
  
Abstract— Breast cancer is continually one of the mean causes 

of female mortality. Mammography is the most widely used imaging 
technique for detecting tumors at a premature stage. This 
investigation is currently the best for breast cancer screening. The 
presence of microcalcifications in mammography images is 
particularly interesting for the early detection of breast cancer. The 
objective of our work is the automation of microcalcifications’ 
detection by mammographic images’ processing. This helps the 
experts in their work because the number of images to be inspected 
and evaluated is very large.  For this purpose, an automated 
algorithm is proposed for the detection of microcalcification clusters 
following a specific methodology.  First, mammography is 
preprocessed using a technique that involves improving the quality 
of mammography (improvement of local contrast). Then, the clusters 
are identified using a stochastic analysis based on hidden Markov 
chains, together with a Hilbert-Peano analysis of the medical images. 
This may allow detecting nodular components such as 
microcalcifications with precision by introducing size information. 
The obtained results are visually very clear, precise and show that the 
proposed approach permits to successfully extract the 
microcalcifications from the referential mammographic images of the 
MIAS database. Furthermore, we have showed that   the use of 
hidden Markov chains (HMM) is more efficient for the detection of 
microcalcifications because HMMs rely mainly on the spatial 
regularity constraint for image processing. On the other hand, based 
on objective performance measures namely true positive rate (TPR) 
and false positive rate (FPR), the comparative study carried out on 
the three breast densities has shown the efficiency of our method 
whatever the type of the breast density. 
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I. INTRODUCTION 
ICROCALCIFICATIONS in mammography are 
considered as the most important reliable first sign of 

breast cancer and their early detection is essential to improve 
its prediction. Microcalcifications are fine calcareous deposits 
only visible in mammography, which may correspond to 
benign or malignant lesions. In a primary way, the clinical 
diagnosis of breast cancer is made by a palpation of the breast, 
the aim being to spot an abnormal mass, but also to search for 
lymph nodes. The doctor will then perform a bilateral 
mammogram (radiography of both breasts) [22]. Early 
diagnosis by detection of microcalcification requires this 
radiography. This allows obtaining 2D images from inside the 
breast using X-rays. The examination of the obtained images 
by a radiologist allows to detect, in the first place, the cancer 
and to distinguish the type of detected lesions. Then, the 
images are examined by a specialist doctor who gives its 
opinion about the subject. 

 The objective of our work is to automate the detection of 
microcalcifications by processing of mammographic images. 
This helps the experts in their work since the number of 
images to be valued is very large. 

The microcalcifications appear on the radiographic image 
as a grouping of few pixels brighter than the neighboring 
pixels [40]. This means that they correspond to pixels of 
stronger intensity and their detection is obtained by extracting 
features from analysis of the radiographic image. The 
attributes of pixel groupings representing microcalcifications 
remain a fundamental problem for the detection of these 
calcium salt deposits. These attributes (size, shape, density, 
distribution model, and number of microcalcifications) are 
examined in order to differentiate between benign and 
malignant microcalcifications [19]. The size of the 
microcalcifications is within the range [0.1-1mm], and the 
average is about 0.3 mm. As a result, it is difficult to detect 
them by the examining radiologist. Microcalcifications are 
represented on a radiographic image by a number of less than 
5 pixels per group [13], [29]. They may be of low contrast, so 
the difference in intensity between the suspicious areas and 
their surrounding tissues may be quite low [9], [18]. 
Consequently, microcalcifications can be closely related to 
surrounding tissues, and simple segmentation algorithms 
cannot work properly [11], [35].  On the other hand, in some 
cases where the tissues are dense or the skin is thick, in 
particular for younger women, the suspicious areas are almost 
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invisible and hence they may not be detected as 
microcalcifications. Fig.1. shows four mammograms of the 
MIAS database containing a group of microcalcifications [1]. 
The four examples have been selected for a good visualization 
of the problem, although in general, microcalcifications are 
subtler and difficult to appreciate, even for experts in 
radiology. 

In the following, we briefly describe several approaches for 
microcalcifications’ detection. We define each method and 
provide an overview on its implementation and discuss its 
advantages and drawbacks. 

