
  
Abstract—Our purpose in this paper is to model in a better way a 

complex neurophysiological system called muscle spindle. This 
system involves point processes as input and output. A two-step 
approach based on Bayesian logistic regression is used when a 
weakly informative and an informative prior is chosen. The 
parameters of the model which are of great interest are the threshold, 
the recovery, the summation and the carry-over effect function. The 
results show that the estimates derived from the Bayesian approach 
are similar to the ones obtained by the maximum likelihood method 
with the advantage of smaller confidence intervals. These results 
show the great importance of the two-step Bayesian approach which 
gives more representative models.  
 

Keywords—Muscle Spindle, Gamma motoneuron, Bayesian 
Logistic Regression, Prior distribution.  

I. INTRODUCTION 
 he muscle spindle is a receptor that responds to the 
muscle changes and plays an important role in the 

initiation and reflex control of movement as well as in the 
maintenance of muscle posture [1,2]. The effects of the 
imposed stimuli on the muscle spindle are transmitted to the 
spinal cord by the axons of sensory nerves closely associated 
with the muscle spindle. In the absence of any input, the 
muscle spindle generates nerve action potentials at relatively 
constant rates. The output, which occurs under these 
conditions, is referred to as the spontaneous discharge of the 
muscle spindle. The discharge of the muscle spindle is also 
modified by action potentials carried by the axons of a group 
of cells whose bodies are located in the spine cord called 
gamma motoneurons [3,4]. 

The muscle spindle is considered as a stochastic system that 
involves point processes and can be modeled as in [5,6]. In 
addition a maximum likelihood approach can be proposed for 
identifying and modeling neuronal firing systems as described 
in [7,8]. In this work, a two – step Bayesian logistic regression 
is used to study the behavior of the muscle spindle. The 
parameters which are included in the models are the threshold, 
the recovery function, the summation function and the carry – 
over effect function [7,8,9]. The threshold is an unknown 
constant and can be estimated from the data. The system’s 
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own effect to the change of membrane's potential is described 
by the recovery function. The summation function describes 
how the input spikes that follow the last output spike affect the 
system and shows whether the behavior of the system is 
excitatory or inhibitory. Finally the carry – over effect 
function discussed in [9] describes the effect of the input 
spikes before the last output spike.  

Bayesian methods have the advantage of requiring a single 
tool which is the Bayes theorem that makes their use simpler. 
An important advantage of the Bayesian logistic approach is 
that a prior information can be combined with the data in such 
a way that past information about a parameter can be included 
and form an informative prior distribution when new data are 
available [10,11]. A detailed discussion of the approach is 
given in the next section. 

II. MATERIALS AND METHODS 

A. Bayesian Logistic regression 
We start with the creation of a probability model for the 

available data. Then it is necessary to select a prior 
distribution which reflects the prior knowledge someone may 
have about the model parameters. Afterwards, the likelihood 
function based on the probability model is obtained which is 
combined with the prior distribution to designate the posterior 
distribution. Finally as the posterior distribution is simulated, 
the estimates of the parameters become available [10]. In the 
case of the muscle spindle dataset, the dependent variable 
denoted by 𝑌𝑌 takes the value 1 when a spike occurs and 0 
otherwise. Let 𝑝𝑝𝑡𝑡  denote the probability that a spike occurs at 
time 𝑡𝑡. An appropriate probability model is a Bernoulli 
distribution model with probability 𝑝𝑝𝑡𝑡 : 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑦𝑦𝑡𝑡 |𝜃𝜃) = 𝑝𝑝𝑡𝑡 𝑦𝑦𝑡𝑡(1 − 𝑝𝑝𝑡𝑡)1−𝑦𝑦𝑡𝑡                        (1) 

 
The probabilities 𝑝𝑝𝑡𝑡  are modeled by means of the logistic 
function in order to make them also dependent on the vectors 
of prognostic factors 𝑥𝑥𝑡𝑡  ∈  ℝ𝑝𝑝  which are explained in the next 
subsections: 
 

𝑝𝑝𝑡𝑡 =
exp(𝜃𝜃𝛵𝛵𝒙𝒙𝑡𝑡)

{1 + exp(𝜃𝜃𝛵𝛵𝒙𝒙𝑡𝑡)}. 

