
 

 

 

Abstract—Alzheimer’s is the most common form of Dementia 

prevailing in the elderly people. This review paper aims to put 

forward recent developments in the diagnosis of Alzheimer’s disease 

(AD) using Electroencephalograms (EEG). The extraction of useful 

information from rough EEG signal using only mathematical 

algorithm is a tough but promising task. Various modern techniques 

have enhanced the computerized analysis of EEG in elderly people. 

All these techniques can exploit the information contained in the 

EEG signals in time, frequency and time-frequency domain analyses. 

This work provides an integration of various time, frequency and 

time-frequency domain methods which facilitate the analysis 

independently as well as combined thus making it easier to analyze 

nonstationary and non-deterministic EEG signals. Among these 

various methods, time-frequency domain tools offer most efficient 

methods as it can uncover features that remain invisible when only 

time or frequency domain methods are used. Several of the methods 

discussed here can be utilized to develop an efficient algorithm for 

early detection of Alzheimer’s disease. 

 
Keywords—Alzheimer’s disease, Dementia, EEG, Frequency 

domain analysis, Time domain analysis, Time-Frequency domain 

analysis.  

I. INTRODUCTION 

HE Alzheimer’s disease (AD) is a neurodegenerative 

disease affecting one in fifteen people over the age of 65 

[1]. The disease is named after German physician Dr. Alois 

Alzheimer. According to National Institute on Aging (NIA), 

Alzheimer’s disease is a form of dementia that particularly 

affects regions of the brain that control thought, memory and 

language. Among all dementia cases, 50 to 70% falls into the 

category of Alzheimer’s disease. As per Alzheimer’s Disease 

International (ADI) report, the estimated number of people 

suffering from dementia in 2015 all over the world was 46.8 

million and in 2017 this number could rise as high as 50 

 
Bibina V C, Upasana Chakraborty are with the Electrical & Electronics 

Engineering Department, BITS Pilani Dubai Campus, International Academic 

City, Dubai, 345055, UAE (e-mail: vbibina@gmail.com, 

upasana.chakraborty96@gmail.com) 

Dr. Mary Lourde R is with the Electrical & Electronics Engineering 

Department, BITS Pilani Dubai Campus, International Academic City, Dubai, 

345055, UAE (phone: +9714 4200700 extn 304;  

E-mail: marylr@dubai.bits-pilani.ac.in). 

Dr. Ajit Kumar is with the Neurology Department, NMC Specialty 

Hospital, Dubai, UAE (e-mail: dr.ajitkumar@nmc.ae). 

million.. In every 3 seconds, someone in the world develops 

dementia [2]. Fig. 1 shows a comparison of growth rate of 

people with dementia in high income countries with that in low 

and middle income countries [2]. In the United States of 

America, the sixth out of 10 leading causes of death is AD and 

it is the only one which cannot be cured or slowed as of now. 

Since 2000 the death rate due to cardiovascular diseases has 

reduced by 14% whereas the death rate due to AD has 

increased by 89% [3]. 

The brain of an AD patient contains abnormal deposits 

around the neurons and tangled bundles of fibers inside the 

neurons [4]. The abnormal clumps are due to the accumulation 

of extracellular Beta-amyloid plagues, formed when specific 

proteins in the neuron cell membrane are processed differently. 

Neurofibrillary tangles are formed when the intracellular 

protein called tau is modified. AD begins at hippocampus, the 

part of the brain where memories are first formed. Over many 

years, the plagues and tangles destroy the hippocampus and 

spread into different regions of the brain, killing cells and 

compromising the functions wherever they go.  

 
Fig. 1 The number of people with dementia in low and middle 

income countries compared to high income countries [2] 

 
The growth of the disease can be categorized into four 

stages: Mild Cognitive Impairment (MCI), Mild AD, 

Moderate AD and severe AD [5]. The daily life of the patient 

is not altered seriously in MCI, as memory loss is the most 

common problem in this stage. Every year almost 25% of 

people with MCI is transformed to AD. Even though it is an 

incurable disease, medications are available to slow down the 

decay of the brain. Researchers are developing methods for 

protecting neurons from amyloid beta peptides and tangles [6]. 
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But most importantly the disease should be diagnosed in its 

early stage to avail the benefits of these medications. 

As the symptoms of Alzheimer’s disease are usually 

misinterpreted as normal consequences of aging, the medical 

diagnosis is very tough. Multiple exhaustive tests are 

conducted for the diagnosis. Basically, the AD diagnostic 

methods can be classified into invasive methods and non-

invasive methods. Most commonly used invasive diagnostic 

methods for the Alzheimer’s disease are the blood tests and 

examination of cerebrospinal fluid, which are painful to the 

patient. Researches claim that some blood tests can diagnose 

the disease even before evident symptoms appear [7]. With the 

blood tests, the disease is predicted based on the fat content in 

the blood and blood protein. Special peptides such as tau 

peptide and A beta peptide are found in cerebrospinal fluid of 

an Alzheimer’s patient. 

The non-invasive diagnostic methods for Alzheimer’s 

detection include different neuroimaging modalities, 

neuropsychological assessment tests, electrophysiological 

recording etc. Neuroimaging methods like Single Positron 

Emission Tomography(SPECT), Positron Emission 

Tomography(PET), and Magnetic Resonance Imaging(MRI) 

are proven good diagnostic tools for AD. It has been found 

that there is a notable shrinkage in the size of the brain of 

Alzheimer’s patient which is evident from fig. 2. Since the 

disease begins at hippocampus, the shrinkage also starts at 

hippocampus. Structural imaging techniques which include 

magnetic resonance imaging(MRI) and computed tomography 

(CT) reflect the information on shape, position or volume of 

brain tissue. Functional imaging techniques such as PET and 

functional MRI(fMRI) suggest that the cell activity has 

reduced in certain regions of the brain of Alzheimer’s patients. 

These modalities provide the knowledge of the working of 

brain cells by showing their active usage of sugar or oxygen. 

Pittsburgh compound B (PIB) and Florbetaben (BAY 94-

9172) are two molecular imaging compounds approved for 

clinical use and are capable of detecting beta-amyloid 

deposition during a PET scan [8]. Although neuroimaging 

techniques are good at diagnosing the Alzheimer’s disease, 

they are inconvenient, expensive and imposing high radiation 

risks to the patient. 

 

 
Fig.2 Structural differences of a normal brain (left), and the brain 

affected by Alzheimer’s disease (right) [9] 

 
Mini Mental State Examination (MMSE) which tests a 

person’s mental abilities, is the most common 

neuropsychological test used for Alzheimer’s diagnosis. The 

limiting factors of these are they are prolonged tests and by 

only this test the disease cannot be confirmed.  

