

Abstract—Nowadays data processing systems are widely used by

researchers for solving different problems in diverse subject domains
including medicine. Usage of these systems encounters three
problems. The first problem is a necessity to rebuild the system as
often as the subject domain changes. The second problem is a
necessity to integrate obtained results into the information system
that is used by regular specialists. The third problem is that software
development engineers usually do not appear to be specialists in the
subject domain. All mentioned problems are highly significant to the
medical domain. In the paper, an ontology-driven toolset for fast
prototyping of medical data processing system is proposed. The
toolset is based on the approach that defines a transition from the
domain model to the software system prototype. The proposed
approach is based on ontology-driven design and development,
automation, and component reuse. The toolset is evaluated on a case
study from medical domain.

Keywords— Medical data processing, ontology-driven toolset,
situation assessment.

I. INTRODUCTION
OWADAYS one can observe the following situation: a
number of projects devoted to medical data analysis have
been implemented and interesting results have been

received, e.g. [1], [2]. The results gained and evaluated by the
researchers should be integrated into medical data processing
systems to be used by practitioners. In other words, there is a
necessity to somehow integrate new domain knowledge into
existing software systems. But the integration process is
obstructed by a conceptual gap between medicine experts and
software specialists.

There are also two complicating factors. The first one is that
the researchers periodically renew a medical knowledge. The
ideas of continuing medical knowledge renovation are
presented in a concept of evidential medicine [3]. So, to
support this activity it is necessary to have a software system
that can be easily adapted to changes in the medical domain.

The second one is that there are a lot of different medical
realms and corresponding institutes. So, it seems reasonable to
have a software system that can be “tuned” on different
domains.

One can conclude that the medical software highly depends
on the diversified dynamically evolving medical knowledge.
This justifies a need for a solution that will simplify the

The research was supported by Russian Science Foundation (project No.

17-15-01177).

transition from the medical domain description to the software
system and so will help to close the said gap.

In the paper, a model-driven approach for fast prototyping
of medical data processing system is described. The approach
allows the creation of the system based on the formal
description of the domain. Besides models, the approach also
exploits such widespread software engineering techniques as
automation and component reuse. The approach was
implemented as a Java-based toolset and was evaluated on a
medicine scenario.

The paper is organized in the following. Section II
represents known works in the related domain. Section III
describes the proposed approach, the technology for fast
prototyping and elements of the proposed toolset. In Section
IV the proposed approach and the toolset are evaluated on the
medical case study. Section V discusses possible future works.

II. RELATED WORKS
Wanted software system must allow manipulating medical

domain objects and relations between them and provide means
to integrate separate objects into an integrated model. The
model will allow such high-level activities as forecasting and
decision making.

This manipulation process is known as a situation
assessment (SA). There are some models that include a
description of this process: JDL data fusion model [4],
Observe-Orient-Decide-Act Loop model [5], Situation
Awareness model [6]. A detailed review of these models one
can find, for example, in [7]. But listed models are very
abstract so formalization and implementation are needed.

In [8] an application of JDL model for processing medical
data is described. But the authors do not provide any means
for adaptation of the proposed approach to the changes of the
domain model.

So, one faced with the problem of design and development
of SA system for the medical domain.

Model-driven development [9] can be considered as an
effective approach for minimizing the gap between a subject
domain and a software development process. Traditional
approaches such as UML-based approach are not very
effective because UML is too tightly coupled with the code.
More effective approach for building applications is an
ontology based development [10].

The main advantage of the ontology-driven approach is that,
on the one hand, the ontology can be used for the formal

An ontology-driven toolset for fast prototyping
of medical data processing systems

Sergey Lebedev, Nataly Zhukova, Alexander Vodyaho, Dmitry Kurapeev and Mikhail Lushnov

N

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 135

representation of the subject domain in terms that are familiar
to an expert. On the other hand, the formal ontology can be
processed with computers and translated to a program code.