 In the literature, the most methods are based on the analysis 
of digital radiographic images. These methods are based on 
simple morphological operations such as   filtering and image 
subtraction [3]. Such approaches can be effective but they 
usually require determining manually the thresholds under 
visual control. Thus, the threshold does not take into account 
the spatial characteristics of the image. This makes them 
sensitive to the noise and intensity of the homogeneities that 
can occur in the mammographic images [2]. In this context, 
the related works are often difficult to compare due to the fact 
that some methods use the whole mammographic images 
whereas some others use only the regions of interest. 
However, the objective is always the same: detection of 
benign and/or malignant microcalcifications. 

The methods of coalescence, for example, are numerous 
and very often used for their simplicity and fast calculation. 
These cluster algorithms do not directly incorporate spatial 
modeling and then can be sensitive to intensity 
inhomogeneities and noise. However, this lack of spatial 
modeling can provide significant benefits for fast calculation 
[28]. The LBG (Linde Buzo Gray) algorithm consists of 
successively cutting the observation using the K-means 
algorithm (with metric d). The main difference with the 
previous method is the construction of groupings in the image. 
Indeed, the number of classes increases progressively in the 
LBG algorithm (via a sequence of division of the already 
established groupings) while it is maintained constant for the 
K-means. On the other hand, as for the K-means, the LBG 

algorithm does not introduce any spatial constraint between 
the current element and its neighbors in the image [31].  

Another approach consists of performing thresholding. A 
thresholding procedure attempts to determine an intensity 
value, called a threshold, which separates the desired classes. 
The process that serves to determinate more than one 
threshold value is called multi-thresholding [4], [20]. Note that 
thresholding is one of the simplest and strongest commonly 
used ways to perform image segmentation [5]. Its main 
limitations are: i) in its simplest form, only two classes are 
produced and ii) it cannot be applied to multiple-channel 
images. Furthermore, the thresholding does not introduce any 
spatial constraint between the current element and its 
neighbors in the image. This makes it sensitive to noise and 
intensity inhomogeneities that can occur in mammographic 
images [6], [7]. 

Other methods are based on the classification tools. These 
methods are composed of two steps. The first one consists of a 
pre-preprocessing that serves to extract a vector of attributes 
representing the relevant characteristics of the image. The 
second one is the classification that consists of two stages: 
learning and use of the classifier [19], [28]. The major 
drawback of these tools is the need for a complete and 
relevant pre-preprocessing phase. Among the most used 
classification methods we cite: the statistical methods [8], the 
spatial distribution of grayscale level values by calculating the 
local indices in the image and then deducing a set of 
parameters and the discriminant factorial analysis. The latter, 
for example, separates linearly the data by projecting them 
into a space minimizing the intra-class variance while 
maximizing the interclass variance. This method is particularly 
fast and the obtained decisions’ boundaries linearly 
discriminate the points’ clouds. The major limitation here is 
the need to have a complete and relevant learning set in order 
to determine the decision boundaries between the classes.  

Some research teams have focused on the of Support Vector 
Machine (SVM) method which is an elegant nonlinear 
approach [14]. In fact, SVMs use a kernel (simple analytic 
function), or a combination of kernels, in order to linearize the 
data and obtain a hyperplane separating the classes. The SVM 
method is fast and flexible to use, especially thanks to the 
construction of specific kernels to a given problematic but 
remains supervised [33], [48].  

More recently, some researchers have focused on the use of 
multiresolution techniques [12] and multifractal analysis in the 
detection of microcalcifications [10]. The combination of 
wavelet transforms and grouping was also used by many 
authors [14], [15]. The deformable models delimit the 
boundaries of regions by using closed parametric curves or 
surfaces that are deformed under the influence of internal and 
external forces. To delimit an object boundary in an image, a 
closed curve or surface must first be placed near the desired 
boundary and then an iterative relaxation process is 
effectuated. The Internal forces are calculated inside the curve 
or surface to keep it smooth throughout the deformation. 
External forces are usually determined from the image to 
guide the curve or surface to some desired characteristics of 
interest [16].  The main advantage of deformable models is 
their ability to directly produce closed parametric curves or 

 

 
Fig. 1 four mammograms containing microcalcifications 

(extracted from the MIAS database). 
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surfaces in images. This provides robustness to noise and false 
contours. A drawback is that they require manual interaction 
in order to place an initial model and choose appropriate 
parameters [24], [26]. 