Electrophysiological recordings like Magneto 

encephalogram(MEG) and Electroencephalogram(EEG) are 

the next set of non-invasive tools for AD diagnosis. Again, 

MEG is expensive and poor at localizing exactly where the 

activity is occurring in the brain.    

Among the means of diagnosing Alzheimer’s disease, EEG 

is a repeatable, comparatively cheap and easily available 

technique.  An enormous amount of researches have been 

reported on the capability EEG to detect Alzheimer’s disease. 

EEG measures and records the electrical activity of the brain. 

It is observed that the full band EEG signal is combination of 

mainly five subbands [10], namely; 

 delta rhythm (<4Hz) which occurs during deep sleep 

and has large amplitude,  

 theta rhythm (4 – 7 Hz) appears during drowsiness and 

certain stages of sleep,  

 alpha rhythm (8 – 13 Hz) is notable when the subject is 

relaxed and awake with eyes closed and has the 

largest amplitude in occipital regions,  

 beta rhythm (14 – 30 Hz) is observed in the frontal and 

central regions of the scalp and has low amplitude 

and  

 gamma rhythm (>30 Hz) related to the mechanism of 

consciousness.  

Comparison of the distribution of power spectral density of 

three classes of subjects, viz. Healthy Control (HC), Mild 

Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) 

has been shown in fig. 3 [11]. It can be perceived that the 

power distribution in alpha1 (8 – 10 Hz) subband and alpha2 

(10 – 13 Hz) subband can effectively discriminate AD and 

HC.  

 
Fig. 3 Relative power content of frequency bands averaged [11] 

 

The most accepted international standard for electrode 

placement is 10-20 system which often consists of 21, 32 or 64 

electrodes. Fig. 4 depicts a 10-20 system with 21 electrodes. 

This system has been recommended by International 

Federation of societies and clinical neurophysiology. 

Electrodes are placed at every 10% of the distance between the 

two mastoids (electrodes on the ear tip). Similarly, electrodes 

are placed at every 20% distance of the total length between 

the forehead and back electrode. Thus, the name goes as 10-20 

standards. 
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Fig. 4 10-20 International Standard of electrode placement [12] 

 

This review paper is concentrated on various state-of-art 

signal processing techniques on EEG for the diagnosis of 

Alzheimer’s disease. The arrangement of the paper is as 

follows; Section 2 gives a brief review on different AD 

diagnosing tools reported with EEG and its classification 

based on the domains of feature extraction, its subsections 

introduce each class briefly, and in final the paper is concluded 

with the remarks drawn from the review.   

II. CLASSIFICATION OF DIAGNOSTIC METHODS CURRENTLY IN 

USE 

EEG analysis is one of the standard methods used for the 

diagnosis of Alzheimer’s disease. It also provides a best tool to 

mass screen the population at risk for AD. EEG based 

diagnostic methods are non-invasive, economical, side-effect 

free and easy to execute. The diagnosis with EEG is based on 

the fact from researches that the EEG of AD patients are 

abnormal compared to normal people. The major effects 

observed are slow down, complexity depletion and 

perturbation in synchrony of EEG signal. It has been deduced 

from the EEG frequency spectrum analysis that the low 

frequency bands such as delta and theta bands of AD patients 

show an increased activity while their high frequency bands 

like alpha and beta bands show decreased activity [13]. Fig. 5 

is an illustration of slowing of EEG signal due to AD. In fig. 3, 

compared to HC, AD shows decreased activity in high 

frequency bands and MCI shows decreased activity especially 

in beta band, which are directing to the conclusion that 

slowing down occurs in both the MCI and AD patients, though 

at different levels. 

The EEG record of the brain activity produced by 

electroencephalography as such may contain unwanted signals 

like interference from other electronic equipment, 

electrooculographic signal (EOC) due to eye movements, 

electromyographic signal (EMG) evoked from muscular 

activity etc. Hence a preprocessing stage is required to 

eliminate the artefacts before analyzing the EEG signals for 

the detection of AD as these noisy signals may bias the 

investigation [13]. One of the ocular artefact removing 

methods using Volterra filter has been delineated in [14]. After 

the preprocessing stage, the denoised signal is subsequently 

used for extracting the particular feature for diagnosis. With 

respect to the feature extracting domains, the prominent EEG 

biomarkers can be broadly grouped into three categories: time 

domain biomarkers, frequency domain biomarkers and time-

frequency domain biomarkers.    

The brain waves originate from deep inside brain sources 

and reach the surface of the scalp [15]. Studies have shown 

that EEG coherence can be used to quantify the functional 

connectivity between different brain units [16], [17]. Phase 

Locking Value (PLV) [18], [19], Phase Lag Index (PLI) [20]- 

[23] and Weighted Phase Lag Index (WPLI) [24], [25] are the 

phase synchronization indexes (PSIs) recommended for phase 

synchronization analysis of time series signals. Phase-locking 

indices can be calculated over time using sliding analysis 

windows. PSIs effectively describe the relationship between 

instantaneous phase extracted from signals. Let 1(t) and 2(t) 

be the instantaneous phase of two units. Then the two units are 

said to be in n:m phase synchronization, if the inequality 

|n1(t) - m2(t)| < const. holds, where n and m are two 

positive integers.  

 
Fig. 5 Slowing of EEG signals: In time domain x(t), in frequency 

domain X(f) and time - frequency domain |X(t,f)|[13] 

Mutual information, an information theory and coding 

parameter is another measure applied to find the functional 

connectivity between different brain units [26], [27]. Some 

other information theory parameters such as approximate 

entropy [28], multiscale entropy [29] - [31], Tsallis entropy 

[32], [33] are effective measures to quantify the complexity 

levels of EEG. Claude E Shannon introduced entropy, which 

gives the amount of uncertainty associated with a random 

variable [34]. Monitoring balance and gait duration of a person 

is claimed as potential tool for Alzheimer’s diagnosis in [35]. 

Principal Dynamic Mode (PDM) analysis is also done in the 

time domain to EEG signal for the diagnosis of Alzheimer’s 

[36]. This has been discussed in detail under the time domain 

analysis tools.  

