment out lung tissue from the rest of the CT
scan. Thresholding produced the next best lung segmentation.
The initial approach was to directly feed the segmented CT
scans into 3D CNNs for classification, but this proved to be
inadequate. Instead, a modified U-Net trained on LUNA16 data
(CT scans with labeled nodules) was used to first detect nodule
candidates in the Kaggle CT scans. The U-Net nodule detection
produced many false positives, so regions of CTs with segmented
lungs where the most likely nodule candidates were located as
determined by the U-Net output were fed into 3D Convolutional
Neural Networks (CNNs) to ultimately classify the CT scan as
positive or negative for lung cancer. The 3D CNNs produced
a test set Accuracy of 86.6%. The performance of our CAD
system outperforms the current CAD systems in literature which
have several training and testing phases that each requires
a lot of labeled data, while our CAD system has only three
major phases (segmentation, nodule candidate detection, and
malignancy classification), allowing more efficient training and
detection and more generalizability to other cancers.

Keywords—Lung Cancer; Computed Tomography; Deep Learn-
ing; Convolutional Neural Networks; Segmentation.

I. INTRODUCTION

Lung cancer is one of the most common cancers, ac-
counting for over 225,000 cases, 150,000 deaths, and $12
billion in health care costs yearly in the U.S. [1]. It is also
one of the deadliest cancers; overall, only 17% of people in
the U.S. diagnosed with lung cancer survive five years after
the diagnosis, and the survival rate is lower in developing
countries. The stage of a cancer refers to how extensively it
has metastasized. Stages 1 and 2 refer to cancers localized to
the lungs and latter stages refer to cancers that have spread
to other organs. Current diagnostic methods include biopsies
and imaging, such as CT scans. Early detection of lung cancer
(detection during the earlier stages) significantly improves the
chances for survival, but it is also more difficult to detect early
stages of lung cancer as there are fewer symptoms [1].

Our task is a binary classification problem to detect the
presence of lung cancer in patient CT scans of lungs with and
without early stage lung cancer. We aim to use methods from
computer vision and deep learning, particularly 2D and 3D
convolutional neural networks, to build an accurate classifier.
An accurate lung cancer classifier could speed up and reduce
costs of lung cancer screening, allowing for more widespread

early detection and improved survival. The goal is to construct
a computer-aided diagnosis (CAD) system that takes as input
patient chest CT scans and outputs whether or not the patient
has lung cancer [2].

Though this task seems straightforward, it is actually a
needle in the haystack problem. In order to determine whether
or not a patient has early-stage cancer, the CAD system would
have to detect the presence of a tiny nodule (< 10 mm in
diameter for early stage cancers) from a large 3D lung CT
scan (typically around 200 mm × 400 mm × 400 mm). An
example of an early stage lung cancer nodule shown in within
a 2D slice of a CT scan is given in Figure 1. Furthermore, a
CT scan is filled with noise from surrounding tissues, bone,
air, so for the CAD systems search to be efficient, this noise
would first have to be preprocessed. Hence our classification
pipeline is image preprocessing, nodule candidates detection,
malignancy classification.

In this paper, We apply an extensive preprocessing tech-
niques to get the accurate nodules in order to enhance the
accuracy of detection of lung cancer. Moreover, we perform an
end-to-end training of CNN from scratch in order to realize the
full potential of the neural network i.e. to learn discriminative
features. Extensive experimental evaluations are performed on
a dataset comprising lung nodules from more than 1390 low
dose CT scans.

Figure 1: 2D CT scan slice containing a small (5mm) early
stage lung cancer nodule

The paper’s arrangement is as follows: Related work is
summarized briefly in section II. Dataset for this paper is
described in section III. The methods for segmentation are
presented in section IV. The nodule segmentation is introduced
in section V based on U-Net architecture. Section VI presents
3D Convolutional Neural Network for nodule classification and
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patient classification. Our discussion and results are described
in details in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Recently, deep artificial neural networks have been ap-
plied in many applications in pattern recognition and machine
learning, especially, Convolutional neural networks (CNNs)
which is one class of models [3]. Another approach of CNNs
was applied on ImageNet Classification in 2012 is called an
ensemble CNNs which outperformed the best results which
were popular in the computer vision community [4]. There
has also been popular latest research in the area of medical
imaging using deep learning with promising results.

