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Abstract—Introduction. Automated analysis of tactile images reg-
istered by specialized medical tools is a novel domain, which results
promptly find their applications in clinical practice. Medical Tactile
Endosurgical Complex (MTEC) is currently the only commercially
available device for intraoperative instrumental mechanoreceptoric
palpation. One of the main challenges related to processing data
generated by MTEC is heterogeneity detection in tactile images. This
problem is highly important because it is a key step of localization
of visually undetectable pathologies using instrumental palpation.

Objectives. One of the main difficulties related to the problem of
heterogeneity detection is a possibility to vary contact angle between
mechanoreceptor and sample during tactile examination, so the aim
of the research was to develop a method for automated contact
angle identification and detection of heterogeneity in tactile images
registered by MTEC.

Methods. The proposed method of a tactile press contact angle
estimation is based on classification with a specifically designed
feature space. For heterogeneity detection we developed two different
approaches. The first one is based on separation of heterogeneity
detector into several components corresponding to similar contact
angles. The second approach uses standard classification approach
with contact angle as a high weighted element of the feature space.

Results. Validation on a set of samples modeling normal tissues
and pathologies showed high accuracy for contact angle identification.
Both methods of heterogenity detection provided approximately the
same accuracy clearly outperforming previously available methods in
case of significant deviations of a contact angle from zero.

Conclusion. The methods developed provide an accurat solution
for problems of contact angle identification and detection of het-
erogeneity even in case of significant contact angle deviations, and
such deviations are unavoidable in clinical practice, especially in
minimally-invasive surgery.

Keywords—Medical Tactile Endosurgical Complex, tactile image,
k-nearest neighbors, support vector machine.

I. INTRODUCTION

TACTILE feedback is extensively used in open surgeries
to detect pathological tissues via palpation. However in

case of laparoscopic or thoracoscopic operations surgeons do
not have direct access to operated tissues, so conventional
manual palpation becomes inapplicable. Other methods used
for localization of visually undetectable pathologies, such as
preoperative tattooing, ultrasound examination, etc. do not
provide 100% localization rate ([1], [2]).
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One of possible ways to increase this rate is using a tactile
mechanoreceptor that provides instrumental mechanorecep-
toric palpation. A number of devices for instrumental tactile
diagnostics are available [3], [4], [5], but to the best of
our knowledge the only commercially available device for
intraoperative instrumental mechanoreceptoric palpation is the
Medical Tactile Endosurgical Complex (MTEC) [6], [7]. A
key component of MTEC is a tactile mechanoreceptor, which
pressure sensors perform registration of tactile images. In a
certain sense a tactile mechanoreceptor plays the role of a
finger that is used for instrumental palpation in endoscopic
surgeries, including robot-assisted ones ([7], [8], [9]).

Currently surgeons mainly rely on visual or tactile re-
production of data registered by a tactile mechanoreceptor.
A suspected region is inspected to detect boundaries of a
pathology. It is highly desirable to develop methods for au-
tomated analysis that indicate regions of heterogeneity (since
tactile properties of pathological tissues and adjacent normal
tissues are essentially different [7], [10]). However note that
heterogeneity does not necessarily indicate pathology; it can
be caused e.g. by a blood vessel. Hence in order to reduce
false positives it makes sense to enrich a heterogeneity detector
with a heterogeneity classifier so that the final decision is
“homogeneity”, “normal heterogeneity” or “pathological het-
erogeneity”.

A number of simple methods for automated heterogeneity
detection were proposed by Solodova et al. in [11]. The
authors showed that these methods work well when inspected
surface is orthogonal to a mechanoreceptor. However it is not
always possible to achieve orthogonality, and obviously the
angle between an operating head and a surface essentially
affects pressure values. We tested methods from [11] against a
library of artificial samples and a set of contact angles. In case
of fairly significant angle deviations heterogeneity detection
resulted in high error rates. Another problem is inability of
these methods to distinguish between normal and pathological
heterogeneities.