Power /energy of EEG signals, power spectral density of 

EEG subbands, frequency transform coefficients etc., are some 

of the classical biomarkers being used for the diagnosis of 

Alzheimer’s disease in the frequency domain. One of the most 

basic analyses applied to time domain EEG signal obtained is 

Fourier transform to emphasize its frequency contents. The 

Fourier transform of an EEG type aperiodic signal x(t) is 

defined as,  

        (1) 
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where X(f) is the frequency transform coefficient. The 

existence of Fourier transform is guaranteed by Dirichlet 

conditions. Fast Fourier Transform (FFT) is a computationally 

efficient algorithm to determine Discrete Fourier Transform 

(DFT). Though Fourier Transform is good in frequency 

domain feature extraction, it is zero in time localization. The 

solution to this problem is to adopt time-frequency analysis, 

which is the combination of time domain and frequency 

domain analyses. 

Time Frequency Distribution (TFD) analysis has become 

one of the most attractive tools for feature extraction from 

EEG signals since it preserves both time and frequency 

information[1]. Short Time Fourier Transform (STFT) (also 

known as Gabor Transform) [37], Wavelet Transform (WT), 

and Wigner-Ville Distribution (WVD) are some of the most 

popular TFDs. STFT, the very basic TFD infers the strength of 

frequency in a signal around a particular time. In STFT the 

Fourier Transform of a windowed portion of the EEG signal is 

calculated as the window slides down the time axis. The 

portion of the nonstationary EEG signal within the window is 

assumed to be stationary, providing an efficient analysis of the 

entire signal in parts. The width of the window is decided by 

the time and frequency resolution required [38]. A wide 

window will give good frequency resolution but poor time 

resolution whereas a narrow window will give good time 

resolution but the poor frequency resolution. Wavelet 

Transform (WT) uses multiple window sizes making it as a 

better alternative of STFT. Commonly used basis functions 

(wavelets) in WT are Morlet and Daubechies wavelets. 

Wavelet Transform is a function of two parameters, scale and 

translation parameters. The scale parameter is a measure of 

frequency and the translation parameter is a measure of time. 

Wigner-Ville Distribution is a quadratic TFD which computes 

energy density by correlating the signal with its time and 

frequency translated version [39]. 

Another set of Time-Frequency biomarkers used for the 

diagnosis of AD is based on different parameters of amplitude 

modulation like modulation frequency [40], amplitude 

modulation energy [41], etc.  Amplitude modulation can be 

considered as the multiplication of two or more sinusoidal 

signals. Since EEG displays the control, regulation, 

synchronization and intersystem interaction in the nervous and 

other body systems, the presence of amplitude modulation in 

EEG signal processing can be confirmed [42].  

Neural network analysis is also used widely nowadays for 

the AD diagnosis. Artificial Neural Networks (ANN) finds its 

most wide use in the last step of EEG signal processing that is 

feature classification [22], [43] - [46]. In most of these works 

extension of low resolution brain electromagnetic tomography 

(LORETA) is used to extract the electrical activity of the 

neuron, for building the network. Another equally efficient 

method of feature classification is the Support Vector Machine 

(SVM) which is a statistic based method. Multiclass SVM with 

error correcting output codes (ECOC) is analyzed in [47] to 

explain how it can be used in the EEG classification with 

improved accuracy. SVM is a binary classifier to which 

several similar classifiers are combined to get a multiclass 

SVM. 

A. Time Domain Analysis  

AD has reduced the complexity of EEG signal. There have 

been several complexity measures used to quantify the 

complexity of EEG signal. Some of them come under 

information theory like approximate entropy [28], multiscale 

entropy [29] - [31], Tsallis entropy [32], [33] etc. EEG 

quantifies the combined activity of around 100 million neurons 

spotted in the vicinity of the recording electrode. The strong 

interactions between the neurons are the sources of regularity 

and complexity of EEG time series. As AD is the consequence 

of the replacement of neurons with plagues and tangles, it 

would severely impair such interactions and thereby reduces 

the complexity and enhances the regularity of EEG.   The 

entropy measures may be used as an authentic index for 

inferring the complexity of EEG signal. Here all these entropy 

studies observed that the complexity of EEG signals is 

disturbed by MCI or AD. The patients seem to have more 

regular EEG than of age-matched healthy controls.   

The approximate entropy [28], developed by Steven M 

Pincus, is a measure of likelihood which states that the patterns 

in a signal will not be followed by a further “alike” pattern. Let 

u(1), u(2), . . . , u(N) be a time-series of data from signal 

measurements equally spaced in time.  A sequence vectors 

x(1), x(2), . . . , x(N-m+1) can be defined in Rm such that x(i) 

= [u(i), u(i+1), . . . , u(i+m-1)], where m is positive integer. For 

each i, 1≤ i ≤ N-m+1,  let 

    (2) 

where r is positive real number and  

   (3) 

From  it has been defined as 

       (4)  

The approximate entropy is defined as 

        (5) 

where  

 = average over i of log [conditional 

probability that  , given that 

, for  ]   (6) 

  

The presence of similar patterns of fluctuations in a time 

series makes it more foreseeable than a time series which does 

not have such patterns. A relatively small ApEn for time series 

with many repetitive patterns and a higher ApEn value for the 

less predictable process. The work done in [48] has used ApEn 

to measure the complexity of EEG, recorded with 10 electrode 

system. With the help of 20 HC and 14 AD patients, detailed 

tests have been conducted by the authors and obtained the 

result indicating AD patients with less interaction and 
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communication of neural cells will have low ApEn value 

In multiscale entropy analysis, consecutive coarse grained 

time series are constructed from the original time series, with 

an increasing coarseness parameter and entropy is calculated 

for each of the resulting time series [30]. Multiscale 

permutation entropy (MSPE) [31] is the extension of 

permutation entropy [49] which is based upon the comparison 

of the ordinal sequence of neighboring values. Here the 

permutation entropy is computed for each coarse-grained time 

series. The dataset consists of a group of 63 AD patients with 

an average MMSE score of 23.69 and 76 HC having the 

average MMSE score as 28.70. The data were collected during 

an episodic memory task. It has been seen that there is a 

reduction in the permutation entropy values for coarse grained 

scales (scale ranging from 5 to 8) especially at left and right 

centro-temporal regions which analogous to a reduction in 

complexity of the underlying signal. 

In [33] Tsallis method, entropy is computed by quantizing 

the EEG amplitude and is calculated in both development and 

test phase of the analysis. A group of entropies described by a 

parameter q (a real number) is Tsallis entropy. Tsallis entropy 

is given, 

           (7) 

where N is the number of EEG quantization states, and Pi is 

the probability of ith state.  The parameter q is the measure of 

the extent to which the system of interest is non-extensive. 