Suk et al. [5] suggested a new latent and shared feature
representation of neuroimaging data of brain using Deep
Boltzmann Machine (DBM) for AD/MCI diagnosis. Wu et al.
[6] developed deep feature learning for deformable registration
of brain MR images to improve image registration by using
deep features. Xu et al. [7] presented the effectiveness of
using deep neural networks (DNNs) for feature extraction in
medical image analysis as a supervised approach. Kumar et
al. [8] proposed a CAD system which uses deep features
extracted from an autoencoder to classify lung nodules as
either malignant or benign on LIDC database.

Convolutional neural networks have achieved better than
Deep Belief Networks in current studies on benchmark com-
puter vision datasets. The CNNs have attracted considerable
interest in machine learning since they have strong representa-
tion ability in learning useful features from input data in recent
years.

III. DATA

Our primary dataset is the patient lung CT scan dataset
from Kaggles Data Science Bowl (DSB) 2017 [9]. The dataset
contains labeled data for 1397 patients, which we divide into
training set of size 978, and test set of size 419. For each
patient, the data consists of CT scan data and a label (0 for
no cancer, 1 for cancer). Note that the Kaggle dataset does
not have labeled nodules. For each patient, the CT scan data
consists of a variable number of images (typically around 100-
400, each image is an axial slice) of 512 × 512 pixels. The
slices are provided in DICOM format. Around 70% of the
provided labels in the Kaggle dataset are 0, so we used a
weighted loss function in our malignancy classifier to address
this imbalance.

Because the Kaggle dataset alone proved to be inadequate
to accurately classify the validation set, we also used the
patient lung CT scan dataset with labeled nodules from the
LUng Nodule Analysis 2016 (LUNA16) Challenge [10] to
train a U-Net for lung nodule detection. The LUNA16 dataset
contains labeled data for 888 patients, which we divided into
a training set of size 710 and a validation set of size 178. For
each patient, the data consists of CT scan data and a nodule
label (list of nodule center coordinates and diameter). For each
patient, the CT scan data consists of a variable number of
images (typically around 100-400, each image is an axial slice)
of 512 × 512 pixels.

LUNA16 data was used to train a U-Net for nodule
detection, one of the phases in our classification pipeline. The

problem is to accurately predict a patient’s label (’cancer’ or
’no cancer’) based on the patient’s Kaggle lung CT scan. We
will use accuracy, sensitivity, specificity, and AUC of the ROC
to evaluate our CAD system’s performance on the Kaggle test
set.

IV. METHODS

Typical CAD systems for lung cancer have the following
pipeline: image preprocessing, detection of cancerous nodule
candidates, nodule candidate false positive reduction, malig-
nancy prediction for each nodule candidate, and malignancy
prediction for overall CT scan [11]. These pipelines have
many phases, each of which is computationally expensive and
requires well-labeled data during training. For example, the
false positive reduction phase requires a dataset of labeled
true and false nodule candidates, and the nodule malignancy
prediction phase requires a dataset with nodules labeled with
malignancy.

True/False labels for nodule candidates and malignancy
labels for nodules are sparse for lung cancer, and may be
nonexistent for some other cancers, so CAD systems that rely
on such data would not generalize to other cancers. In order to
achieve greater computational efficiency and generalizability to
other cancers, our CAD system has shorter pipeline and only
requires the following data during training: a dataset of CT
scans with true nodules labeled, and a dataset of CT scans with
an overall malignancy label. State-of-the-art CAD systems that
predict malignancy from CT scans achieve AUC of up to 0.83
[12]. However, as mentioned above, these systems take as input
various labeled data that we do not use. We aim for our system
to reach close to this performance.

We preprocess the 3D CT scans using segmentation,
normalization, downsampling, and zero-centering. Our initial
approach was to simply input the preprocessed 3D CT scans
into 3D CNNs, but the results were poor. So we needed
additional preprocessing to input only regions of interests into
the 3D CNNs. To identify regions of interest, we train a U-Net
for nodule candidate detection. We then input regions around
nodule candidates detected by the U-net into 3D CNNs to
ultimately classify the CT scans as positive or negative for
lung cancer. The overall architecture is shown in Figure 2, all
details of layers will be described in the next sections.