There are a number of works that describe the usage of
ontologies for SA construction [11]-[13]. In these works,
ontologies are used for representing of a subject domain and to
conduct logical reasoning to find new objects and relations. So
the approaches presented in these works are limited at most to
logical means.

So there is a task to build a toolset that will simplify a
transition from domain ontology to SA software system and
that will utilize general programming language flexibility.

III. APPROACH AND TOOLSET FOR SA FAST PROTOTYPING

A. Ontology Technologies and Instruments
Ontology can be seen as a formal description of some

domain. Ontologies are dynamically evolved in the realm of
Semantic Web. In this area, ontologies are represented with
OWL [14] languages. OWL language allows describing
domain in the form of triples: subject-predicate-object. Also,
OWL language is based on the description logic that can be
used for inferring some additional information. OWL
ontologies can be joined with the help of an import. Ontology
can be split into TBox (terminological component) and ABox
(assertion component). TBox includes classes and properties
(binary relations) to represent some common information
about the domain. ABox includes instances of classes that
describe some concrete part of the domain.

To query data from OWL ontology SPARQL [14] language
is used. This language is to some extent similar to SQL
language. As SQL languages SPARQL also allows data
construction queries. Typical SPARQL query includes two
parts: “action part” that describes data to be extracted or
constructed, and conditional (“where”) part that describes
templates for triple matching.

Also, there is SPIN [15] language that allows representing
SPARQL queries in the form of OWL triples. With the help of
this language, it is possible to link SPARQL queries to
ontology and use them while inference process.

The Sematic Web domain provides a plethora of different
instruments and libraries to work with ontologies. For the
proposed toolset the following instruments and libraries are
used. As an ontology editor, TopBraid Composer Free Edition
[16] is used. The editor is implemented as an Eclipse plugin. It
allows linking of SPARQL queries to ontology classes. SPIN
language is used under the hood. The editor also includes
inference engine that can be used to run these queries in a
cyclic manner.

On a program level, Jena [17] and TopBraid APIs [18] are
used to work with ontologies. The APIs provide methods for
loading ontologies, making different SPARQL queries,
modifying ontologies and exporting them to a file.

For ontology visualization Ontodia [19] web application is
used. To use this instrument it is necessary to set up SPARQL-
endpoint. The endpoint can be viewed as a web service that

receives SPARQL-request and answers with data from the
ontology. As SPARQL-endpoint Blazegrah graph database is
used. Blazegraph [20] provides two types of interfaces to work
with the underlying database: the user-oriented web interface
and program API. To simplify usage of these services they are
encapsulated in Docker [21] containers.

Wide support of ontologies with different instruments
substantiates its usage for the proposed model-driven
approach.

B. SA Calculation Process Model
 SA can be defined as the following calculation process –

see Fig. 1, where Nodei,j denotes the j-th calculation node of i-
th calculation level and ei,j denotes element calculated by j-th
node on the i-th level. As SA deals with calculation of objects
and relations:

, e E E O R∈ =

,
where O is a set of objects, and R is a set of relations.

SA calculation process has a hierarchical structure. The whole
process is split into a set of calculation nodes scattered over a
set of calculation levels. Each node implements a function for
calculation of an element. The input of the function is a set of
previously calculated or input elements. The output of the
function is used by functions of higher node: the higher nodes
depend on the lower ones. As it can be seen the unknown
elements are calculated on the base of the known one –
previously calculated or input elements. Input elements come
from the external environment (e.g. from a user of the system).
A situational model represents integrated high-level fragment
of the domain and is built upon the calculated elements. This
model can be used for high-level activities, such as decision
making, forecasting and so on.

The represented calculation process allows clarifying the
declared task: to implement the transition from the domain
model to SA software system it is necessary to construct an
intermediate model of SA calculation process that fixes
calculation dependencies among domain elements.

Fig. 1 SA calculation process model

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 136

C. Proposed Approach
To solve the clarified task the authors proposed the

following approach – see Fig. 2, where solid arrows denote
transitions between approach steps (numbered rounded
rectangles), dotted arrows denote some information artifacts
(rectangles) usage, dotted lines with a solid circle denote the
fact that an artifact produced in the previous step is passed to
the next step, circled R denotes reused components, circled A
– automated components, circled M – model-based
components, DISA stands for Domain-Independent Situation
Assessment, DSSA – Domain-Specific Situation Assessment,
DI – Domain-Independent.