 
The log – likelihood function is then given by: 

𝑙𝑙(𝑦𝑦|𝜃𝜃) = �𝑦𝑦𝑡𝑡 log(𝑝𝑝𝑡𝑡) + (1 − 𝑦𝑦𝑡𝑡) log(1 − 𝑝𝑝𝑡𝑡),
𝑛𝑛

𝑡𝑡=1

        (2) 
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which leads to the posterior distribution 𝑝𝑝(𝜃𝜃|𝑦𝑦) by applying 
the Bayes’ theorem as follows: 
 

𝑝𝑝(𝜃𝜃|𝑦𝑦) =
𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)

∫ 𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝜃𝜃
∝ 𝑝𝑝(𝜃𝜃)𝑙𝑙(𝑦𝑦|𝜃𝜃), (3) 

 
where 𝑝𝑝(𝜃𝜃)is the prior distribution. 
Exact Bayesian inference for the parameter θ can only be 
achieved by appropriate standardization of the posterior. This 
can be done by means of integration. To achieve this task, we 
use the method of Markov-Chain-Monte-Carlo (MCMC). The 
MCMC algorithm implemented in this work is the Metropolis 
– Hastings algorithm with Gaussian Proposals [12,13].  

B. Dataset 
The data were collected by isolating a muscle spindle from a 
very thin muscle, located in the posterior leg of an 
anesthetized cat and separating the motoneurons from the 
spinal cord and the primary Ia axon to the spinal cord. The 
muscle was tightened with a muscle extruder, in order to keep 
the length under control during the recording of the data. The 
dataset for the spontaneous activity is a binary time series 
recorded for 15867 msec. The dataset with the presence of a 
gamma motoneuron as input to the system is also a binary 
time series recorded for 15866 msec. 

C. Prior Distribution 
One of the most challenging tasks in Bayesian inference is the 
choice of the prior distribution because a wrong choice could 
lead to inadmissible results.  
In the case of the muscle spindle we have no prior knowledge 
for the data. A commonly used prior distribution in these cases 
is a weakly informative Cauchy prior with location and scale 
parameters 0 and 2.5 respectively [14]. Main advantages of 
this prior distribution are the capability of dealing with 
complete separation and the application of more shrinkage to 
higher – order interactions. In this work we implemented the 
next steps for the choice of the prior distribution. 
1) Apply a weakly informative Cauchy prior distribution with 
location and scale parameters 0 and 2.5 respectively on the 
data for the first 5000 msec. This is essential because initially, 
we do not have prior information about the Bayesian logistic 
regression coefficients. 
2) Apply Bayesian logistic regression with this prior 
distribution and get a posterior distribution. 
3) Use this posterior distribution as a prior for the rest of the 
sample. 

D. Modeling the activity of Muscle Spindle 
In this section the functions that describe the activity of the 
muscle spindle are analyzed. In the dataset with the 
spontaneous activity 416 spikes were observed as output in the 
Ia axon. Sampling with step of 1 msec we obtain a sequence of 
pulses consisting of 15867 points. This form of a binary time 
series can be presented as follows: 
 

𝑌𝑌𝑡𝑡 = �1, 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑎𝑎 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑒𝑒 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑠𝑠 𝑠𝑠𝑛𝑛 (𝑡𝑡, 𝑡𝑡 + 1]
0,                                                      𝑝𝑝𝑡𝑡ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒 ,� 

 
where 𝑡𝑡 = 1,2, … ,15866 𝑚𝑚𝑠𝑠𝑒𝑒𝑜𝑜. 

 

 
Fig. 1: Histogram of the inter–spike intervals for the output of the 
spontaneous activity. 
 
The histogram in Fig. 1 shows that the smallest and the 
biggest interval between output spikes are 31 and 49 msec 
respectively. A possible choice for the threshold is an 
unknown constant, i.e.: 

𝜃𝜃𝑡𝑡∗ = 𝜃𝜃0. 
 