Nersisyan et al. in [12] applied k-nearest neighbors-based
classification algorithm with an enriched feature space to
six classes of tactile images obtained under several contact
angles. Results were fairly decent, however some classes were
significantly confused.

We hypothesized that evaluation of a contact angle could
essentially increase the quality of heterogeneity detection. One
of possible strategies is to split a training set into groups
corresponding to similar contact angles, to train separate
classifiers for every group, to estimate the angle of an image
being classified and to apply the classifier corresponding to
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Fig. 1: Medical Tactile Endosurgical Complex. (a) Tactile mechanoreceptors. (b) Operating head of tactile mechanoreceptors.
The left device contains 19 pressure sensors, and the right one contains 7 sensors. (c) A soft silicon sample imitating tissue

with a blood vessel. (d) Experimental device allowing to perform automated sample inspection under different angles.

the angle estimated. Another strategy is to add the angle
estimation as one of the features that has a large weight.
We tested these strategies against a set of artificial samples
modeling normal tissues, tissues with blood vessels (“normal”
heterogeneity) and tissues with pathologies of sereral types
and forms (“abnormal” heterogeneity). It turned out that both
angle detection and classification provide high accuracy.

The rest of the paper is organized as follows. Section II
gives an overview of a tactile mechanoreceptor, and section III
describes the experiment setup. Section IV is devoted to
verification of methods from [11]. In section V we present and
validate a method for contact angle estimation. Section VI is
focused on classification with known contact angles. Finally,
section VII is a conclusion.

II. TACTILE MECHANORECEPTOR

To the best of our knowledge, tactile mechanoreceptor is the
only commercially available medical device for intraoperative
registration of tactile images. It consists of an operating head
(its diameter is either 10 mm or 20 mm) containing pressure
sensors (7 or 19), and a handle (Fig. 1a, 1b). Pressure sensors
form a hexagonal lattice. Pressure values are integers from
the range [0; 255]. Sensors wirelessly transmit their values
to a computer 100 times per second. A surgeon can press an
operating head against a tissue of interest, record a sequence
of pressure values and then lift the operating head back. From
the formal point of view such press (called a tactile image)
consists of a sequence of tactile frames F1, . . . , Fn (n ∈ N)
sent by the operating head. If we enumerate pressure sensors
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Fig. 2: A scheme of the experiment setup.

then every tactile frame is an array s1, . . . , sk , where k is
equal either to 7 or to 19. We focus on the case k = 19.

III. EXPERIMENT DESCRIPTION

For our research we manufactured samples from soft sili-
cone (Shore hardness 00-10A) to model three different types
of tissues:

1) Normal tissues: samples without any embedments;
2) Tissues with blood vessel: samples with a segment of

a medical perfusion line (B. Braun Original Perfusion
Line, diameter ca 2 mm) which is oriented for palpation
horizontally;

3) Pathological tissues: samples with embedded spherical
caps of different size (base diameter 8 mm and height
2.4 mm, or base diameter 4.7 mm and height 1.7 mm)
which can be oriented for palpation from flat or convex
side.

As in [12], [13], all samples had similar size: 40 mm × 35 mm
× 10 mm (Fig. 1c).

Samples manufactured were examined by MTEC under
five different contact angles: 0◦, 3.6◦, 7.1◦, 10.6◦ and 14.0◦.
Verticality of a press was ensured by using a device shown in
Fig. 1d. The contact angle was controlled by the parameter a,
see Fig. 2. As a result we obtained a collection of 450 tactile
images with 90 images per angle. Types of samples were
distributed across images in the following way: 75 images
of normal tissues, 75 images of tissues with blood vessel and
300 images of pathological samples.