Another approach consists of the use of a geometric form, 
also called a template, which we will try to locate on the 
image. The principle is to know exactly (or almost) the shape 
of the object we are looking for and then browse the whole 
image to place the template in the most likely place. This is 
much more constraining than needing to know how many 
elements are present in the image. In this case, it is necessary 
to know the precise form of what we are searching. There are 
works on deformable templates that approximate snakes. We 
locate the best place to put the template in the image and then 
let it be deformed in order to best match the image. The 
template is subjected to energy of the same kind as the 
external energy of a snake (energy imposed by the image). An 
advantage of these approaches is that labels are transferred as 
well as segmentation. They also provide a standard system for 
the morphometric study of properties [26], [34]. 

Several authors have developed techniques based on the 
concept of texture to analyze mammographies and detect 
microcalcifications [36], [45], [49]. This is motivated by the 
fact that information in the textures of an image can bring 
variations of luminous intensity in the neighborhood, which 
can reflect the object’s properties. Furthermore, the choice of 
an analysis window remains problematic. The analysis of the 
texture based on the cooccurrence matrix is the most common 
method for analyzing textured images in general and 
mammographies in  particular [30]. However, the major 
disadvantage is the computational time: knowing that the 
cooccurrence matrix is an NN × matrix, where N is the 
number of grayscale levels contained in the image; the texture 
analysis applied to the size of the mammography image 
implies a matrix of cooccurrence of dimension 256x256 with 
80% of its components set to zero. 

In our work, we propose to use Hidden Markov Chains 
(HMCs) for the detection of microcalcifications in a 
mammogram image. HMCs are frequently used to model 
stochastic interactions between classes and to enable overall 
bayesian optimization of the segmentation result. The Markov 
chains are probabilistic tools quite widely used in image 
processing. Their major benefit is to be able to provide 
modeling of the spatial dependencies of the random variables, 
whose realizations model the observed or wanted quantities, in 
a relatively simple and suitable way for various processing. 
Several models based on Markov chains have been proposed, 
including HMCs, largely used in image segmentation. It is 
important first of all to clarify that the modeling by HMCs is 
not in itself a segmentation method, but a statistical model that 
can be used in segmentation methods. It may also be noted 
that the hidden variables do not have, a priori, physical 
existence in the observed phenomenon; but, they are primarily 
used to create flexible models. However, after analyzing the 
data with respect to the model, they often find a concrete 
interpretation a posteriori [17], [23]. 
The HMCs allow, thanks to their structure, to take into 
account the spatial dependencies between the different pixels 
of the image and to incorporate priori information on the 
segmentation [32]. A difficulty associated with these models is 

the appropriate choice of parameters that control the force of 
spatial interactions. In addition, they usually require intensive 
computing time algorithms. 

II. THE PROPOSED METHOD     
The main objective of the proposed method is to improve 

the pixel groupings’ contrast representing microcalcifications 
by highlighting the spatial information present in the 
mammographic images. Another objective is to show that that 
use of hidden Markov chains is more efficient for 
microcalcification detection. This is due to the fact that the 
HMC is mainly based on the spatial regularity constraint for 
image processing [23]. Fig.2 shows the flowchart of the 
proposed method. 

A. Division and thresholding 
In the vast majority of mammographic images, the size is 

very large and almost 50% of the entire image composed of 
background (black). In this stage, we apply an automatic 
image division by dividing the analyzed image into a set of 
sub-images of size (256x256). For each sub-image, the 
intensity average is calculated. Then, using the thresholding 
method, we eliminate all sub-images that have only 
background information. The sub-images with more intensity 
(information) are kept for the subsequent processing. 