At the first step, the domain ontology is built based on the
domain description.

On the second step, DSSA ontology is built. This ontology
formalizes the calculation process represented in Fig. 1 for the
given domain. To support this step the authors created DISA
ontology (see paragraph III.D.). This ontology includes classes
and properties that are used to construct SA calculation
process for the given domain. Also, it includes a number of
rules that allows automation of building of DSSA ontology. At
this step one makes a transition from the domain model to the
model of SA calculation process.

On the third step, the domain-specific code is automatically
generated based on the DSSA ontology. The generated code
represents the same calculation process (see Fig. 1) with the
help of programming language classes. To support this step the
authors implemented an algorithm that generates Java code
from DSSA ontology (see paragraph III.F.).

On the fourth step, the generated code is integrated into the
DI programming framework which implements a common
logic of SA calculation process. After the integration, a
programmer should implement all functions of calculation
nodes. To support this step the authors created a Java-based
framework – see paragraph III.G. As a result of this step, the
prototype of SA software system is created.

On the last step, the created prototype is used to process
some data. On this step, DSSA ontology is used to
dynamically change the program structure of the calculation
process (see paragraph III.G.).

It can be seen, that the presented approach uses such
techniques as model-driven design and development,

component reuse, and automation. The approach is
implemented by the authors as a toolset. This toolset includes:
a) a number of components that can be reused for any domain:
DISA ontology and Java-based DI program framework; b) the
implementation of the algorithm for ontology-based code
generation; c) a method that describes how to apply the
approach to different domains (see paragraph III.E.).

D. DISA Ontology
As it was said the proposed DISA ontology is used to

automate DSSA ontology creation. In other words, DISA
ontology helps to make a transition from the domain model to
SA calculation process model.

The transition includes two steps. The first one is a fixing of
computation dependencies among domain ontology elements.
The second one is a building of the SA calculation process
model out of these computation dependencies.

To support the first step DISA ontology includes two types
of computability properties (as a reminder, ontology property
represents a binary relation) – generative and associative one.
A generative property says that the property itself and its range
computationally depend on its domain. Whereas an associative
property says that the property itself computationally depends
on its domain and range. In other words, mapping a domain
property on the computability one makes it possible to
interpret the former as a function. To map properties a user
should use OWL property inheritance mechanism.

To fix computation dependencies in an explicit form DISA
ontology includes Computation Unit class. An instance of this
class fixes computation dependency between base elements
(function’s arguments) and derived elements (function’s
value). DISA ontology also includes a set of rules that
automatically generate instances of this class for each
computability property. Fig. 3 illustrates the described step
with an abstract example. Within this example “has” property
can be interpreted as the following function: f(Patient) = <has,
Disease>.

On the second step, it is necessary to define an appropriate
place for each computability dependency represented by an
instance of Computation Unit class within the overall SA
calculation process. To support this step DISA ontology
includes two classes Node, Level, and a number of properties
that define relations between these classes. E.g. there is a
“dependOn” property that allows fixing computational
dependence between two nodes. Also, DISA ontology includes
rules that automatically generate instances of Node and Level
classes out of Computation Unit class instances to form SA
calculation process model (see Fig. 3)

Fig. 2 The approach

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 137

Rules are implemented as SPARQL CONSTRUCT-queries
that are linked to DISA ontology with the help of SPIN
language. Queries are run by the inference engine embedded
into the TopBraid Editor. The engine executes queries in a
cyclic mode. Inference continues while there are some
CONSTRUCT-queries that can be run. An example query is
represented in Fig. 4. The query implements the generation of
Computation Unit class instances for domain properties
inherited from the generative computability property.