The membrane’s potential is denoted by 𝑈𝑈𝑡𝑡  and in this case is 
equal to the recovery function which is denoted with 𝑉𝑉𝑡𝑡  and is 
given by: 

𝑈𝑈𝑡𝑡 = 𝑉𝑉𝑡𝑡 = ��𝜃𝜃𝑠𝑠(𝛾𝛾𝑡𝑡 − 𝑚𝑚𝑠𝑠𝑛𝑛 − 1)𝑠𝑠
𝑠𝑠

𝑠𝑠=1

, 𝛾𝛾𝑡𝑡 ≥ 𝑚𝑚𝑠𝑠𝑛𝑛 + 1

0,                                         𝑝𝑝𝑡𝑡ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒

� ,   (4) 

 
where 𝛾𝛾𝑡𝑡  is the time elapsed since the previous output spike 
and 𝑚𝑚𝑠𝑠𝑛𝑛 is the minimum interval between output spikes. The 
system fires spontaneously when the membrane’s potential 
exceeds the threshold 𝜃𝜃0. Thus, the final form of the model in 
the case of the spontaneous activity is given by: 
 

log �
𝑝𝑝𝑡𝑡

1 − 𝑝𝑝𝑡𝑡
� = 𝑈𝑈𝑡𝑡 − 𝜃𝜃0,                            (5) 

 
where 𝑝𝑝𝑡𝑡  is the probability that the system fires. 
Subsequently, the dataset when a gamma motoneuron is 
present consists of 538 spikes as output in the Ia axon and 
1007 spikes as input.  The histograms are presented in Figures 
2 and 3. Additionally, the presence of the input affects the 
system by changing the membrane’s potential of the sensory 
Ia axon as it is influenced both by internal and external 
processes. In this case the membrane’s potential is given by: 

𝑈𝑈𝑡𝑡 = �𝜃𝜃𝑠𝑠𝛾𝛾𝑡𝑡𝑠𝑠
𝑠𝑠

𝑠𝑠=1

+ � 𝑎𝑎𝑜𝑜𝑥𝑥𝑡𝑡−𝑜𝑜

𝛾𝛾𝑡𝑡−1

𝑜𝑜=0

+ � 𝑜𝑜𝑤𝑤𝑥𝑥𝑡𝑡−𝑤𝑤
𝑤𝑤≥𝛾𝛾𝑡𝑡

,          (6) 
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where the second and the third term are the summation 
function and the carry – over effect function respectively. By 
𝛾𝛾𝑡𝑡  we denote the time elapsed since the last output spike, u is 
the time interval between an input spike (occurring after the 
last output spike) and time t, and w is the time interval 
between an input spike (occurring before the last output spike) 
and time t.  It has been shown in [9] that the addition of the 
carry – over effect function gives a better result in comparison 
with the model containing only the summation function. As a 
result, the final form of the model is the following: 
 

log �
𝑝𝑝𝑡𝑡

1 − 𝑝𝑝𝑡𝑡
� = �𝜃𝜃𝑠𝑠𝛾𝛾𝑡𝑡𝑠𝑠

𝑠𝑠

𝑠𝑠=1

+ �𝑎𝑎𝑜𝑜𝑥𝑥𝑡𝑡−𝑜𝑜

𝛾𝛾𝑡𝑡−1

𝑜𝑜=0

+ � 𝑜𝑜𝑤𝑤𝑥𝑥𝑡𝑡−𝑤𝑤
𝑤𝑤≥𝛾𝛾𝑡𝑡

− 𝜃𝜃0. (7) 

 
Fig. 2: Histogram of the output inter–spike intervals when a gamma 
motoneuron is present. Each Inter-spike interval is of 3 msec length. 
 

 
Fig. 3: Histogram of the input inter–spike intervals when a gamma 
motoneuron is present. Each Inter-spike interval is of 2 msec length. 

E. Goodness of fit test with the use of Randomized Quantile 
Residuals 

After fitting the model, it is always necessary to check the 
validity of the model. This can be done by means of the 
residuals, which are measurements of agreement between the 
observed and the estimated values. 

A usual problem that occurs in logistic regression is that, 
the commonly used Pearson and Deviance residuals are far 
from normal. This means that they are not capable of giving 
any information about the validity of the model [15].  