 

a1 a2 

 

 

 
Fig. 2 flowchart of the proposed detection method 
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B. Contrast improvement 
The objective of contrast enhancement is to highlight the 

regions of interest by attenuating the others in order to 
simplify the detection process. In fact, the groupings of pixels 
representing microcalcifications are characterized by a low 
contrast. On this other hand, the difference in intensity 
between the suspicious areas and their surrounding tissues can 
be quite slim. This problem is resolved in two steps: 1) 
subdividing the sub-images retained after the thresholding 
operation into sub-images of size (128x128) and 2) carrying 
out the histogram dilatation of local intensity on each sub-
image. This results on increasing the intensity dynamics of the 
sub-images and thus increasing the contrast of the pixels 
representing microcalcifications compared to the surrounding 
tissues’ contrast. 

C. The segmentation 
The segmentation of a two-dimensional image is the 

technique permitting to divide this image into a finite number 
of homogeneous areas, called classes. Statistical segmentation 
consists of searching for these areas from the observed image. 

The problem is to estimate the components of a hidden 
random process from an observed process [42], [43], [44]. In 
fact, segmentation constitutes a complex problem. The 
calculation of the posterior law is not always possible; in 
particular, it may be very complex [46], [51]. The difficulties 
occur when the sample size increases. In such cases, a 
solution, which has often proved to be efficient, consists of 
using the hidden Markov chains which take into account the 
dependencies between components and allow the exact 
calculation of posteriori laws.  

The entire segmentation algorithm is divided into three steps 
(see Fig.2): 
Step 1: Initialization: the objective is to perform a preliminary 
estimation of the model’s parameters. The output 
parameter 0θ (the  mean  value  and  the  variance  for  a  
scalar  Gaussian  distribution) is obtained using an initial 
classification algorithm (K-means algorithm).  
Step 2: Parameters’ estimation: this step is performed by 
Iterative Conditional Estimation (ICE) algorithm. Each 
iteration q gives an estimation of the parameters qθ . When the 
final estimate is obtained, ordinary segmentation with known 
parameters is effectuated. Since the number q of iterations 
cannot be defined a priori, the algorithm is stopped when the 
values of the output parameters do not change under a given 
limit or when the maximum number of iterations is reached. 
Step 3: Unsupervised classification: this last step allows 
segmenting the original image from the estimated parameters 

qθ (at the output of ICE). In a Bayesian context, the Mode 
Marginal’s Posteriori (MPM) algorithm is used. 

C.1. Hidden Markov Chain 
A hidden Markov Chain is a stochastic discrete time 

process composed of two processes X andY . The term 
"hidden" means that the realizations of X  are unobservable. 
We consider two random processes ( ) SssXX ∈= and 

( ) SssYY ∈= where X is the unknown class image and Y  
represents the observed image. Let S be a finite set 
corresponding to the N pixels of an image. Each random 
variable sX takes its values from the finite set of 
classes { }Kωω ,...,1=Ω , whereas each sY  takes its values in 
the set of real numbers. We denote realizations of X and Y  by 

( ) Sssxx ∈=   and ( ) Sssyy ∈= , respectively [25], [37]. 

Hereafter we suppose that the random variables ( ) SssYY ∈=  
are conditionally independent with respect to X and that the 
distribution of each sY conditional on X is equal to its 
distribution conditional on sX .  All the distributions of Y  
conditional on X are then determined by the K distributions 
of sY with respect to KSXX ωω == ,...,11  , which will be 
denoted :,...,1 Kff     

( ) ( )∏ ∈
=====

Ss ssss xXyYPxXyYP                             (1) 

                       ∏ ∈
=

Ss sxs yf )(  

 
a3 a4 

a5 
 

Fig. 4 division, thresholding and improvement of local contrast 
(a3) reconstruction of "a2" after thresholding operation (1024 × 
1024) pixels, (a4) sub-images (128 × 128 pixels) obtained after 
"a3" division, (a5) reconstruction of « a4 » after improving the 

local contrast. 