Tsallis entropy has been calculated for each subject’s each 

EEG channel by quantifying the amplitude (with q = 0.5 for 

the sake of definiteness). To intensify the differences between 

the entropy of Alzheimer’s patients and healthy control, the 

entropy values have been normalized and standardized with 

scale range method, 

      (8) 

here Sqi is the scaled value of Sq with ith state and C is a 

constant. Two reference feature vectors, one for AD patients 

and one for HC subjects have been created with the 

normalized Tsallis entropy. The feature vector for the new 

subject is calculated in a similar manner. That feature vector 

has been compared with the reference vectors to differentiate 

AD and HC. For the reported work two datasets (A & B) have 

been used by the authors [33]. The dataset A had 3 AD 

patients and 8 age-matched HC and the recording has been 

done with the traditional 10-20 system. The dataset B had 17 

probable AD patients and 24 not perfectly age-matched HC 

and modified Maudsley system was used to record EEG. 

During EEG recording the subjects were at states such as 

awake, drowsy, alert, and hyperventilation with periodically 

closing and opening eyes. During development for creating 

reference vectors, dataset B was used.  For testing, dataset A 

has been used. The results emphasized the regularity of AD 

patients’ EEG compared to HC by showing low entropy value. 

In recent years, a new technique, called I-FAST (Implicit 

Function as Squashing Time) has emerged in EEG analysis 

[50]. The extraction of the spatial content of EEG signal 

voltage has been done by IFAST using artificial neural 

network in [50]. The huge bi-dimensional matrix of EEG data 

can be compressed into a one-dimensional vector, keeping all 

the key information using I-FAST technique. Here squashing 

of a multivariate data sequence into a finite number of 

variables is done. I-FAST is composed of three steps: (1) 

squashing phase (2) noise elimination phase (3) classification 

phase. The EEG data of 180 AD patients and 115 MCI have 

been considered in this study by the authors. The recording has 

been done on patients with their eyes closed at resting state. I-

FAST approach has shown to be able to distinguish between 

AD, and MCI in a blind manner with an accuracy of 92.33%. 

The brain never rests even when the subject is with closed eyes 

and relaxed. This study didn’t consider the subjects’ 

contingent characteristics like age, emotions, cognitive status, 

etc. 

Principal Dynamic Modes (PDMs) [51] and their 

Associated Nonlinear Functions (ANF) [51] have been 

proposed for modelling the causal dynamic relationship 

between EEG time series of frontal and occipital regions of the 

brain [36]. These PDMs comprised of a linear filter bank 

{Lj}and the outputs of filter bank flow into a polynomial of 

multi-input static nonlinearity form to yield a general model 

for the large class of Volterra systems as shown in fig.6. The 

impulse responses {bj(m)} of the filter bank is in the form of 

discrete Laguerre expansion which form a basis for the 

Volterra system kernel. Here the concept of principal dynamic 

mode is used to expand the dynamics of the nonlinear 

biological system into Volterra model. Most significant modes 

of the system are extracted from the decomposition. ANFs are 

the static nonlinear functions which report the probable 

nonlinearities of the system. In this work [36] the occipital (O1 

or O2) signal is taken as the input x(n) of the system and the 

frontal (F3 or F4) as the output y(n). 17 Alzheimer’s patients 

and 24 healthy control constitute the data set.  

 
Fig. 6 The block structured model of discrete time Volterra class of 

systems. [36] 

The EEG recording has been done with the international 10-20 

system on subjects with their eyes closed at resting state. By 

modeling the nonlinear EEG system using the concept of 

PDMs, it has been found that a well diagnostic portrayal of 

Alzheimer’s and normal person is possible with ANFs of two 

PDMs of O1 – F3 systems corresponding to alpha band and 

combination of theta and delta bands. The main drawbacks of 
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this work are the inadequate sample size to prove the clinical 

benefit of the method for the detection of AD, the average ages 

of the AD group and HC group are different and the case of 

doing some cognitive task during the test by the subjects is not 

included. 

By assessing the brain connectivity, one can measure the 

integration of cerebral areas. Functional connectivity which is 

one of the subdivisions of brain connectivity can be defined as 

temporal correlation among the activity of different neural 

assemblies (distant brain regions) [52].  Perturbations in EEG 

synchrony is one of the major changes in EEG that have been 

reported in Alzheimer’s disease [53]. An extensive study on 

methodological complications on inferring the functional 

connectivity with phase synchronization has been done in [17]. 

Phase synchronization is a nonlinear functional connectivity 

method, which measures the dynamics of an EEG signal. 

Phase synchronization is often found in high frequency 

(especially gamma frequency) large-scale oscillations that 

come into a precise phase-locking over a finite period of a 

cognitive task. Phase Locking Value is one of the 

representative methods which can be used to obtain the 

statistical measure of the phase synchronization strength in 

different brain areas.  

Phase Locking Value (PLV) provides synchronization of 

large scale distance in EEG data for task-induced alterations in 

neural activity [19]. Since PLV cannot identify whether the 

signal came from a common source or from different sources, 

it is not a suitable tool for estimating the synchrony between 

signals observed at different points. Phase lag index measures 

the phase difference between two signals and can be used for 

signals from different points. Let a and b be two different 

points, and the PLI on signals between these points at time  

can be obtained from, 

       (9) 

             (10) 

           (11) 

where  and  are the phase of signals at points a and b 

respectively [19]. PLIab ≈ 1 indicates moderate synchrony 

while PLIab ≈ 0 indicate randomness. PLI is less sensitive to 

common source effect (volume conduction) compared to 

similar phase synchronization indexes. Authors of reference 

[23] have considered 16 AD patients; 7 with MMSE >15 and 9 

with MMSE ≤ 15, and 18 healthy control (HC) subjects. EEG 

data recording have been done with 18 channel system using 

10-20 international standard. The subjects were at eyes-closed 

wakefulness state during the recording of EEG for 10-15mins. 

For the analysis, noise free epoch of continuous 60s have been 

extracted. For each subband of EEG, the PLI values were 

estimated. Their results demonstrated that AD patients show 

an increase in synchronization at alpha and theta waves 

compared to HC. But at beta and gamma waves HC group has 

high PLI value. At alpha, both AD and HC showed high 

correlation and it was highest at electrode pairs Fp2-T6 and 

P3-F7.  Here the investigation has been done on a limited 

number of subjects, hence poor generalization ability on 

unseen subjects and did not incorporated the subjects’ 

cognitive status.  