IV. VERIFICATION OF METHODS FROM [11]

We examined the performance of all methods for auto-
mated detection of heterogeneity in tactile images proposed
by Solodova et al. in [11]. The first method is based on
intraframe analysis and uses simple comparison of maximum
and minimum values inside one frame. If the difference
between these values exceeds a predefined threshold, a sample
is classified as heterogeneous. The other two approaches
use simultaneously several subsequent tactile frames. In a

simpler case (the second method) an increase of pressure
values in a fixed time step is computed and scaled for each
sensor. Scaling pursues two goals: suppressing increase for
low pressure values and integration of increase of pressure
values with pressure values themself into one characteristic.
Then a regularized ratio of maximum and minimum values of
these characteristics is computed and compared to a predefined
threshold. If this threshold is exceeded, the method reports
identification of heterogeneity. The third method is similar to
the second one. The difference is that increase is divided by a
time step (so we get a physically meaningful speed of pressure
increase), and instead of considering a fixed time step, max-
min regularized ratio is additionally maximized over a segment
of time steps. A detailed description of these methods can be
found in [11].

We used algorithm parameters from [11]. Examination of
samples with no deviation of contact angle from the zero one
revealed that only the second method provided appropriate
detection (sensitivity over 97%, specificity 100%), while two
other methods showed unsatisfactory specificity (60% for the
first method and under 10% for the third method). Further-
more, angle deviation equal to 10.6◦ reduced specificity for the
second method to 60%. For deviation 14.0◦ specificity dropped
further to 0%. Detailed results are presented in Table I.

These data show that examined simple methods are reliable
for small deviations of a contact angle from the zero one
and are generally applicable in case of medium deviations.
However, for larger deviations these methods do not provide
an acceptable result.

V. CONTACT ANGLE ESTIMATION

We utilized the following strategy to estimate contact angles.
The first step is preprocessing. All tactile frames that contain
pressure values less than 10 or greater than 245 are discarded.
Pressure values that are less than 10 normally correspond to
the situation when some sensors are yet not in contact with
a sample, and pressure values greater than 245 usually mean
saturation of some sensors. As a result of preprocessing some
tactile images were completely removed, and the remaining
set consisted of 411 samples: 90 images for 0◦ and 3.6◦, 82
images for 7.1◦, 78 images for 10.6◦ and 71 for 14.0◦.

At the second step we use the least squares method to
construct a linear function

l(x, y) = ax+ by + c

which approximates pressure values of sensors located at op-
erating head border (we assume that distance between sensors
is equal to 1). After that we compute the angle between the
planes z = l(x,y)

64 and z = 0. Scaling factor 1
64 was selected

empirically. This procedure is applied to each tactile frame
that was not discarded during preprocessing.

The third step is mapping the tactile image to the feature
space. We evaluate maximal, mean and median angles for the
set of tactile frames of the image; these three values with all
pressure values derived from the frame with the maximal angle
are associated with an image as its list of features.
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TABLE I: Sensitivity and specificity of simple methods for heterogeneity detection. For each case sensitivity / specificity are
specified.

0◦ 3.6◦ 7.1◦ 10.6◦ 14.0◦

Method 1 100% / 60% 100% / 40% 100% / 0% 100% / 0% 100% / 0%

Method 2 97% / 100% 90% / 100% 95% / 100% 100% / 60% 100% / 0%

Method 3 100% / 6% 100% / 0% 100% / 0% 100% / 0% 100% / 0%

(a) (b)

(c) (d)

Fig. 3: Tactile frames and corresponding constructed planes. (a-b) A tactile frame and the plane derived from an examination
of a sample without any embedbents under contact angle equal to 14◦. (c-d) A tactile frame and the plane derived from an

examination of a sample with a hard embedbent imitating blood vessel under zero contact angle.