A. Proprocessing and Segmentation

For each patient, we first convert the pixel values in each
image to Hounsfield units (HU), a measurement of radioden-
sity, and we stack 2D slices into a single 3D image. Because
tumors form on lung tissue, we use segmentation to mask out
the bone, outside air, and other substances that would make
our data noisy, and leave only lung tissue information for the
classifier. A number of segmentation approaches were tried,
including thresholding, clustering (Kmeans and Meanshift),
and Watershed. K-means and Meanshift allow very little super-
vision and did not produce good qualitative results. Watershed
produced the best qualitative results, but took too long to run
to use by the deadline. Ultimately, thresholding was used in
our pipeline. Thresholding and Watershed segmentation are
described below.
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Figure 2: 3D Convolutional Neural Networks Architecture

After segmentation, we normalize the 3D image by apply-
ing the linear scaling to squeezed all pixels of the original
unsegmented image to values between 0 and 1. Then we use
spline interpolation to downsample each 3D image by a scale
of 0.5 in each of the three dimensions. Finally, we zero-center
the data be subtracting the mean of all the images from the
training set.

1) Thresholding: Typical radiodensities of various parts of
a CT scan are shown in Table 1. Air is typically around -1000
HU, lung tissue is typically around -500, water, blood, and
other tissues are around 0 HU, and bone is typically around
700 HU, so we mask out pixels that are close to -1000 or
above -320 to leave lung tissue as the only segment. The
distribution of pixel Hounsfield units at various axial slices
for a sample patient are shown in Figure 3. Pixels thresholded
at 400 HU are shown in Figure 3a, and the mask is shown
in Figure 3b However, to account for the possibility that
some cancerous growth could occur within the bronchioles (air
pathways) inside the lung, which are shown in Figure 4c, we
choose to include this air to create the finalized mask as shown
in Figure 4d.

Table I: Typical radiodensities in HU of various substances in
a CT scan

Substance Radiodensity (HU)
Air -1000

Lung tissue -500
Water and Blood 0

Bone 700

2) Watershed: The segmentation obtained from threshold-
ing has a lot of noise- many voxels that were part of lung tissue,
especially voxels at the edge of the lung, tended to fall outside
the range of lung tissue radiodensity due to CT scan noise. This
means that our classifier will not be able to correctly classify
images in which cancerous nodules are located at the edge
of the lung. To filter noise and include voxels from the edges,
we use Marker-driven watershed segmentation, as described in
Al-Tarawneh et al. [13]. An original 2D CT slice of a sample
patient is given in Figure 5a. The resulting 2D slice of the lung
segmentation mask created by thresholding is shown in Figure
5b, and the resulting 2D slice of the lung segmentation mask
created by Watershed is shown in Figure 5d. Qualitatively,
this produces a much better segmentation than thresholding.
Missing voxels (black dots in Figure 5b) are largely reincluded.
However, this is much less efficient than basic thresholding,

(a) Histograms of pixel values in HU for sample patients
CT scan at various slices.

(b) Corresponding 2D axial slices

Figure 3: 4a Histogram of HU values at 4b corresponding axial
slices for sample patient 3D image at various axial

so due to time limitations, we were unable to preprocess all
CT scans usingWatershed, so we used thresholding.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017 

ISSN: 1998-4510 68



(a) (b)

(c) (d)

Figure 4: (4a) Sample patient 3D image with pixels values
greater than 400 HU reveals the bone segment, (4b) Sample
patient bronchioles within lung, (4c) Sample patient initial
mask with no air, and (4d) Sample patient final mask in which
bronchioles are included

V. U-NET FOR NODULE DETECTION

We initially tried directly inputting the entire segmented
lungs into malignancy classifiers, but the results were poor.
It was likely the case that the entire image was too large
a search space. Thus we need a way of inputting smaller
regions of interest instead of the entire segmented 3D image.
Our way of doing this is selecting small boxes containing
top cancerous nodule candidates. To find these top nodule
candidates, we train a modified version of the U-Net as
described in Ronneberger et al. on LUNA16 data [14]. U-Net
is a 2D CNN architecture that is popular for biomedical image
segmentation. We designed a stripped-down version of the U-
Net to limit memory expense. A visualization of our U-Net
architecture is included in Figure 6 and is described in detail
in Table II. During training, our modified U-Net takes as input
256 × 256 2D CT slices, and labels are provided (256 × 256
mask where nodule pixels are 1, rest are 0).