E. DSSA Ontology Construction Method
The authors suggest a method that defines how to build

DSSA ontology for some subject domain on the base of DISA
Ontology. The method includes the following steps:
1) Build a domain ontology;
2) Import DISA Ontology into the domain ontology;
3) Inherit domain properties from one of the computability

property of DISA ontology;
4) Run rules to automatically construct instances of

Computation Unit class;
5) Choose classes which instances will be received from the

external environment;
6) Run rules to automatically construct SA calculation

process model from instances of Node and Level classes.
As a result, the SA calculation process model (ontology) is

received. It is worth of mentioning that the model is
constructed taking into account what can be constructed in
principle.

F. Code Generation
The code is automatically generated on the base of the

DSSA Ontology received in the previous step. As a result, one
gets program structure of SA calculation process with stubs for
implementing functions of separate calculation nodes.

The algorithm of code generation is implemented as a cyclic
process – see Fig. 5.

An iteration of the algorithm comprises the following steps:
1) Receive a fragment of DSSA ontology with the help

SPARQL SELECT-query;
2) Generate program structure fragment for the received

ontological elements. To generate Java structures
CodeModel library [22] is used. While program elements
generation previously constructed program structure can
be used.

The order of iterations is defined by logical dependencies
between program components. For example, before generating
program classes for nodes it is necessary to generate classes
for the domain objects and properties.

It is necessary to mention that the code generation algorithm
does not depend on the domain model because SPARQL-
queries are composed of DISA ontology elements.

In order to build a prototype from the generated code, it is
necessary to integrate the generated code into the domain-
independent program framework of SA system. To make this
integration possible generated elements of the SA program
structure are inherited from abstract classes of the framework.

On the final step, a programmer overrides stubs of program
classes of calculation nodes.

G. SA Framework
The architecture and basic cycle of the proposed domain-

independent program framework are shown in Fig. 6. The
framework is realized with Java version 1.8.

The Fig. 6 shows usage of DSSA ontology in the process of

Fig. 6 Domain-independent framework architecture

Fig. 4 An example of SPARQL rule

Fig. 3 Mappings

Fig. 5 Code generation algorithm

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 138

framework operation. Ontology is used for the building of the
actual program structure of SA calculation process. In contrast
to the development stage here the program structure is defined
by the list of domain elements which have been already
calculated (and not by the set of elements that can be generated
in principle). For example, the node of the second level can be
generated only when the object data have been received from
the external system. It is worth mentioning that for access to
DSSA ontology only DISA ontology concepts are used and
that is why the framework itself does not depend on the
domain.

The module “Dataflow structure reconstruction” updates
program structure of SA process based on newly inferred
ontological levels and nodes. The module “Levels & Nodes
recalculation” updates situational model using current SA
calculation process program structure. For this purpose,
control is passed from level to level and from node to node
(see Fig. 1). On each node, the user-defined function is
recalculated.

The nodes, which have calculated a value for the first time,
are called activated. A set of activated nodes is used by the
“Ontology updating” module. The module comprises
SPARQL CONSTRUCT-query that add activated node into
the ontological counterpart of the program structure of SA
calculation process. Then TopBraid Inference engine is used
to construct a set of nodes that depend on the nodes that have
been just activated and possibly on those that were activated
on previous steps. So that the usage of the DSSA ontology
allows not implementing the described mechanism and also
allows adapting SA calculation process structure to the current
environment state.

IV. EVALUATION OF THE PROPOSED APPROACH AND THE
TOOLSET

A. Case Study Description
The suggested approach was evaluated on a case study from

medical domain. The case study can be formulated in the
following way.

The SA system receives a stream of urine analyses results.
Each analysis is described with a set of parameters which
include both information about patient and parameter values
(data). For each patient, a subset of parameter values (a batch)
is chosen. On the base of the batch with the help of linear
regression model, one finds if the given categorical parameter
(independent variable) can be considered as a predictor for the
chosen numerical parameters (dependent variable). As a result,
one should receive a set of group-specific predictors for each
patient. These dependencies are fixed in a graph like structure
and used as a situation model.