As mentioned before, slowing of EEG is one of the 

consistent trademarks at different stages of Alzheimer’s. In 

[54] the extent of slowing, by quantifying the changes in EEG 

amplitude in the time domain has been proposed by the 

authors as a biomarker of AD. The mean velocity of EEG is 

defined as the change in amplitudes over time and is given by, 

           (12)  

where 

               (13) 

Above equation determines the sum of differences between 

vicinal amplitudes EEG values per second. Two reference 

feature vectors have been created; one for AD and one for HC 

from the mean velocity values for all the channels. One feature 

vector is created for each new subject and to differentiate 

between AD and HC the Euclidean distance measure is used. 

Dataset A consists of 3 AD patients and 8 age-matched HC 

have been used for the development of reference feature 

vectors and dataset B consists of 17 probable AD and 24 not 

perfectly age-matched HC that were used in the testing phase. 

For each of the 21 channels, the p-values using t-test for Mc of 

both AD and HC have been calculated to determine the most 

significant channels to be employed to distinguish between AD 

and HC groups.  It has been found that the minimum p-value is 

for PZ channel, followed by FZ, P4, CZ, F8, and T6. This was 

a clear illustration of the path of slowing of the brain activity 

due to AD, that is starting from the parietal lobe towards the 

frontal lobe and from right to left side. This study showed that 

AD patients have considerably lower mean velocity than 

normal people. Fewer dataset is the drawback of this study, 

hence this cannot be generalized for uncovered patients. 

An Event Related Potential (ERP), Auditory mismatch 

negativity (aMMN) which appears mostly 100-200ms after a 

notable change in a sound sequence of repeated and 

deterministic nature, has been considered as an index of 

neuromodulatory deficit from MCI to AD in[55].  In the 

analysis, the Mismatch negativity (MMN) component was 

computed by measuring the mean amplitude of responses 

evoked by tones in the 150–180ms time window. In this 

experiment 19 AD patients, 12 amnestic MCI, and 18 age-

matched HC took part.  This investigation showed that at short 

(400ms) inter trail intervals aMMN evoked in AD at frontal 

locations and in MCI at temporal locations while in HC 

aMMN was elicited at both locations. At longer (4000ms) inter 

trail intervals only HC had aMMN and that too only at 

temporal locations. 

Table 1 gives a comparison of different time domain based 

EEG biomarkers for the diagnosis of Alzheimer’s disease. The 

various papers addressing the methods are discussed above 

and their respective results and challenges are tabulated below. 
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Table 1. Comparison of different Time domain methods of EEG analysis for AD diagnosis 

B. Frequency Domain Analysis 

One of the methods to recognize the mental tasks starting 

from EEG signal is the feature extraction in frequency domain. 

The features extracted can be used to classify AD patients and 

healthy controls. Absolute and relative spectral power, 

distribution of spectral power, and measures of spatial 

synchronization are some of the spectral domain biomarkers 

which have been used to discriminate AD, MCI and healthy 

control groups. 

The EEG biomarkers used in [56] are absolute spectral 

power, relative spectral power, distribution of spectral power 

and spatial synchronization indexes. Absolute spectral 

amplitude as a function of frequency has been used as an EEG 

biomarker for AD after applying FFT to EEG for frequency 

transformation. Relative spectral amplitude is the ratio of 

absolute spectral amplitude and sum of absolute spectral 

amplitudes in frequency band from 1.5-30 Hz. By estimating 

the locations of centroid (point of gravity) of spectral 

amplitude on a two-dimensional schematic electrode grid, the 

spatial distribution of spectral amplitude has been established. 

The biomarkers have been calculated from EEG signals of 197 

(116 mild and 81 moderate) AD patients, 45 healthy control 

who were in eyes-closed resting state. The recording has been 

implemented with 19 electrode10-20 system. All these above-

mentioned EEG features have been used as input for different 

classification algorithms such as, principal component linear 

discriminant analysis, partial least square linear discriminant 

analysis, principal component logistic regression, partial least 

square logistic regression, bagging, random forest, support 

vector machines, feed-forward neural network by authors of 

[56]. Even though some exhaustive modern computer-

intensive classification algorithms slightly outperform these 

classifiers, they performed remarkably well. And the absolute 

and relative EEG power have been reported to be altered in 

AD patients, where the most prominent change is the increase 

of theta power in AD. 

 Measurement of linear functional connectivity in the 

frequency domain is made possible by the use of Magnitude 

Squared Coherence (MSC) or simply coherence in [16]. 

Coherence quantifies the spatial correlation among signals to 

be measured in different frequency bands [57]. The most 

commonly used linear synchronization methods are cross-

correlation in time domain and MSC in frequency domain. 

MSC or simply coherence is calculated as the cross spectral 

density Pxy normalized by their autospectral density functions. 

Spectral density function is derived via frequency 

transformation of cross-correlation function. Let Pxy, Pxx, and 

Pyy represent the cross spectral density of x and y, power 

spectral density of x and power spectral density of y 

respectively. Then the coherence between x and y is given by 

            (14)  

The estimated coherence value for a given frequency ranges 

from 0 (no interdependence) to 1 (maximum linear coupling). 

In [16] for a 16-channel bipolar montage, 18 channel pairs 

were selected which represent fiber pathways. The coherence 

has been calculated for those channel pairs and averaged over 

the following 6 frequency bands of equal width: 0.5 – 4 Hz, 4 -

8 Hz, 8 -12 Hz, 12 – 16 Hz, 16 – 20Hz, 20 – 24 Hz. The 

connectivity of fiber tracts corresponding to each channel pair 

can be quantified with the coherence. The coherence values 

across the groups of AD, MCI and HC were compared and the 

channel pair which shows a remarkable difference between 

MCI, AD and HC were determined here. An EID (enhanced-

intact-damaged) model has been formed with the list of overall 

coherences for AD and MCI groups compared to HC, which 

can provide a quantitative, qualitative and graphical model of 

the brain connection attributes of Alzheimer’s disease. 16 AD 

References Biomarkers 

used 

Merits/ Results of the methods Challenges 

 

Zhenghui Hu and 

Pengcheng Shi [48] 

ApEn Effectively quantifies the regularity and complexity of 

EEG signal. 

Computational complexity. 

Difficult to achieve proofs of asymptotic 

normality for ApEn 

Gordon Morison. 

et, al. [31] 

MSPE Quantifies signal complexity at several differing time 

scales. 

For smaller scales, no significant differences in 

EEG complexity between AD and HC. 

Ali H Al-nuaimi. 

et, al [33] 

Tsallis 

Entropy 

Provides a basis for a real-time decision support tool 

and is computationally fast. 

The smaller data set prevents it from 

generalizing on unseen subjects. 

Buscema M. et, al 

[50] 

IFAST Distinguishes AD and MCI groups with an accuracy of 

92.33% in a blind manner. 