The model is trained to output images of shape 256 ×
256 were each pixels of the output has a value between 0
and 1 indicating the probability the pixel belongs to a nodule.
This is done by taking the slice corresponding to label one
of the softmax of the final U-Net layer. Corresponding U-Net
inputs, labels, and predictions on a patient from the LUNA16
validation set is shown in Figures 7a, 7b, and 7c respectively.
most nodules are much smaller A weighted softmax cross-
entropy loss calculated for each pixel, as a label of 0 is far
more common in the mask than a label of 1. The trained U-
Net is then applied to the segmented Kaggle CT scan slices to

(a) (b)

(c) (d)

Figure 5: (5a) Original 2D slice of sample patient, (5b) Lung
segmentation mask by thresholding of sample patient, (5c)
Final watershed segmentation mask of sample patient, and (5d)
Final watershed lung segmentation of sample patient

Figure 6: Modified U-Net architecture

generate nodule candidates.

VI. MALIGNANCY 3D CNN CLASSIFIERS

Once we trained the U-Net on the LUNA16 data, we ran
it on 2D slices of Kaggle data and stacked the 2D slices back
to generate nodule candidates 1. Ideally the output of U-Net
would give us the exact locations of all the nodules, and we
would be able to say images with nodules as detected by U-Net
are positive for lung cancer, and images without any nodules
detected by U-Net are negative for lung cancer. However, as
shown in Figure 7c, U-Net produces a strong signal for the
actual nodule, but also produces a lot of false positives, so we
need an additional classifier that determines the malignancy.

1Preprocessing and reading of LUNA16 data code based on
https://www.kaggle.com/arnavkj95/ candidate-generation-and-luna16-
preprocessing
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(a) (b) (c)

Figure 7: (7a) U-Net sample input from LUNA16 validation
set. Note that the above image has the largest nodule from
the LUNA16 validation set, which we chose for clarity-most
nodules are significantly smaller than the largest one in this
image, (7b) U-Net predicted output from LUNA16 validation
set, (7c) U-Net sample labels mask from LUNA16 validation
set showing ground truth nodule location.

Table II: U-Net architecture (Dropout with 0.2 probability after
each ’a’ conv layer during training, ’Up’ indicates resizing of
image via bilinear interpolation, Adam Optimizer, learning rate
= 0.0001)

Layer Params Activation Output

Input 256 × 256 × 1

Conv1a 3 × 3× 3 ReLu 256 × 256 × 32

Conv1b 3 × 3× 3 ReLu 256 × 256 × 32

Max Pool 2× 2, stride 2 128 × 128 × 32

Conv2a 3 × 3× 3 ReLu 128 × 128 × 80

Conv2b 3×3× 3 ReLu 128 × 128 × 80

Max Pool 2× 2, stride 2 64 × 64 × 80

Conv3a 3× 3× 3 ReLu 64 × 64 × 160

Conv3b 3× 3× 3 ReLu 64 × 64 × 160

Max Pool 2× 2, stride 2 32 × 32 × 160

Conv4a 3× 3× 3 ReLu 32 × 32 × 320

Conv4b 3× 3× 3 ReLu 32 × 32 × 320

Up Conv4b 2×2 64 × 64 × 320

Concat Conv4b,Conv3b 64 × 64 × 480

Conv5a 3× 3× 3 ReLu 64 × 64 × 160

Conv5b 3× 3× 3 ReLu 64 × 64 × 160

Up Conv5b 2× 2 128 × 128 × 160

Concat Conv5b,Conv2b 128 × 128 × 240

Conv6a 3× 3× 3 ReLu 128 × 128 × 80

Conv6b 3× 3× 3 ReLu 128 × 128 × 80

Up Conv6b 2×2 256 × 256 × 80

Concat Conv6b,Conv1b 256 × 256 × 112

Conv6a 3× 3× 3 ReLu 256 × 256 × 32

Conv6b 3× 3× 3 ReLu 256 × 256 × 32

Conv7 3× 3× 3 256 × 256 × 2

Because our U-Net generates more suspicious regions than
actual nodules, we located the top 8 nodule candidates (32×
32 × 32 volumes) by sliding a window over the data and
saving the locations of the 8 most activated (largest L2 norm)
sectors. To prevent the top sectors from simply being clustered
in the brightest region of the image, the 8 sectors we ultimately
chose were not permitted to overlap with each other. We then
combined these sectors into a single 64×64×64 image, which
will serve as the input to our classifiers, which assign a label
to the image (cancer or not cancer).