 

  

a3  
Fig. 3 division and thresholding  

(a1) Image of original malignant mammogram (1024 × 1024 
pixels), (a2) sub-images (256×256 pixels) obtained after division 
of «a1», (a3) reconstruction of «a2» after thresholding operation 

(1024 × 1024 pixels). 
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A Markov chain is a sequence of random variables 
( ) NnXX n ≤≤= 1, with values in Ω such that: 

( )====>∀ −− 1111 ,,,1 nnnn xXxXxXPn                    
                           ( )11 −− === nnnn xXxXP                    (2)  

The elements of a Markov chain will therefore be entirely 
determined by the data of its initial probability ( )iXP ω=1

, 
denoted by iπ , and the probabilities of 
transitions ( )injnij XXPa ωω === +1

. 

As indicated above, we will model the interactions among the 
random variables sX by considering that the prior distribution 
of X  can be modeled by a Markov process [38]. We refer to 
as hidden Markov chains, as X is not directly observable. The 
segmentation problem consists in estimating xX = from the 
observation yY = .  

As required by the Markov chains, the 2D image must be 
converted into a one-dimensional vector. The simplest idea is 
to sweep the image line by line or column by column. The 
problem of this method is that the past and the future of a pixel 
do not always correspond to its spatial context. Thus, when 
one considers the method line by line, two neighboring pixels 
and belonging to the same column are near spatially and 
distant in sense of Markov chain. To avoid the problem of the 
temporal and spatial contexts, a lot of authors uses the Hilbert 
Peano scan [25], [37] as illustrated in Fig.5. 

C.2. Initialization 
The objective of this step is to provide an initial estimation 

of the models’ parameters 0θ . For this propose, the K-means 
algorithm is implemented. The later is an iterative method for 
classifying the pixels of an image into K classes ( Ω∈K ) 
according to their grayscale level. The pixel is assigned into 
the class for which the distance from the pixel to the class’s 
center is minimal.  It should be noted that this method can 
only be used to initiate classes with different mean values 
[28]. For example, the algorithm is not adapted to classes that 
have the same mean value but different variances.  However, 
one drawback is that the K-means is basically a thresholding 
method. Hence, if there is much overlap between the true 
classes’ distributions, the resulting class vector will be quite 

irregular and the initial classes’ statistics will not be very 
representative. Figs.6-7 shows some examples illustrating 
these limits. 

C.3. Parameters’ estimation 
In practice, the regularity parameters and those of classes’ 

distributions are often unknown and must be estimated from 
the observation yY = . On the other hand, as the distribution 
of Y can be written as a weighted mixture of probability 
densities )()()( yfxXPyf xxY ∑ == , the estimation problem 

is double: we do not know neither the classes’ characteristics 
nor which pixels are representative for each class [23], [25]. In 
this context, there are several iterative methods for mixture 

 

 (a) 

(b) 

 (c) 

 1  N  
Fig. 5 construction of a Hilbert Peano scans for an 8 × 8 image  

(a) Initialization. (b) Intermediate stage. (c) Result. 
 

 

 

    

     

    

     

    

     

(b) (a) 

(c)  
Fig. 7 limits of K-means detection with local contrast 

enhancement: (a) original mammography image (1024 × 1024 
pixels), (b) sub-image (128× 128 pixels) with local contrast 

enhancement and (c) result of K-means algorithm. 

 

 (b) (a) 

 

  

    

     

    

     

    

     

  

(c) 
 

Fig. 6 limits of K-means detection without local contrast 
enhancement:  (a) original mammography image (1024 × 1024 
pixels), (b) sub-image (128× 128 pixels) without local contrast 

enhancement and (c) result of K-means algorithm. 
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estimation, including EM (for Expectation Maximization) 
SEM (for Stochastic Expectation Maximization) and ICE [38], 
[41].  The latter is used in this paper.  

In what follows, we consider classic mixture estimation, where 
all classes are supposed to be Gaussian [37], [39].  The ICE 
algorithm is initialized using K-means in order to define the 
class parameters 0

iθ and thus the marginal conditional 
distributions 0

if . Furthermore, the uniformly distributed a 
priori probabilities 0

iπ and the generic transition 
matrix { }00

ijaA =  are also determined. Each ICE iteration q  is 

based on two assumptions: 
1. There exists at least one estimatorθ̂ defined for the 

complete dataθ . 
2. The possibility of simulating the hidden process according 

to its a posteriori law. 