Ignored subjects’ contingent characteristics.  

Yue Kang. et, al. 

[36] 

PDMS 

and their 

ANF 

Focuses on the dynamic relationship between two EEG 

signals (at frontal and occipital lobes) and not the 

temporal or spectral structure of the signal themselves 

Results are prone to various sources of 

noises. 

The average age of the two groups (AD and 

HC) were different. 

Shinya Kasakawa. 

et, al. [23] 

PLI Shows an interdependence with MMSE score. Poor generalization ability due to limited 

data size. 

Subjects’ cognitive status were excluded. 

Ali H. Al-nuaimi. 

et, al. [54] 

Mc Computationally fast. 

Reached 100% sensitivity. 

Low data size 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018 

ISSN: 1998-4510 106



 

 

patients, 24 MCI patients, and 16 age-matched healthy 

controls participated in this study.  10-20 system was used for 

the recording of eyes-closed resting state subjects. Any 

alteration in EEG coherence whether increased or decreased 

relative to HC was found to be a consequence of fiber damage. 

From the results, it has been concluded that more damaged 

pathways were found in AD patients’ brain than MCI but both 

groups possess similar area of damage. 

The functional synchronization of EEG data in frequency 

domain has been estimated by Global Field Synchronization 

(GFS) in [58]. Unlike coherence, GFS doesn’t make any 

supposition on the spatial location of the activity. Global field 

synchronization measures the relative phase synchrony over all 

the electrodes at a specified frequency [59]. The calculation 

process of GFS consists of mainly 4 steps: (1) Compute the 

Fourier transform of the EEG signals and move apart the real 

and imaginary parts of the coefficients. (2) Concatenate all the 

real parts and imaginary parts of the coefficients into two 

columns. (3) Compute the covariance matrix of size 2x2 and 

calculating 2 Eigen values. (4)  Global field synchronization is 

defined as  

              (15)   

where E(f)1 and E(f)2 are the two Eigen values at the given 

frequency f.  22 Alzheimer’s patients and 23 healthy control 

have taken part in the testing, whose potential at 18 scalp 

locations have been recorded with 10-20 system. The subjects 

were asked to open and close their eyes periodically for 

10mins in resting condition. It has been seen that the GFS 

values of AD patients in beta1(13-18 Hz), beta2 (19-21 Hz), 

beta3 (22-30 Hz), and full bands (1-70 Hz) are lower than of 

HC. There has been a positive correlation between MMSE 

scores and GFS values in alpha, beta1, beta2, beta3, and full 

bands.  

The paper [60] discusses the relation between EEG 

synchrony markers and severity levels of Alzheimer’s disease. 

In this work, the EEG synchrony markers have been derived 

from the spectral density and information theory and 

investigation done on the correlation of these markers with 

MMSE score, was used to perceive the severity level of the 

disease. The spectral density of multivariate EEG signal (x(t)) 

over the frequency range,  can be obtained from, 

         (16)   

where,  is the covariance function of (x(t)) defines as 

 with a time lag s  .. Instead of 

analyzing the synchrony between each EEG channels, the 

channels are grouped into clusters and the synchrony between 

the clusters are analyzed. As a first step to that, the overall 

EEG channels have arranged into five clusters, viz. anterior 

(Fp1, Fp2, F3, F4), temporal/left (F7, T7, P7), central (Fz, C3, 

Cz, C4, Pz), Temporal/right (F8, T8, P8), and posterior (P3, 

P4, O1, O2). The principal component analysis (PCA) has 

been done on each cluster. Since first two principal 

components (PCs) together can represent 90% of the 

information in the respective channel data, the synchrony 

investigation has been done between first two PCs of one 

cluster and the first two PCs of another cluster. And the third 

step was to maximize the correlation between MMSE score 

and synchrony biomarker in terms of coefficients of 

determination R2. 8 synchrony markers have been analyzed in 

this work. 

1. Coherence,   

2. Partial coherence,  ;  

3. Phase shift,  

4. Granger causality (G): to find the direction of dependence 

between EEG channels. 

5. Conditional Granger causality (cG) 

6. Canonical correlation ( : provides the information of 

dependence between multivariate processes (EEG signals) 

7. Dynamic canonical correlation : coefficients are 

defined as the maximum correlation      and 

;  

8. Cross mutual information,  

; x and y are the 

observations of discrete random variables X and Y with 

joint probability distribution PXY and marginal probability 

distributions of Px and Py respectively.  

EEG recording has been done on 79 subjects with probable 

AD in resting state and during a cognitive task. The results 

showed that EEG synchrony of most of the biomarkers (C, , 

 cG,  cMI) increases with MMSE score from 26 till 

20 and below that it decreases and the effect is most evident 

during cognitive tasks. At resting phase, significant results 

were obtained between the anterior-temporal and posterior-

temporal regions whereas during cognitive phase most 

prominent results were between anterior-central, central-

posterior and central-temporal sites. The authors have 

considered the patients’ demographic variables like, age, sex 

education level and AD duration to improve analysis. It has 

been observed that age and level of education have significant 

influence on MMSE score.  

Various papers addressing frequency domain based EEG 

biomarkers for the diagnosis of Alzheimer’s disease are 

discussed above and their relevant results and challenges are 

tabulated in table 2.  

C. Time – Frequency Domain Analysis 

Time - Frequency analysis preserves the time and frequency 

information of non-stationary signals. Researches are being 

conducted on amplitude modulation analysis of EEG for AD 

diagnosis [40]. Due to impaired cerebral flow in AD, a 

neuromodulatory decline may exist. In [40], primary step done 

was to measure the rate at which subband EEG amplitude 

modulations change over short periods of time and then 

compare such spectro-temporal signal representations between 

AD and healthy control. 
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Table 2. Comparison of different Frequency domain methods of EEG analysis for AD diagnosis 

Dataset consists of a total of 32 subjects which include 3 

groups MCI, AD, and HC. EEG recording was performed with 

subjects in awaken state followed by resting state with closed 

eyes using 10-20 system. The percentage modulation energy 

(PME) which is given by, 

         (17) 

is calculated for each signal. After computing the temporal 

envelope of each subband, modulation band decomposition 

has been performed on these envelopes.  represents the 

average modulation energy of the ith subband signal which is 

grouped by the jth modulation filter. The authors in [40] listed 

out top 35 principal PME features in their ranking order. It has 

been found that percentage modulation energy features 

extracted from theta and beta frequency bands could 

effectively discriminate AD vs HC. The proposed analysis also 

allows direct characterization of EEG cross-frequency 

interaction effects and their changes with AD. The 

observations showed that the theta-beta interaction is reduced 

with AD.   