The case study was evaluated on the real data set of urine
analyses that includes more than13000 records for more than
4000 patients. The set was provided by Federal Almazov
North-West Medical Research Center (or simply Almazov
center) [23] and is not freely available.

To model SA calculation process the whole set of records is

divided into small portions with 10 records in each. The input
of each portion is followed by SA operation cycle.

B. Medical Data Processing System Prototype
1) DSSA Ontology Construction

In accordance with the suggested approach on the first step,
the domain ontology was built for the described case study –
the case study ontology. The fragment of such ontology is
presented in Fig. 7 where rectangles with C letter designate
ontology classes and OP combination designates ontology
properties. To visualize ontology fragments Ontodia web
service was used.

This ontology fragment is used for describing next steps.
Then DISA Ontology was imported into the case study

ontology. A number of case study ontology properties were
inherited from the computability one (generative or
associative).

On the next step, SPARQL-queries were executed to
automatically generate Commutation Unit instances which
fixed computation dependencies among domain elements.
These instances for the fragment shown in Fig. 7 are presented
in Fig. 8. Calculation dependencies are represented with
rectangles that include strings that start with “cu_”:
“cu_GroupRule”, “cu_PatientGroupRule” and
“cu_descibePatient”.

On the next step, a set of classes was chosen to be inherited
from “Percepted” class. In the previous figures, it includes
“Analysis” and “GroupRule” classes.

The previous step allowed running of SPARQL-queries to

Fig. 7 Case study ontology

Fig. 8 Calculation dependencies

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 139

construct SA calculation process ontology. The fragment of
this ontology is shown in Fig. 9. On the figure nodes and levels
are represented with rectangles with the corresponding titles. It
can be seen from the figure that “node_cu_PatienGroupRule”
depends on both “node_cu_GroupRule” and on
“node_cu_describePatient”, and is linked to the third level.

The generated calculation process model is presented in Table
I.

Table I Dataflow ontology description
Level

Node # Depends

on Node
Function Description

1 1 - Get analyses from the external system
1 2 - Get batch forming rule
1 3 - Get graph forming rule
2 1 1.1 Extract patient data from analyses
2 2 1.1 Extract separate parameters from analyses
3 1 1.2, 2.1 Specify group rule with a patient data and

get a patient group rule
4 1 2.2, 3.1 Form a batch from separate parameters

based on the patient group rule and links it
with the patient and analyses

5 1 1.2, 4.1 Construct a graph fragment from the batch
based on the graph rule using linear
regression and links it with the patient and

the batch
The batch forming rule is used to limit a batch relatively to
some group of patients. The rule represents a string containing
a list of parameter names describing a patient. For the
evaluated case study, gender and diagnosis parameters were
used. The rule comprises system input data.

The batch forming rule is transformed into the patient group
rule at the node 3.1. This transformation substitute parameter
names with the corresponding values for a given patient. So,
one can form a batch for a group of patients with the same
gender and diagnosis: e.g., a group for male patients with I20.0
diagnosis (according to ICD-10 classification [24]).

The graph forming rule defines a dependent-independent
variable pair. This rule defines for which analysis parameters a
linear regression model should be used. For the case study, the
urine color was used as an independent variable and such
parameters as ketone bodies, red blood cells, white blood cells
and etc. are used as dependent parameters.

2) Prototype Construction
On the base of generated SA calculation process ontology,

the executable code was generated with the help of the
algorithm implemented by the authors. Then the code was built
in the proposed framework. On the final step, all node
functions were implemented. As a result, SA prototype
presented in Fig. 10 was received.

For the prototype implementation, two external services were
used. The first one is an R language interpreter which is
realized on the base of RSever. The service was used for the
calculation of linear regression model.

The second one is a service which is used for storage and
fetching data presented as RDF graph. For this purpose,
Blazegraph graph database was used. Such a solution allows
replacing data passing between nodes with notification
passing. For data saving and fetching SPARQL-queries are
used.

Interaction with described services was implemented within
calculation nodes so that the framework itself was not
modified.