For this reason the randomized quantile residuals should be 
used, which are defined as follows [16]: 

Let 𝐹𝐹(𝑦𝑦𝑡𝑡 ;𝑝𝑝𝑡𝑡) = 𝑃𝑃(𝑌𝑌𝑡𝑡 ≤ 𝑦𝑦𝑡𝑡) = ∑ 𝑝𝑝𝑡𝑡𝑚𝑚 (1 − 𝑝𝑝𝑡𝑡)1−𝑚𝑚|𝑦𝑦𝑡𝑡 |
𝑚𝑚=0  be the 

cumulative binomial distribution of the t-th binary response, 
and |𝑦𝑦𝑡𝑡 | is the greatest integer less than or equal to 𝑦𝑦𝑡𝑡 , i.e. the 
‘floor’ under 𝑦𝑦𝑡𝑡 . Moreover, 

 
𝑎𝑎𝑡𝑡 = lim𝑦𝑦↑𝑦𝑦𝑡𝑡 𝐹𝐹(𝑦𝑦; 𝑝𝑝𝑡𝑡� ) and 𝑝𝑝𝑡𝑡 = 𝐹𝐹(𝑦𝑦; 𝑝𝑝𝑡𝑡� ). 

 
Then the randomized quantile residuals for a logistic 
regression model are defined by 
 

𝑝𝑝𝑝𝑝𝑟𝑟 ,𝑡𝑡 = 𝛷𝛷−1{𝑜𝑜},                                    (8) 

where 𝛷𝛷(∙) is the cumulative distribution function of the 
standard normal, and 𝑜𝑜 is a uniform random variable on the 
interval (𝑎𝑎𝑡𝑡 , 𝑝𝑝𝑡𝑡]. 
These residuals can be used for any discrete distributed 
response. Thus, the validity of the model can now be tested by 
using goodness of fit tests for the normality of 𝑝𝑝𝑝𝑝𝑟𝑟 ,𝑡𝑡 . A very 
commonly used method to test the null hypothesis that the 
randomized quantile residuals follow a standard normal 
distribution is the Anderson – Darling test [17]. 

The Q-Q plot of the randomized quantile residuals can also 
be a way of checking the validity of the model. A method for 
constructing pointwise a × 100% rejection regions around the 
Q-Q plot of any random sample is proposed in [18] by using 
residual bootstrapping [19]. This method can help to inspect 
visually the deviations from the standard normal line in the Q-
Q plot. 

III. RESULTS 

A. Bayesian Logistic regression models 
In this section the results of the two – step Bayesian logistic 
regression are presented. Using the Metropolis – Hastings 
algorithm mentioned in the previous section with 100000 
MCMC samples with a burn - in period of 25000 samples, the 
results are shown in the models described by Tables I and II of 
the Appendix. It must be mentioned that a thinning interval 
equal to 10 was used to remove dependencies between 
successive simulations as well. The posterior distributions 
derived with the use of a Cauchy weakly informative prior for 
the spontaneous case are presented in Fig. A1 (see Appendix). 
Then, these posteriors which are almost Gaussian are used as 
priors to the rest of the sample to obtain the final model. The 
results from this procedure produce better results than the 
maximum likelihood method as far as the confidence intervals 
are concerned. The Bayesian procedure gives smaller standard 
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errors for all the coefficients which make the Bayesian models 
more representative for modeling the system of the muscle 
spindle. At the same time, the mean squared error is almost 
identical to the one obtained by the maximum likelihood 
method. 
As it is shown in Table I (see Appendix) for the spontaneous 
activity we use a fifth order polynomial since the 95% credible 
intervals of 𝜃𝜃�𝑠𝑠  for 𝑠𝑠 ≥ 6 contain zero. The threshold and the 
recovery function for both maximum likelihood method and 
the two – step Bayesian logistic regression are shown in Fig. 
A2 (see Appendix). 
It can be seen that the confidence intervals are smaller in the 
two – step Bayesian approach. 
The same applies to the other cases as well as described in 
Figures A3-A5.  
Despite the fact that this method gives smaller confidence 
intervals it is obvious that the functions of the system are 
almost identical and as a result the conclusions are the same. 
The estimates show in both cases (maximum likelihood and 
Bayesian approach) that the system does not fire 
spontaneously through the Ia axon when a gamma motoneuron 
is present. This can be seen in Fig. A3 (see Appendix) where 
the estimate of the recovery function is below the estimated 
threshold. In addition in Fig. A4 (see Appendix) we can see 
from the summation function that there is a significant effect 
on the response of the system when the distance between the 
input and the output spikes is between 11-26 msec. Finally in 
Fig. A5 (see Appendix) it appears that the input spikes 
between 11 and 24 msec before the last output spike have the 
most significant effect on the response of the system. This can 
also be seen in Table II (see Appendix) as the corresponding 
coefficients do not contain zero in the 95% credible interval 
which implies that these coefficients are statistically 
significant. The whole implementation was conducted in RGui 
3.3.3 with the use of  “MCMCpack” package [20]. 