 In [61] the feature used in time-frequency domain is the 

sparse oscillatory events extracted from EEG signals, for the 

diagnosis. A model has been used for extracting the oscillatory 

events in EEG called the sparse bump model [62] which 

consists of high magnitude time-frequency bumps (patterns). It 

conveys the information on cognitive and sensory processing 

by representing the transient synchronization of neuronal 

groups. Here the Morlet mother wavelet has been used to 

represent the EEG signals in time-frequency domain. Time-

frequency domain relative power of each of the frequency 

bands, viz. theta, alpha1, alpha2, and beta, were computed 

after computing the wavelet coefficients. Generally, the 

oscillatory events (bumps) are assumed to be due to the local 

synchrony of neuronal groups seen in the vicinity of recording 

electrode. The bumps can be extracted with sparse bump 

modeling. After applying wavelet transform, the z score 

normalization has been done on each trail as, 

              (18) 

where W(f,t), and are the complex Morlet wavelet 

coefficient, mean and standard deviation of the wavelet map W 

respectively.  The bump models are approximated from the 

normalized z-score maps z(f,t) as mentioned below,  

          (19) 

where b is the ellipsoid basis function with parameter 

. The number of bumps and two sets of 

relative powers for each frequency band were computed; one 

before bump process and one after bump process. Figure 7 

shows the mapping from wavelet time-frequency 

representation to sparse bump model. The subject group 

consists of 25 MCI with MMSE 26 and 56 HC with MMSE 

28.5. The recording has been done with 21 electrodes using 

10-20 system during the phase when the subjects were at 

resting state with their eyes closed. It has been seen that AD 

patients show strong low frequency (0.5 – 8 Hz) activity. The 

bump modeling has amplified this effect of AD on EEG. The 

increase in theta band activity has been taken as a feature for 

discriminating AD and HC subjects. 

As has been mentioned earlier that AD impairs cognitive 

memory, Ghorbanion et al. conducted an experiment based on 

References Biomarkers used Merits/ Results of the methods Challenges 

Christoph 

Lehmann. et, 

al. [56] 

 

Absolute & relative 

spectral power, distribution of 

spectral power, and spatial 

synchronization measures.  

Determines optimal statistical 

classification algorithm for differentiating 

between different stages of the disease with 

remarkable sensitivity and specificity.  

Not considered subjects cognitive status. 

 

Kwaku 

Akrofi. et, al. 

[16] 

Coherence Adequately quantifies the connectivity of 

fiber tracts. 

EID model yields a quantitative and 

qualitative illustrative model of the brain 

connection characteristics of the 

Alzheimer’s disease. 

Coherence is subject to both change in phase and 

change in power relation. 

Usage of 16 channel system and limited data size.  

Young-Min 

Park. et, al. 

[58] 

 

GFS The difference in GFS values between 

AD and HC can effectively delineate the 

severity of AD. 

Considered only resting state EEG of subjects. 

The limited ability of MMSE score to evaluate AD 

severity. 

Not incorporated the possible effects of psychotropic 

drugs taken by the subjects. 

Markus 

Waser. et, al. 

[60] 

 Multiple synchrony 

markers 

AD severity can be assessed with the 

synchrony markers used.  

To improve the robustness, clusters of 

EEG channels are considered for synchrony 

analysis. 

Usage of quadratic regression. 

Incorporating demographic co-variables 

could improve the performance. 

Synchrony markers used showed non-monotonic 

trends with decreasing MMSE score. 

Sensitivity and specificity obtained for the classifier 

based on combination of all markers were not satisfying.  

The relations obtained for overall patient groups were 

not strong enough to be used as a separate criterion for 

individual diagnosis.  

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018 

ISSN: 1998-4510 108



 

 

it to examine the impacts. EEG recording started with resting 

conditions with eyes closed initially and then open followed by 

states of attention, identification, card flipping cognitive 

tasks, Paced Auditory Serial Addition Test (PASAT) and 

finally auditory stimulations. They again measured EEG in 

eyes open and closed condition to conclude the session. Each 

of these tasks has been explained in [63].  Dataset used 

consists of a total of 24 subjects out of which 10 have AD and 

14 are normal age matched subjects. DWT has been used to 

divide the signal into its sub-bands. For this the mother 

wavelet used is Daubechis2 and at each sub level statistical 

parameters like mean, median, etc. are calculated using the 

wavelet coefficients. Two tests namely t-test and Kruskal-

Wallis [64] test have been used to identify statistical features 

that can help in significant distinction between AD and 

controls. Also, to judge the dominant feature, Decision tree 

algorithm was used. The t-test is a statistical examination for 

which data needs to follow a Gaussian or normal distribution 

which was not the case with the dataset used thus they shifted 

to a non-parametric chi-square based test called Kruskal-

Wallis test. The final outcome was that mean values of delta, 

beta bands and standard deviation of theta band was found to 

be more for AD patients compared to normal. 

 
Fig. 7 Mapping from wavelet time frequency representation (WTFR) 

to sparse time frequency bump model [60]. 

 
Neurophysiological correlation has been proposed as a 

biomarker for detecting MCI using group Independent 

Component Analysis (gICA) in [65]. EEG data is decomposed 

using group Independent Component Analysis (gICA) [66] 

and the neuronal components were analyzed using Phase 

Intertrail Coherence (PIC) and Phase shift Intertrail Coherence 

(PsIC). Independent component analysis (ICA) estimates the 

maximally independent and non-Gaussian components of a 

mixture of signals. Each electrode in EEG measures the 

weighted sum of electrical activity of many brain areas. ICA 

enables the identification of underlying component signals and 

the sources associated in the data. The model can be expressed 

as,                  (20) 

where x is the recorded signal, A is the mixing matrix and s 

denotes the number of independent source signals. The study 

has been conducted on several sets of data. x is measured for 

different subjects under different experimental conditions. 

Hence gICA has been used for analyzing a group of subjects. 

The neuronal components thus obtained were analyzed with 

PIC and PsIC. The phase locked activity of trails in an Event 

Related Potential (ERP) can be quantified with PIC measure 

[66]. The phase and non-phase activity of the events can be 

captured with PsIC measure [67]. The PIC and PsIC are 

defined as, 

            (21) 

         (22)  

where i is the number of trials, X denotes the coefficients 

obtained using a complex wavelet transform, n is the point of 

time and k is the frequency value. The data subject consists of 

a group of 12 MCI and another group of 12 age-matched HC. 