C. Prototype Operation Results
The fragment graph constructed by SA prototype is

presented in Fig. 11, where “ly” stays for light yellow color.

Received dependencies can be used for the construction of
decision rules that may facilitate the practicing doctor making
decisions process while treatment of a patient. For example,
from Fig. 11 it can be seen that there is a dependence between
the straw-yellow color and the parameter Bacteria for men
diagnosed with I120.8. This indicates that if a patient has a
straw-yellow color, then a doctor should pay attention to the
fact that the patient may have an infectious pathology of the
urinary tract.

Thus, with the application of the described prototype, the

Fig. 9 SA calculation process ontology fragment

Fig. 10 Case study SA prototype

Fig. 11 Parameter dependency graph fragment

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 140

evidence-based reasoning of the medical decisions is
improved. A doctor has the ability to make a decision based on
the intellectual processing of large data sets of tens of
thousands of observations, which he cannot do manually.

D. Evaluation and Discussions
The number of automatically generated and reused

components is represented in Table II.
The main goal of the proposed toolset is to speed up the

process of SA creation for medical domain. One way to
roughly estimate the speed up is to estimate time costs of
automatically generated code as if it was created manually. To
do this the Constructive Cost Model II model implemented as
an online service was used1. The service accepts the total
number of lines of codes as an input data. The total number of
lines of automatically generated code amounted to 1677. As a
result, the following estimations were obtained (with all
drivers to be set on normal): effort = 5.2 person-months;
schedule = 6.3 months.

Table II The number of automatically generated or reused
components

Stage Type Volume
(classes)

Framework reused 40
Domain-specific SA ontology Auto generated 32
Domain-specific code Auto generated 92

The speed up was also gained thanks to the lifting of the
abstraction level of the design stage up to the domain model
engineering.

The constructed prototype can be tuned with the help of the
batch and graph forming rules without ontology modification.
Any more complex modification implies the case study
ontology reconstruction. To mention just a few:
− new data source, e.g., blood analyses;
− new batch types, e.g., a filtered batch, a batch with

interpolated data;
− parameter pairs interpretations and so on.

It is necessary to note that it seems obvious that usage of
some ad hoc approaches may and will result in a more
effective SA system from the performance point of view than
in the case of proposed toolset usage. But authors suppose that
on the stage of research and evaluation of some medical
hypothesis it is more important to quickly build or rebuild (if
necessary) a working prototype. After a thorough evaluation,
the prototype can be integrated into the hospital medical
information system with necessary revisions.

The main distinction of proposed approach and the toolset
based on the approach from known systems is that it uses
ontologies for design and development of SA system based on
some general programming language and is not restricted to
logical means.

V. CONCLUSION AND FUTURE WORK
The proposed toolset can be considered as an effective

1 http://csse.usc.edu/tools/cocomoii.php

instrument for building information systems particularly
sensitive to the domain changes. It is based on the following
rationales: 1) to close the gap between domain experts and
software developers it is necessary to start from the domain
description; 2) to be able to use this description
programmatically it must be formalized and ontology is a good
candidate for this task; 3) the toolset should preserve
flexibility provided by a general programming language; 4) the
main value will be gained if the toolset allows automation and
domain-independent elements reuse rather than simply
provides components to be manually programmed.

The suggested approach opens good perspectives for reuse
of architectural knowledge. It can be used not only for
medicine oriented systems development but for many other
subject domains.

The suggested approach allows increasing the level of
abstraction of code development stages up to the level of
domain ontology engineering. Also, ontologies are used for
automation of design and development stages of software
engineering process. In combination, the gained advantages
allow decreasing time and complexity of the design and
development of SA system.

The main tasks for future development are the following: i)
estimation of the possibility to work with big models, ii)
evolving and evaluation of theoretical backgrounds, iii) testing
approach on the problems from different subject domains.

REFERENCES
[1] P. Perner, R. Brause and H.-G. Holzhütter (Eds.), Medical Data

Analysis: 4th International Symposium, ISMDA 2003, Berlin, Germany,
October 9-10, 2003, Proceedings. Vol. 2868. Springer Science &
Business Media, 2003.