C.4. Unsupervised classification 

Let us first assume that we know the distribution if and the 
associated parameter vector iθ of each class iω (in the case of a 
scalar Gaussian distribution, for example ),( 2

iii σµθ = , 
where iµ is the mean value and 2

iσ the variance), as well as the 
regularity parameters ijc . In a bayesian framework, the aim of 
the segmentation is to determine the realization xX = that 
best explains the observation yY = , in the sense that it 
minimizes a given cost function [35], [41], [50]. Hence, the 
choice of the cost function determines which kind of estimator 
we will use, namely the MAP (for maximum a posteriori), that 
maximizes the global a posteriori probability )( YXP = , and 
the MPM, which consists in maximizing the posterior 
marginal distribution )( YXP S= for each pixel. In this work, 
we use MPM classification.  

C.5.Thresholding 
The aim of thresholding at the output of HMC is to 

eliminate all groupings of pixels having a number greater than 
(5x5) pixels by group. This is because the size of 
microcalcifications is within the range [0.1-1mm]. If the 
cancer affects several regions and if the size of the tumor is 
large (greater than 5mm), the mastectomy is performed: It is 
too late for the patient. Our method allows to detect the 
presence or not of the anomaly without being able to 
determine the type of this anomaly. 

III. EXPERIMENTAL RESULTS 
We present here results of application of our algorithm on 

real database of mammographic images. In order to highlight 
the performance of microcalcifications’ detection, we have 
used some evaluation criteria of the obtained results namely 
sensitivity and specificity. First, we describe the database used 
for the test and validation of the proposed method. Then, we 
present some experimental results involving several tests on 
real mammographic images including pre-processing and 

microcalcifications’ detection according to the development 
described in Section II. Discussions are provided in Section 
III.D followed by conclusions. 

A. The used database          
In order to evaluate and validate the performance of our 

approach, the MIAS [1] (Mammography Image Analysis 
Society) database has been used. The latter is as a result of the 
work of a group of British scientists interested in 
mammography. The MIAS database contains a set of 322 
digitalized mammographic images of MLO (Medio-Lateral 
Oblique) type that explore the left and right breast of 161 
women. These images belong to three categories: normal, 
benign and malignant, which are considered abnormal. 
Furthermore, abnormal cases are divided into six classes 
namely:  calcification (CALC), well-defined/circumscribed 
masses (CIRC), spiculated masses (SPIC), other, ill-defined 
masses (MISC), architectural distortion (ARCH) and 
asymmetry (ASYM). The original MIAS database (digitised at 
50 micron pixel edge) has been reduced to 200 micron pixel 
edge and clipped/padded so that every image is 1024 × 1024 
pixels [1] with a gray level ranging from 0 to 255.The base 
also contains the location of various abnormalities present in a 
mammography given by expert radiologists. Only images with 
microcalcifications’ were considered. 

B. Evaluation criteria 
For detection problems in medicine, the a priori of each 

decision is not absolute but based on the judgment of the 
expert. More concretely, in our application, it is a question of 
making the compromise between the risk of not detecting a 
cancer and the inconvenience of having additional 
examinations on a large number of patients. We propose here 
an evaluation method of the quality of a detection result that 
does not require any a priori knowledge on the investigated 
images. The sensitivity that is, in fact, the true positive rate 
(TPR), represents the ability of a diagnostic test to provide a 
positive result in the presence of the disease.  The specificity 
represents the ability of an examination to provide a negative 
result in the absence of the disease [21], [27], [47]: 

FNTP
TPySensitivitTPR
+

==                                           (3) 

TNFP
FPySpecificitFPR
+

=−=1                                     (4) 

where TP means the true positive number, TN the true 
negative number, FP denotes the number of false positive or 
type I error (in decision theory terminology), FN denotes the 
number of false negative or type II error and FPR is the false 
positive rate.  
 