The gICA was performed on each group.  It has been shown 

that there is an increase of PIC in theta band of MCI patients 

and an increase in PsIC in alpha band of healthy control. The 

main pitfall in this research is the limited number of subjects 

which has been considered for analyzing and concluding, thus 

it is difficult to generalize the result and apply on unseen 

subjects. 

In table 3, the various EEG analysis techniques for the 

diagnosis of Alzheimer’s in time-frequency domain are 

tabulated with their merits and challenges. 

III. SUMMARY AND CONCLUSION 

The constant increase in rate and inability to treat the AD 

has created a great concern especially in developed countries. 

Hence there is a need to do in-depth research for the 

advancement of biomarkers to help towards early detection of 

AD so that its progression can be slowed down. Neuroimaging 

techniques show precisely how people suffering from 

Alzheimer’s have a smaller brain compared to the normal 

ones, due to the shrinkage of the hippocampus. But its high 

cost and radiation risks make it less feasible to be used. Also, 

MMSE and MEG are equally efficient, but only these tests 

cannot confirm the prevalence of the disease. Thus, the 

feasible option left is methods based on low cost EEG. Several 

features of EEG like PSD distribution, coherence, mean 

velocity etc help in distinguishing MCI, HC and AD. Equally 

important are the information theory parameters like entropy. 

Several signal processing steps that need to be performed on 

EEG signals include preprocessing, feature extraction and 

feature classification.  Time frequency tools of feature 

extraction have become most effective because of their ability 

to analyse signal in both domains thus unshielding features that 

remain hidden when only time or frequency domain tools are 

used. 

Wavelet transforms among linear TFDs, and Wiener 

distribution and Spectrogram among quadratic, prove to be the 

most efficient ones for non-periodic signals like EEG. ANN 

and SVM form an important part of EEG classifiers which can 

differentiate between normal, MCI and AD patients. An 

efficient diagnostic portrayal of AD and normal people can be 

achieved using ANS and PDM. Tsallis method was used to 

calculate entropy which gave lower value for HC compared to 

AD, thus showing more regularity in the EEG signals of AD.
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Table 3. Comparison of different Time-Frequency domain based EEG analysis for AD diagnosis 

Latest time domain method named I-FAST enabled 

differentiating AD and MCI with an accuracy of 92.33%. 

Several other methods like gICA, PIC, aMMN etc. helps to 

differentiate between AD, MCI and HC.  

 

Combining EEG markers that capture the change in signal 

complexity, synchrony and frequency content and relating 

them with neuropsychological assessments of AD severity 

could yield a remarkable tool for early detection of 

Alzheimer’s disease. We have simulated some of these 

reported works such as Tsallis entropy analysis, mean velocity 

of EEG, etc. using the data obtained from the TUH EEG 

Corpus [68].  It has been found that the results obtained were 

agreeing well with the results published in [32], [33] and [54]. 

All the different methods of EEG signal analysis for the 

detection of Alzheimer’s disease are summarized in table 4 

shown below along with the observations from each of these 

works. 

Table 4. Summary of effects of AD on EEG signal analysis 

Referenc

es 

Biomarkers 

used 

Merits/ Results of the methods Challenges 

 

Tiago H 

Falk. et, al. 

[40]  

 

PME 

features  

Provides a spectro-temporal semi-automated 

diagnostic tool for AD.  

A classifier trained on PME features 

outperforms those trained on spectral peak 

parameters. 

Limited dataset leading to poor generalization ability. 

Artefact removal and its effect on PME features are not 

considered 

Francois-

B. Vialatte. 

et, al. [61] 

 

Sparse 

oscillatory 

events 

The bump modeling magnified the statistical 

differences in theta band activity between HC 

and MCI patients with a maximal specificity. 

The bump modeling has limits in lower frequency bands. 

Choosing the bump model should be done carefully, 

otherwise, background noise could be modelled instead of bump 

bursts.  

Ghorbani

on. et, al [63] 

Statistical 

parameters 

of WT 

coefficients 

Amount of data to deal with is efficiently 

reduced to few wavelet coefficients which make 

it easier to analyze. 

Signals can be localized in both time and 

frequency domains simultaneously. 

Determination of the suitable type of wavelet and the number 

of levels of decomposition to be performed for a particular 

study is challenging. Can be computationally cumbersome for 

fine analysis. 

John F. Ochoa. 

Et, al. [66] 

PIC & 

PsIC 

Shows a proportional relationship with 

MMSE score. 

Inadequate data size. 

Strategies not included to quantify specificity and sensitivity.  

Domain Method  Biomarker/Feature Effect of AD in EEG / Remarks 

 

Time 

Information theory analysis 

Approximate entropy 

Multiscale entropy 

Tsallis entropy 

Low entropy values for AD 

Principal dynamic mode 
Associated nonlinear functions of 

PDMs of O1-F3 system. 

ANFs of PDMs corresponding to alpha band and combination of theta 

and delta bands have much deviated from that of HC. 

Phase synchronization 

analysis 
Phase lag index 

At alpha and theta bands:  

PLIAD > PLIHC 

At beta and gamma bands:  

PLIAD < PLIHC  

EEG amplitude analysis EEG mean velocity (Mc) Reduced mean velocity for AD 

Event related analysis 
Auditory mismatch negativity  

 (aMMN) 

AD at short inter trial intervals: aMMN at frontal locations 

MCI at short inter trial intervals: aMMN at temporal locations 

HC at short inter trail intervals: aMMN at both locations  

At long inter trail intervals: only HC had aMMN 

Frequency 

FFT Spectral power Increased theta power in AD 

Spectral synchrony analysis 
Coherence between channel pairs 

which represent fiber pathways 
More damaged pathways for AD 

Functional Synchronization  

analysis  

Global field synchronization  

(GFS) 

GFS values in AD at beta1, beta2, beta3 and full band are lower than 

that of HC 

Time-

Frequency 

Amplitude Modulation 

Analysis 
Percentage modulation energy (PME) 

PME features from theta and beta frequency bands showed a 

significant difference from normal. 

Reduced theta-beta interaction in AD. 

Sparse Bump model Sparse oscillatory events Increased EEG power in theta range 

Wavelet transform 
Statistical parameters – Mean and 

Standard deviation of coefficients 

Increase in mean values of delta, beta bands and standard deviation of 

theta band. 

Complex Wavelet 

Transforms. 

Phase Intertrail Coherence (PIC) in 

theta band and Phase Shift Intertrail 

Coherence (PsIC) in alpha band 

PICAD > PICHC 

PsICAD< PsICHC 
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