[2] N. Maglaveras, I. Chouvarda, V. Koutkias and R. Brause (Eds.),
Biological and Medical Data Analysis: 7th International Symposium,
ISBMDA 2006, Thessaloniki, Greece, December 7-8, 2006.
Proceedings, Vol. 4345, Springer, 2006.

[3] J.H. Howick, The philosophy of evidence-based medicine, John Wiley
& Sons, 2011.

[4] E. Blasch, É. Bossé and D. A. Lambert, High-level information fusion
management and systems design, Artech House, 2012.

[5] М. Nilsson, “Human decision making and information fusion:
Extending the concept of decision support,” 2007.

[6] M. R. Endsley and D. J. Garland, Situation awareness analysis and
measurement, CRC Press, 2000.

[7] P.H. Foo and G. W. Ng, “High-level Information Fusion: An Overview,”
J. Adv. Inf. Fusion 8.1, 2013, pp. 33–72.

[8] M. Lushnov, V. Kudashov, A. Vodyaho, M. Lapaev, N. Zhukova and D.
Korobov, “Medical Knowledge Representation for Evaluation of
Patient’s State Using Complex Indicators,” International Conference on
Knowledge Engineering and the Semantic Web, Springer International
Publishing, 2016.

[9] O. Pastor and J. C. Molina, Model-driven architecture in practice: a
software production environment based on conceptual modeling,
Springer Science & Business Media, 2007.

[10] J. Z. Pan, S. Staab, U. Aßmann, J. Ebert and Y. Zhao (Eds.), Ontology-
driven software development, Springer Science & Business Media,
2012.

[11] L. Li, W. G. Wu and N. Liu, “Ontology model for situation awareness of
city tunnel traffic,” Applied Mechanics and Materials, Vol. 347, Trans
Tech Publications, 2013.

[12] N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger and W.
Schwinger, “Improving situation awareness in traffic management,”
Proc. Intl. Conf. on Very Large Data Bases, 2010.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 141

[13] N. Baumgartner, S. Mitsch, A. Müller, W. Retschitzegger, A. Salfinger
and W. Schwinger, “A tour of BeAware–A situation awareness
framework for control centers,” Information Fusion, Vol. 20, 2014, pp.
155-173.

[14] D. Allemang and J. Hendler, Semantic web for the working ontologist:
effective modeling in RDFS and OWL, Elsevier, 2011.

[15] SPARQL Inferencing Notation (SPIN).
https://www.w3.org/Submission/spin-overview/. Accessed 28 November
2017

[16] TopQuadrant. http://www.topquadrant.com/. Accessed 28 November
2017

[17] Apache Jena. A free and open source Java framework for building
Semantic Web and Linked Data applications. https://jena.apache.org/.
Accessed 28 November 2017

[18] The TopBraid SPIN API. http://topbraid.org/spin/api/. Accessed 28
November 2017

[19] Ontodia. https://github.com/ontodia-org/ontodia. Accessed 28
November 2017

[20] Blazegraph graph database. https://www.blazegraph.com/. Accessed 28
November 2017

[21] Docker. https://www.docker.com/. Accessed 28 November 2017
[22] CodeModel project. https://javaee.github.io/jaxb-codemodel/. Accessed

28 November 2017
[23] Federal Almazov North-West Medical Research Centre.

http://www.almazovcentre.ru/?lang=en. Accessed 28 November 2017
[24] ICD-10. http://apps.who.int/classifications/icd10/browse/2010/en.

Accessed 28 November 2017

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 142

https://www.w3.org/Submission/spin-overview/
http://www.topquadrant.com/
https://jena.apache.org/
http://topbraid.org/spin/api/
https://github.com/ontodia-org/ontodia
https://www.blazegraph.com/
https://www.docker.com/
https://javaee.github.io/jaxb-codemodel/
http://www.almazovcentre.ru/?lang=en
http://apps.who.int/classifications/icd10/browse/2010/en