B. Goodness of fit test 
Fig. 4 shows the Q-Q plot of the randomized quantile residuals 
of the models. The 5% rejection regions were computed after 
1000 Bootstrap simulations. Only 0.15% of the 10867 
residuals lie outside of the 5% rejection regions and generally 
it seems that there are no serious deviations from normality. In 
addition the Anderson – Darling statistic is 0.2481 with a p – 
value of 0.7508 which indicates that the null hypothesis that 
the residuals follow an approximate standard normal cannot be 
rejected. 
Furthermore, Fig. 5 shows the Q-Q plot of the randomized 
quantile residuals for the model when a gamma motoneuron is 
present. Here only 0.34 % of the 10866 residuals lie outside 
the 5% rejection regions. Also, the Anderson – Darling 
statistic is 0.22584 with a p – value of 0.8191 which also 
indicates that the null hypothesis that the residuals follow an 
approximate standard normal cannot be rejected. 

IV. CONCLUSION 
In this paper we examined the behavior of the muscle spindle 
using a two-step Bayesian Logistic regression model. Initially 
due to absence of prior knowledge for the distribution of the 
coefficients, a weakly informative Cauchy prior was applied in 

the first 5000 msec. Then the posterior distributions obtained 
by this procedure were used as informative prior distributions 
for the rest of the sample. The results showed that this method 
exhibits better results than the maximum likelihood in terms of 
confidence intervals and in the same time keeping almost an 
identical mean squared error. This means that this method 
gives more representative results. For future research, it will 
be interesting to examine how this method performs in larger 
datasets and when the length of the muscle spindle is changed. 
Also it is important to examine what happens in the secondary 
output of the system (II axon). 

 
Fig. 4: The Q-Q plot of the randomized residuals of the fitted model 
in the case of the spontaneous activity. The dashed lines represent the 
5% rejection regions. 

 
Fig. 5: The Q-Q plot of the randomized residuals of the fitted model 
when a gamma motoneuron is present. The dashed lines represent the 
5% rejection regions. 
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APPENDIX 

 

 
 
Fig. A1: Posterior distribution of the regression coefficients with the use of the first 5000 msec and a Cauchy weakly informative prior in the 
case of the spontaneous discharge. 
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(a) 

 
(b) 

 
Fig. A2: Estimates of the threshold and recovery function in the case of the spontaneous discharge. The dashed lines represent the 95% 
confidence limits. Fig. A2a is the recovery function estimated with the maximum likelihood approach and A2b with the Bayesian Approach 
 
 

 
(a) 

 
(b) 

 
 

Fig. A3: Estimates of the threshold and recovery function when a gamma motoneuron is present. The dashed lines represent the 95% 
confidence limits. Fig. A3a is the recovery function estimated by the maximum likelihood method and A3b with the Bayesian Approach. 
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(a) 

 

 
(b) 

 
Fig. A4: Estimates of the summation function when a gamma motoneuron is present. The dashed lines represent the 95% confidence limits. 
Fig. A4a is the summation function estimated by the maximum likelihood method and A4b with the Bayesian Approach. 
 
 
 

 
(a) 

 

 
(b) 

Fig. A5: Estimates of the carry-over effect function when a gamma motoneuron is present. The dashed lines represent the 95% confidence 
limits. Fig. A5a is the carry-over effect function estimated by the maximum likelihood method and A5b with the Bayesian Approach.  
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Table I: Estimated coefficients (Posterior Mean) and standard 
errors in the case of the spontaneous discharge. 
 