We use a linear classifier as a baseline, a 3D CNN. Each
of our classifiers uses weighted softmax cross entropy loss
(weight for a label is the inverse of the frequency of the label
in the training set) and Adam Optimizer, and the CNNs use
ReLU activation and droupout after each convolutional layer
during training. We shrunk the network to prevent parameter

overload for the relatively small Kaggle dataset. The 3D CNN
architecture is described in detail in Table III.

Convolutional neural network consists of some number
of convolutional layers, followed by one or more fully con-
nected layers and finally an output layer. An example of
this architecture is illustrated in Figure 8. Formally, we de-

Figure 8: An example architecture of a 3D Convolutional
Neural Network used here. On the left is the input 3D volume,
followed by two convolutional layers, a fully connected layers
and an output layer. In the convolutional layers, each filter (or
channel) is represented by a volume.

note the input to layer m of the network by I(m). The
input to a 3D convolutional layer m of a neural network

is a n
(m−1)
1 × n

(m−1)
2 × n

(m−1)
3 3D object with n

(m−1)
c

so I(m−1) ∈ (Rn
(m−1)
1 ×n

(m−1)
2 ×n

(m−1)
3 and its elements are

denoted by I
(m,ℓ)
i,j,k where i, j, and k index the 3D volume and

ℓ selects the channel. The output of a convolutional layer m is

defined by its dimensions, i.e., n
(m)
1 ×n

(m)
2 ×n

(m)
3 as well as

the number of filters or channels it produces n
(m)
c . The output

of layer m is a convolution of its input with a filter and is
computed as

I
(m,ℓ)
i,j,k = ftanh(b

(m,ℓ) +
∑

ĩ,j̃,k̃,ℓ̃

I
(m−1,ℓ̃)

ĩ,j̃,k̃
W

(m,ℓ)

i−ĩ,j−j̃,k−k̃,ℓ̃
) (1)

where W (m,ℓ) and b(m,ℓ) are the parameters which define
the ℓth filter in layer m The locations where the filters

are evaluated (i.e., the values of i, j, k for which I
(m,ℓ)
i,j,k is

computed) and the size of the filters (i.e., the values of W (m,ℓ))
which are non-zero) are parameters of the network architecture.
Finally, we use a hyperbolic tangent activation function with
ftanh(a) = tanh(a).

Convolutional layers preserve the spatial structure of the
inputs, and as more layers are used, build up more and
more complex representations of the input. The output of the
convolutional layers is then used as input to a fully connected
network layer. To do this, the spatial and channel structure is
ignored and the output of the convolutional layer is treated
as a single vector. The output of a fully connected is a 1D
vector I(m) whose dimension is a parameter of the network
architecture. The output of neuron i in layer m is given by

I
(m)
i = fReLU



b(m,i) +
∑

j

I
(m−1)
j W

(m,i)
j



 (2)

where W (m,i) and b(m,i) are the parameters of neuron i in
layer m and the sum over j is a sum over all dimensions of
the input. The activation function fReLU (.) here is chosen to be
a Rectified Linear Unit (ReLU) with fReLU (a) = max(0, a).
This activation function has been widely used in a number of
domains [15], [16] and is believed to be particularly helpful
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in classification tasks as the sparsity it induces in the outputs
helps create separation between classes during learning.

The last fully connected layer is used as input to the output
layer. The structure and form of the output layer depends on
the particular task. Here we consider two different types of
output functions. In classification problems with K classes, a
common output function is the softmax function

fi =
exp(I

(o)
i )

∑

j exp(I
(o)
j )

(3)

I
(o)
i = b(o,i) +

K
∑

k=1

W
(o,i)
k I

(N)
k (4)

where N is the index of the last fully connected layer, b(o,i)

and W (o,i) are the parameters of the ith output unit and fi ∈
[0, 1] is the output for class i which can be interpreted as the
probability of that class given the inputs. We also consider a
variation on the logistic output function

f = a+ (b− a)



1 + exp(b(o) +
∑

j

W
(o)
j I

(N)
j





−1

(5)

which provides a continuous output f which is restricted to
lie in the range (a, b) with parameters b(o) and W (o). We call
this the scaled logistic output function. We note that when
considering a ranking-type multi-class classification problem
like predicting the malignancy level this output function might
be expected to perform better.