Finally, we apply a classifier to determine the angle. We
utilized two different classifiers: SVM ([14]) and the k-nearest
neighbor method ([15]). The following parameters were used:

• SVM: RBF kernel with parameter γ = 1/22, “one-vs-
one” decision for multi-class strategy;

• k-NN: k = 1, the Euclidean metric.
There are two main reasons why classification step can not

be avoided, i.e. why the value of the contact angle can not be
computed directly. First, there is no information about sample

deformation during the examination. Thus, we do not know
anything about the type of dependency of angle on pressure
values. The idea of direct scaling the angle between planes
failed; deviation of this value even for one tactile image was
quite significant. The second factor is possible presence of
various embedments — high pressure value can be observed
both when we examine non-homogenous tissues and when we
examine homogenous tissues under non-zero angles. Fig. 3
shows tactile frames and corresponding planes for two cases:
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TABLE II: Averaged confusion matrix for angle
classification using SVM. Row names are labels of predicted

classes, and column names are labels of true classes.

0◦ 3.6◦ 7.1◦ 10.6◦ 14.0◦

0◦ 69.0 18.6 3.4 1.9 1.0

3.6◦ 14.3 54.9 15.0 2.1 0.0

7.1◦ 6.5 15.9 55.5 13.7 1.3

10.6◦ 0.2 0.2 5.9 43.6 4.7

14.0◦ 0.0 0.4 2.2 16.7 64.0

TABLE III: Averaged confusion matrix for angle
classification using k-NN. Row names are labels of predicted

classes, and column names are labels of true classes.

0◦ 3.6◦ 7.1◦ 10.6◦ 14.0◦

0◦ 73.4 6.5 2.6 1.0 0.1

3.6◦ 9.3 72.7 9.2 3.4 0.6

7.1◦ 7.3 8.9 62.7 5.2 0.5

10.6◦ 0.0 1.9 7.5 66.2 3.9

14.0◦ 0.0 0.0 0.0 2.2 65.9

TABLE IV: Averaged confusion matrix for tissue type
classification using the combination of five classifiers. Row
names are labels of predicted classes and column names are

labels of true classes.

Normal Pathology Vessel

Normal 74.6 5.5 0

Pathology 0.4 293.8 2.9

Vessel 0 0.7 72.1

TABLE V: Averaged confusion matrix for tissue type
classification with pressure angle value added to the feature

space. Row names are labels of predicted classes and column
names are labels of true classes.

Normal Pathology Vessel

Normal 75.0 6.5 0

Pathology 0 293.2 4.3

Vessel 0 0.3 70.7

a sample of type 1 (no embedbments) inspected under 14◦

(Fig. 3a, 3b) and a sample of type 2 (“blood vessel”) inspected
under zero angle (Fig. 3c, 3d). As one can see results are
visually indistinguishable.

We tested the approach proposed by applying 10 runs of
5-fold stratified cross-validation. Averaged confusion matrices
for both classifiers are in Tables II and III. The results showed
that classification quality was acceptable for both classifiers.
Note that in both cases the major part of errors correspond to
classes that are “neighbors” of the true one. However, accuracy
of the nearest neighbor classifier was higher than for the SVM
classifier.

VI. TISSUE TYPE CLASSIFICATION

For highlighting importance of knowledge of contact an-
gle we performed some experiments with supervised pattern

recognition. Namely, we worked on the problem of tissue type
identification (normal, vessel, pathology). Two approaches to
classification were tested.

The idea of the first approach is to split the classifier into
several components corresponding to similar contact angles.
This idea was implemented in the following way. For each of
the 5 given pressure angles we construct a separate classifier
using the approach from [12]. For a new unclassified sample
we first decide contact angle and then use the appropriate
classifier.

The second approach is based on considering the contact
angle returned by the angle detection procedure as an addi-
tional feature in the classifier from [12]. In order to highlight
the importance of contact angle we use a large weight value
for this feature.