C. Results 
In order to evaluate the performance of the proposed 

method, several tests were performed on the MIAS database 
mammographic images of different characteristics. These 
microcalcifications belonging to three categories: normal, 
benign and malignant. The appropriate number of classes can 
be obtained either from the opinion of an expert depending on 
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the context or using the histogram.  In order to provide a 
comparative study, Figs. 8-9 show the results experiments 
concern real images containing of application of the proposed 
contrast enhancement approaches (local and global) to one of 

the mammographies presented in Fig.1. The same procedure is 
applied to the other remaining three images. 
 

  

The obtained results confirm the performance of contrast 
enhancement in highlighting the regions of interest for the 
proposed microcalcifications’ detection (see Fig.10). At that 
moment, the latter becomes quite simple due to the following: 
i) only sub-images with most intensity (i.e. information) are 
kept for subsequent processing and ii) intensity dynamics of 

the sub-images is increased which increases the contrast of 
pixels representing microcalcifications with respect to the 
surrounding tissues. From Fig.10, we see that 
microcalcifications have been successfully detected. Note that 
our method allows detecting the presence of the anomaly or 
not without being able to determine the type of the anomaly. 

 

 

a1 a6 a2 a3 a7  
Fig. 9 result of application of global contrast enhancement 

(a1) Malignant original mammography image (1024 × 1024 pixels), (a2) sub-images (256 × 256 pixels) of (a1) after division, (a3) reconstruction of 
(a2) after thresholding (1024 × 1024) pixels, (a6) (a3) after enhancement of the global contrast (1024 × 1024) pixels and (a7) sub-images (128 × 

128 pixels) of (a6) after division. 
 

 

a2 a3 a5 a1 a4  
Fig. 8 result of application of local contrast enhancement 

(a1) Malignant original mammography image (1024 × 1024 pixels), (a2) sub-images (256 × 256 pixels) of (a1) after division, (a3) 
reconstruction of (a2) after thresholding (1024 × 1024) pixels, (a4) sub-images (128 × 128 pixels) of (a3) after division and (a5) reconstruction 

of (a4) after enhancement of local contrast. 
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The presented results are comparable to those found in the 
literature. However, the study of the different approaches 
show that the theory of probabilities based on hidden Markov 
chains is the most appropriate to model information extracted 
from images. These stochastic models introduce contextual 
information with a spatial regularization while the other 
segmentation methods do not respect the spatial coherence of 
the classes in the image. Furthermore, the main advantages of 
our approach are : 1)  possibility of detecting the presence of 
microcalcifications of sizes smaller than 1mm (3 to 5 pixels), 
2) consideration of spatial information in the classification of 
the image’s pixels as it is evident from the various investigated 
examples, 3) better preservation of boundaries of regions of 
excellent structures and robust estimation of regularity 
parameters and 4) the choice of a Gaussian model leads to 
satisfactory segmentation results with notable improvement in 
the homogeneity of the performed segmentation with 
improved contrast. 

D. Analysis and discussion 
In general, the obtained results are very satisfactory and 

suitable for estimation of the segmentation model parameters 
and detection of microcalcifications. If we analyze the 
obtained results from visual point of view and in the sense of 
objective evaluation criterion, we see that they are coherent. 
However, we note the following remarks: 
The efficiency of applying hidden Markov chains on 
microcalcification detection is proved through several tests 
applied to real mammographic images. Estimation of 
regularity parameters, which are the elements of a stationary 
transition matrix, is much more robust. The area boundaries 
are often slightly irregular, but fine structures are generally 
better detected. The obtained results confirm that 
microcalcification can be accurately determined. Hence, the 
contrast enhancement technique improves the performance of 
our algorithm in detecting both benign and malignant classes.  

In order to ensure the convergence of the algorithms, we 
repeated the experiments for all images over 100 iterations: no 
degradation of segmentations is observed. First, for 
parameters’ estimation, we used the ICE algorithm which has 
the advantage that it is not expensive from computing time 
point of view. The number of iterations of ICE is set to 100 
and we calculated only a posterior realization by iteration. 
Then, to achieve the segmentation task, we opted for an 
unsupervised classification method that minimizes the number 

of misclassified pixels based on the MPM estimator. Note that 
the performed classification is direct without any need of 
iterative calculation. Thus, the Gaussian distribution is well 
adapted to mammographic images. 