Table III: 3D CNN Architecture (Dropout with 0.2, Adam
Optimizer, learning rate = 0.0001)

Layer Params Activation Output

Input 28 × 28 × 28

Conv1 5 × 5× 5 ReLu 28 × 28 × 28× 7

Max Pool 1× 1× 1, stride 2× 2× 4 14 × 14 × 7 × 7

Conv2 5 × 5× 3 ReLu 14 × 14 × 7 × 17

Max Pool 2× 2 × 2, stride 1× 1 × 0 6 × 6 × 3 × 17

Dense 256

Dense 2

A. Training

Given a collection of data and a network architecture, our
goal is to fit the parameters of the network to that data. To
do this we will define an objective function and use gradient
based optimization to search for the network parameters which
minimize the objective function. Let D = ni, yi

D
i=1 be the

set of D (potentially augmented) training examples where n
is an input (a portion of a CT scan) and y is the output
(the malignancy level or a binary class indicating benign or
malignant) and Θ denote the collection of all weights W and
biases b for all layers of the network. The objective function
has the form

E(Θ) =
D
∑

i=1

L(yi, f(ni,Θ)) + λEprior(Θ) (6)

where f(ni,Θ)) is the output of the network evaluated on
input n with parameters Θ, L(yi, f(ni,Θ)) is a loss function
which penalizes differences between the desired output of the
network y and the prediction of the network ŷ. The function

Eprior(Θ) = ‖W‖2 is a weight decay prior which helps
prevent over-fitting by penalizing the norm of the weights and
λ controls the strength of the prior.

We consider two different objective functions in this paper
depending on the choice of output function. For the softmax
output function we use the standard cross-entropy loss function

L(yi, ŷ) = −
∑K

k=1 yklog(ŷk) where y is assumed to be a
binary indicator vector and ŷ is assumed to be a vector of
probabilities for each of the K classes. A limitation of a cross-
entropy loss is that all class errors are considered equal, hence
mislabeling a malignancy level 1 as a level 2 is considered just
as bad as mislabeling it a 5. This is clearly problematic, hence
for the scaled logistic function we use the squared error loss
function to capture this. Formally, L(yi, ŷ) = (y − ŷ)2 where
we assume y and ŷ to be real valued.

Given the objective function E(Θ), the parameters Θ are
learned using stochastic gradient descent (SGD) [17]. SGD
operates by randomly selecting a subset of training examples
and updating the values of the parameters using the gradient
of the objective function evaluated on the selected examples.
To accelerate progress and reduce noise due to the random
sampling of training examples we use a variant of SGD with
momentum [18]. Specifically, at iteration t, the parameters are
updated as

Θt+1 = Θt +△Θt+1 (7)

△Θt+1 = ρ△Θt − ǫ∇Et(Θt) (8)

where ρ = 0.9 is the momentum parameter, △Θt+1 is the
momentum vector, ǫt is the learning rate and ∇Et(Θt) is
the gradient of the objective function evaluated using only
the training examples selected at iteration t. At iteration 0,
all biases are set to 0 and the values of the filters and
weights are initialized by uniformly sampling from the inter-

val [−
√

6
fan in+fan out

,
√

6
fan in+fan out

] as suggested by [19]

where fan in and fan out respectively denote the number of
nodes in the previous hidden layer and in the current layer.
Given this initialization and setting ǫt = 0.01, SGD is run for
2000 epochs, during which ǫt is decreased by 10% every 25
epochs to ensure convergence.

VII. SIMULATION RESULTS

The experiments are conducted using DSB dataset. In
this dataset, a thousand low-dose CT images from high-risk
patients in DICOM format is given. The DSB database consists
of 1397 CT scans and 248580 slices. Each scan contains a
series with multiple axial slices of the chest cavity. Each scan
has a variable number of 2D slices (Fig. 9), which can vary
based on the machine taking the scan and patient. The DICOM
files have a header that contains the necessary information
about the patient id, as well as scan parameters such as the
slice thickness. It is publicly available in the Kaggle [9].
Dicom is the de-facto file standard in medical imaging. This
pixel size/coarseness of the scan differs from scan to scan
(e.g. the distance between slices may differ), which can hurt
performance of our model.