  

Coefficient Posterior mean Posterior SD 
Constant (𝜃𝜃0) -6.923 0.1977 

𝜃𝜃1 3.2089 0.2333 
𝜃𝜃2 -0.8028 0.1058 
𝜃𝜃3 0.10616 0.01928 
𝜃𝜃4 -0.0068035 0.001504 
𝜃𝜃5 0.0001652 0.00004172 

 
 
Table II: Estimated coefficients (Posterior Mean) and standard 
errors when a gamma motoneuron is present. 
 

Coefficients Posterior mean Posterior SD 
Constant (𝜃𝜃0) -7.618907 0.108858 

𝜃𝜃1 0.333184 0.01436 
𝜃𝜃2 -0.009232 0.000561 
𝑎𝑎0 0.090420 0.152474 
𝑎𝑎1 0.417394 0.137391 
𝑎𝑎2 0.092297 0.145588 
𝑎𝑎3 -0.079783 0.160363 
𝑎𝑎4 0.151592 0.156771 
𝑎𝑎5 0.163096 0.154844 
𝑎𝑎6 -0.265992 0.184475 
𝑎𝑎7 -0.050035 0.167762 
𝑎𝑎8 0.406696 0.148034 
𝑎𝑎9 -0.057672 0.173045 
𝑎𝑎10  0.403084 0.155638 
𝑎𝑎11  0.904310 0.145005 
𝑎𝑎12  1.234174 0.139036 
𝑎𝑎13  2.029581 0.132973 
𝑎𝑎14  2.794553 0.116689 
𝑎𝑎15  2.645543 0.144025 
𝑎𝑎16  2.891222 0.154222 
𝑎𝑎17  3.488673 0.154343 
𝑎𝑎18  1.754975 0.249089 
𝑎𝑎19 3.225401 0.184409 
𝑎𝑎20  2.770269 0.223597 
𝑎𝑎21  3.070738 0.226795 
𝑎𝑎22  3.375994 0.226955 
𝑎𝑎23  2.983989 0.253456 
𝑎𝑎24  2.659327 0.281284 
𝑎𝑎25  2.052024 0.409523 
𝑎𝑎26  2.693054 0.31129 
𝑎𝑎27  0.163596 0.801225 
𝑎𝑎28  1.320236 0.474857 
𝑜𝑜4 -1.247532 0.685394 
𝑜𝑜5 -1.234037 0.507991 
𝑜𝑜6 -1.930154 0.6765 
𝑜𝑜7 0.190744 0.277347 
𝑜𝑜8 -1.372749 0.43018 

𝑜𝑜9 -0.636757 0.361041 
𝑜𝑜10  0.005051 0.24809 
𝑜𝑜11  0.940712 0.186162 
𝑜𝑜12  1.057297 0.165226 
𝑜𝑜13  1.751495 0.144835 
𝑜𝑜14  1.662515 0.153424 
𝑜𝑜15  1.695869 0.142771 
𝑜𝑜16  1.291875 0.161367 
𝑜𝑜17  1.049825 0.167638 
𝑜𝑜18  1.401288 0.145025 
𝑜𝑜19 1.159556 0.147859 
𝑜𝑜20  1.178059 0.146732 
𝑜𝑜21  1.025652 0.146153 
𝑜𝑜22  0.529577 0.171938 
𝑜𝑜23  0.737469 0.146148 
𝑜𝑜24  0.996309 0.137052 
𝑜𝑜25  0.487847 0.153795 
𝑜𝑜26  0.682556 0.14704 
𝑜𝑜27  0.359692 0.148814 
𝑜𝑜28  0.357239 0.140875 
𝑜𝑜29 0.338669 0.133709 
𝑜𝑜30  0.861967 0.120433 
𝑜𝑜31  0.106188 0.148163 

ACKNOWLEDGMENT 
The authors are thankful to Professor G.R. Moore and 
Professor J.R. Rosenberg for providing the datasets. 