Another subjective evaluation is used by comparing the 
selected sub-images after thresholding without and with 
contrast improvement (local and global). The number of 
detected microcalcifications is also checked with respect to the 
expert's opinion in benign and malignant cases of an infected 
breast. From Figs.10 (c1) - (c3), it is clearly seen that 
detection based on the proposed method does not capture the 
same details on the analyzed image, namely the number and 
the size of microcalcifications, with and without the use of one 
of the two contrast enhancement techniques. In order to 
facilitate the visual comparison, an area delimited by a circle 
is selected in the different sub-images. It can be seen that 
detection with local improvement of the contrast clearly 
outperforms detection without any contrast enhancement or 
with global improvement. Tab.1 summarized the details of 
these results by referring to the objective evaluation criteria 
given by Eqs. (3) - (4) and considering the three types of 
breast density. 

The experimental results reported in Tab.1 show that our 
approach is more efficient for the detection of 
microcalcifications of benign lesions regardless of the types of 
breast density. The best obtained rate of true positive is 
90.00% realized with images of the Fatty breast density of 
benign lesions whereas this rate is of the order of 70% when 
we apply our method to the images of the same density but of 
malignant lesions.  This decrease is explained by the fact that 
in dense tissues where the skin is thick, the suspect zones are 
not very distinct, amorphous, too small or fuzzy and almost 
invisible so they cannot be detected as microcalcifications. 
Thus, we conclude that our detection method based on hidden 

 

 

b1 c1
 

b2 c2 b3 c3 
 

Fig.10 results of the propose microcalcifications’ detection method applied to the four mammographic images of Fig.1 
 (b1) (a4) after thresholding without contrast enhancement, (b2) (a5) after thresholding, (b3) (a7) after thresholding, (c1) microcalcifications’ 
detection by proposed algorithm without contrast enhancement, (c2) microcalcifications’ detection using the proposed algorithm with local 

contrast enhancement, and (c3) microcalcifications’ detection using the proposed algorithm with global contrast enhancement. 
 

 Nature of the lesion 

Type of breast density Malignant (M) Benign (B) 

TPR FPR TPR FFP 

   Dense-glandular (D) 0.725 0.275 0.825                              0.175 

   Fatty-glandular (G) 0.814 0.186 0.85                              0.15 

    Fatty (F) 0.7 0.3 0.9                              0.1 

Tab.1 objective evaluation criteria for the three types of breast 
density in the case of malignant and benign lesions 
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Markov chains is well adapted to the analysis of 
mammographic images. 

Several facts come out from this experimental study. First, 
the relevance of considering spatial information for pixels’ 
classification is evident in the various investigated examples. 
Secondly, the choice of a Gaussian mixing model leads, as 
expected, to acceptable segmentation results and there is a 
notable improvement in the homogeneity of the segmentation 
using a spatial model. This shows that the used 
approximations of hidden Markov chains preserve the 
Markovian information. Finally, the performed comparisons 
on the three breast densities prove that the proposed approach 
gives better analysis results and then better performance. 

The speed and flexibility of our method based on the use of 
hidden Markov chains, Hilbert-Peano-type scans, data 
attachment parameters’ estimation and a priori conditional 
probabilities for unsupervised segmentation may open up 
original perspectives to resolve the problem of unsupervised 
spatiotemporal statistical image segmentation. More generally, 
these techniques are also applicable to other related fields such 
as unsupervised segmentation of 3D images or even sequences 
of 3D images. 

IV. CONCLUSION 
 In this paper, we present an automated algorithm for the 

detection of microcalcifications using a specific processing of 
mammographic images. This helps the experts in their work 
because the number of images to be valued is very large. The 
proposed method consists first of highlighting the spatial 
information present in the mammographic images by 
improving the contrast of pixel groups representing 
microcalcifications. The second main contribution concerns 
the confirmation that the use of hidden Markov chains 
constitutes a more effective and powerful tool for 
microcalcifications’ detection because HMCs rely mainly on 
the spatial regularity constraint for image processing. The 
experimental results prove that the proposed combination 
between contrast enhancement as a pre-processing phase and 
HMC-based segmentation block provides accurate 
microcalcifications’ detection. 
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