The experiments are implemented on computer with CPU
i7, 2.6 GHz, 16 RAM, Matlab 2013b, R-Studio, and Python.
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Figure 9: Number of Slices Per Patient in Data Science Bowl
Dataset

Initially speaking, the nodules in DSB dataset are detected and
segmented using thresholding and U-Net Convolutional Neural
Network. The diameters of the nodules range from 3 to 30 mm.
Each slice has 512× 512 pixels and 4096 gray level values in
Hounsfield Unit (HU), which is a measure of radiodensity.

In the screening setting, one of the most difficult decisions
is whether CT or another investigation is needed before the
next annual low-dose CT study. Current clinical guidelines are
complex and vary according to the size and appearance of the
nodule. The majority of nodules were solid in appearance. For
pulmonary nodule detection using CT imaging, CNNs have
recently been used as a feature extractor within a larger CAD
system.

For simplicity in training and testing we selected the
ratings of a single radiologist. All experiments were done using
50% training set, 20% validation set and 30% testing set. To
evaluate the results we considered a variety of testing metrics.
The accuracy metric is the used metric in our evaluations. In
our first set of experiments we considered a range of CNN
architectures for the binary classification task. Early experi-
mentation suggested that the number of filters and neurons per
layer were less significant than the number of layers. Thus, to
simplify analysis the first convolutional layer used 7 filters with
size 5 × 5 × 5, the second convolutional layer used 17 filters
with 5×5×3 and all fully connected layers used 256 neurons.
These were found to generally perform well and we considered
the impact of one or two convolutional layers followed by one
or two fully connected layers. The networks were trained as
described above and the results of these experiments can be
found in Table 1. Our results suggest that two convolutional
layers followed by a single hidden layer is one of the optimal
network architecture for this dataset. The average error for
training is described in Figure 10.

Another important parameter in the training of neural
networks is the number of observations that are sampled
at each iteration, the size of the so-called minibatch. The
use of minibatches is often driven in part by computational
considerations but can impact the ability of SGD to find a
good solution. Indeed, we found that choosing the proper
minibatch size was critical for learning to be effective. We
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Figure 10: Average Training Error in 3D CNN

tried minibatches of size 1, 10, 50 and 100. While the nature
of SGD suggests that larger batch sizes should produce better
gradient estimates and therefor work better, our results here
show that the opposite is true. Smaller batch sizes, even as
small as 1, produce the best results. We suspect that the added
noise of smaller batch sizes allows SGD to better escape poor
local optima and thus perform better overall.

The recognition results are shown by confusion matrix
achieved on the DSB dataset with 3D CNN as shown in Table
IV. As shown from the Table IV, Accuracy of model is 86.6%,
Mis-classification rate is 13.4%, False positive rate is 11.9%,
and False Negative is 14.7%. Almost all patients are classified
correctly. Additionally, there is an enhancement on accuracy
due to efficient U-Net architecture and segmentation.

Table IV: Confusion Matrix of 3D CNN using 30% Testing

Predicted

Abnormal Normal

Actual

Abnormal 0.853 0.147

Normal 0.119 0.881

VIII. CONCLUSION

In this paper we developed a deep convolutional neural net-
work (CNN) architecture to detect nodules in patients of lung
cancer and detect the interest points using U-Net architecture.
This step is a preprocessing step for 3D CNN. The deep 3D
CNN models performed the best on the test set. While we
achieve state-of-the-art performance AUC of 0.83, we perform
well considering that we use less labeled data than most
state-of-the-art CAD systems. As an interesting observation,
the first layer is a preprcessing layer for segmentation using
different techniques. Threshold, Watershed, and U-Net are used
to identify the nodules of patients.
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The network can be trained end-to-end from raw image
patches. Its main requirement is the availability of training
database, but otherwise no assumptions are made about the
objects of interest or underlying image modality.

In the future, it could be possible to extend our current
model to not only determine whether or not the patient has
cancer, but also determine the exact location of the cancerous
nodules. The most immediate future work is to use Watershed
segmentation as the initial lung segmentation. Other oppor-
tunities for improvement include making the network deeper,
and more extensive hyper parameter tuning. Also, we saved
our model parameters at best accuracy, but perhaps we could
have saved at other metrics, such as F1. Other future work
include extending our models to 3D images for other cancers.
The advantage of not requiring too much labeled data specific
to our cancer is it could make it generalizable to other cancers.
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