Speaking in more detail, for the case of the first approach
the feature set consists of 19 pressure values and 38 partial
derivatives derived from the frame with maximal pressure vari-
ence and 4 largest values from the list of standart deviations
computed for each of 19 sensors in whole tactile image. All
features have the weight equal to 1. In the second case we
additionally consider the contact angle with the weight ω equal
to 100 (this value was selected empirically). In both cases we
use the one nearest neighbor algorithm with `1-like metric:

• for the first approach the feature space has dimension
19 + 38 + 4 = 61, so the distance between points
x = (x1, . . . , x61) and y = (y1, . . . , y61) is computed
as

ρ(x, y) =

61∑
i=1

|xi − yi|;

• for the second approach the feature space has dimension
61 + 1 = 62; suppose that the contact angle corresponds
to the coordinate number 62, then the distance between
points x = (x1, . . . , x62) and y = (y1, . . . , y62) is
computed as

ρ(x, y) =
61∑
i=1

|xi − yi|+ ω|x62 − y62|,

ω = 100.
To model this scheme and measure the quality of recogni-

tion we performed 10 runs of 5-fold stratified cross-validation
for each angle and then averaged confusion matrices by
all cross-validation runs and all angles. The final confusion
matrix for the first approach is presented in Table IV. Total
classification accuracy (i.e. ratio of correct predictions and
the total number of samples) was equal to 97.8%. The final
confusion matrix for the second approach is presented in
Table V; total classification accuracy was equal to 97.5%.

Generally, results for two methods were almost the same,
both for the case of three classes (as it is shown above) and for
the case of two clasess “healthy” and “pathology” (obtained
by uniting classes 1 (“normal”) and 2 (“vessel”)). In the latter
case we see very low false negatives rates: 2.0% for the first
method and 2.2% for the second method, and slightly higher
false positives rates: 2.2% and 2.8%, respectively.

For further analysis and for comparison with previous
approaches from Section IV we computed sensitivities and
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TABLE VI: Sensitivity and specificity of the proposed methods for heterogeneity detection. For each case sensitivity /
specificity are specified.

0◦ 3.6◦ 7.1◦ 10.6◦ 14.0◦

Combinied classifiers 99% / 94% 99% / 97% 95% / 99% 100% / 99% 96% / 98%

One classifier 98% / 95% 99% / 97% 95% / 100% 100% / 99% 96% / 97%

specificities for each contact angle, see Table VI. It can be
seen that for the three smallest angle deviations 0◦, 3.6◦

and 7.1◦ both proposed approaches and the best method
from Section IV (Method 2) provides approximately the same
accuracy in terms of sensivity and specificity. However for
larger deviations we see that specificities of all methods from
Section IV essentially dropped, while the methods from this
section keep working.

VII. CONCLUSION

Automated analysis of tactile images registered by special-
ized medical tools is a novel domain, which results promptly
find their applications in clinical practice. In this paper we
proposed a method for automated contact angle identifica-
tion and detection of heterogeneity in tactile images regis-
tered by the Medical Tactile Endosurgical Complex (MTEC).
MTEC is currently the only commercially available device
for intraoperative instrumental mechanoreceptoric palpation,
and heterogeneity detection in tactile images registered by
MTEC is a key step of localization of visually undetectable
pathologies using instrumental palpation. We propose two
methods that decide whether tissue is homonegeous, contains
a normal heterogeneity or a pathological heterogeneity. Both
methods consist of two stages. First we identify the contact
angle of a tactile press using classification with a specifi-
cally designed feature space. Next we perform heterogeneity
classification. In case of the first method we separate the
classifier detector into several components corresponding to
close contact angles. In case of the second method we add the
angle identified to the feature space as a feature with a high
weight. Validation on a set of samples modeling normal tissues
and pathologies showed that our methods clearly outperform
previously available methods in case of a significant deviation
of a contact angle from zero, and this deviation is unavoidable
in clinical practice, especially in minimally-invasive surgery.
Thus, inclusion of the proposed methods to MTEC software
will be the next step towards simpler and at the same time
more efficient localization of visually undetectable pathologies
using intraoperative mechanoreceptoric palpation.
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