REFERENCES   
[1] U. Proske and S.C. Gandevia, “The proprioceptive senses: their roles in 

signaling body shape, body position and movement, and muscle force,” 
Physiological reviews, vol. 92, no. 4, pp. 1651-1697, 2012. 

[2] A. A. Butler, M. E. Héroux and S. C. Gandevia, “Body ownership and a 
new proprioceptive role for muscle spindles,” Acta Physiologica, vol. 
220, no. 1, pp. 19-27, 2017. 

[3] I.A. Boyd, “The isolated mammalian muscle spindle,” Trends in 
Neuroscience, vol.3, pp. 258-265, 1980. 

[4] P.B.C. Matthews, “Review Lecture: Evolving views on the internal 
operation and functional role of the muscle spindle,” Journal of 
Physiology, vol. 320, pp. 1-30, 1981. 

[5] D.R. Cox and V. Isham, Point Processes. London: Chapman and 
Hall/CRC, 1980. 

[6] A.G. Rigas, “Spectra-based estimates of certain time-domain parameters 
of a bivariate stationary-point process,” Mathematical Biosciences, vol. 
104, no. 2, pp. 185-201, 1991. 

[7] D.R. Brillinger, “Maximum likelihood analysis of spike trains of 
interactive nerve cells,” Biological Cybernetics, vol. 59, no.3, pp. 189-
200, 1988a. 

[8] D.R. Brillinger, “The maximum likelihood approach to the identification 
of neuronal firing systems, Annals of Biomedical Engineering, vol.16, 
no.1, pp. 3-16, 1988b. 

[9] V.K. Kotti and A.G. Rigas, “Identification of a complex 
neurophysiological system using the maximum likelihood approach,” 
Journal of Biological Systems, vol. 11, no.2, pp. 189-204, 2003. 

[10] M. E. Glickman and D. A. van Dyk, “Basic Bayesian Methods,” in 
Methods in Molecular Biology, vol. 404: Topics in Biostatistics, W.T. 
Ambrosius, Ed. Totowa NJ: Humana Press, 2007, pp. 319-338. 

[11] W.M. Bolstad, Introduction to Bayesian Statistics, 2nd ed.: Wiley, 2007 
[12] D. Gamerman and H.F. Lopes, Markov Chain Monte Carlo: Stochastic 

Simulation for Bayesian Inference, 2nd ed.: Chapman and Hall/CRC, 
2006. 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018 

ISSN: 1998-4510 73



 
 
 
 
 

 

[13] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain 
Monte Carlo in Practice, 1st ed.: Chapman & Hall, 1996. 

[14] A. Gelman, A. Jakulin, M.G. Pittau and Su Yu – Sung, “A weakly 
informative default prior distribution for logistic and other regression 
models,” The Annals of Applied Statistics, vol.2, no.4, pp.1360-
1383,2008.. 

[15] D.A. Pierce and D.W. Schafer, “Residuals in Generalized Linear 
Models,” Journal of the American Statistical Association, vol. 81, no. 
396, pp. 977–986, 1986. 

[16] P. Dunn and G. K. Smyth, “Randomized Quantile Residuals, ” J. 
Computat. Graph. Statist, vol. 5, pp. 236–244, 1996. 

[17] N.M. Razali, Y.B. Wah, et al., “Power comparisons of Shapiro-Wilk, 
Kolmogorov-Smirnov, lilliefors and Anderson-Darling tests,” Journal of 
Statistical Modeling and Analytics, vol.2, no.1, pp. 21-33, 2011 

[18] I. I. Spyroglou, E. A. Chatzimichail, E.N. Spanou, E. Paraskakis, and A. 
G. Rigas, "Ridge regression and bootstrapping in asthma prediction," in 
New Developments in Pure and Applied Mathematics INASE 
Conference proceedings (MMSSE „15), Vienna, Austria, pp. 44-48, 
March 2015. 

[19] B. Efron and R.J. Tibshirani, “An Introduction to the Bootstrap, ” 
(Chapman & Hall, New York), 1993. 

[20] A.D. Martin, K.M. Quinn and J.H. Park, “MCMCpack: Markov chain 
Monte Carlo in R,” Journal of Statistical Software, vol.42, no.9, pp.1-
21, 2011 

 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018 

ISSN: 1998-4510 74




