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Abstract—This work examine the viability of one-dimensional 
Poincare section as an iterative tool for the inversion of 
electrocardiogram obtained from stressed cardiovascular system. The 
response of Heart Rate Variability to induced stress in a healthy 
subject on a Modified Bruce Treadmill Protocol was processed to 
derive R-peaks in six batches of 5.06 minutes per batch. For each 
stage, a corresponding iterative map was constructed with the 
sequenced R-peaks using the Kubios software. With increasing 
intensity of induced stress, the maps outline the nonlinear dynamic 
response of the subject’s autonomous nervous system. At the 
combined warm up stages one and two of the protocol, 1.6% offshoot 
in ANS activities is indicated with higher rate of parasympathetic 
activities. Response to low intensity stress condition showed 
symmetric ANS activities. However, with high intensity stress at the 
fifth stage, the map indicated an exponential increase in the number 
of heart beat orbits. However, the increment is characterized by 
skewed ANS activities with 15% acceleration of sympathetic ANS 
and 5% deceleration of parasympathetic activities. This profile is 
preserved at the final stage. In effect, the topology of the iterative 
maps of stages five and six of the protocol shows an inner ANS 
dynamical structure that is characterized by positive Lyapunov 
exponent. This limiting dynamical response determines the cardio-
pulmonary reserve of the subject. Thus, Poincare iterative maps 
provide high resolution computational tool for identifying the onset 
of chaotic motion in stressed cardiovascular systems.  

 
Keywords—Cardio-pulmonary Reserve, Heart Rate Variability, 

Iterative Maps, Nonlinear Dynamics.                                                                                                                                                                                  

I. INTRODUCTION  
ardiac disorder is a leading cause of mortality in 
humans [1]. In 2016, the World Health Organization 

(WHO) reported that cardiac disorder is responsible for almost 
one third of all deaths. Given that early detection of some 
asymptomatic non communicable medical conditions may 
improve cure and survival rates [2], science is continually 
developing innovative and high precision   for early diagnosis 
of cardiovascular disorder and similar medical disorders.  
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In this regard, advances in computational and statistical 
methods are also making very important contributions toward 
accurate and timely diagnosis of some medical conditions.  
They provide reliable qualitative and quantitative analyses of 
signals acquired from cardiovascular functions to enhance 
prognosis in ways that reduce missed diagnoses, and minimize 
time taken to reach accurate decisions. In effect, there is 
continuous reduction of morbidity and mortality resulting 
from cardiovascular disorder.  

Developments in applied numerical analysis, soft 
computing and statistical techniques now provide additional 
support for early identification of patients’ specific cardiac 
defect(s). In effect, a class of statistical discriminant functions 
are available for effective identification of some these medical 
disorderliness. However, given the inherent nonlinearity of the 
dynamics of cardiovascular system, the screening ability of 
traditional risk assessment tools is often challenged especially 
when some intricate clinical episodes are presented [3]. To 
address this issue, some analytical techniques that are 
developed for nonlinear dynamical systems have been used to 
diagnose the time response of cardiovascular systems [4]. In 
particular, [5] analyzed steady state response of the variability 
of cardiac pulse rate using the Poincare map. However, due to 
the intrinsic aperiodic nature of heart rate variability, this work 
investigates the potential of using Poincare map to identify the 
onset of nonlinear non-equilibrium period doubling dynamics 
i.e. chaos in a stressed cardiovascular system. This is achieved 
through an analysis of heartbeats response and their rates of 
variation. Given that cardiovascular stress can be induced by 
physical and pathological conditions, the viability of Poincare 
map to identify the onset of chaos under the prevalent 
condition would provide a reliable and proactive 
computational tool for monitoring the precipitation of crisis in 
stressed cardiovascular systems.  

Heart rate variability (HRV) analysis is an established 
metric for assessing autonomic nervous system (ANS) 
functioning in cardiovascular research and related human 
wellbeing systems. HRV is a result of ANS modulation of the 
sinoatrial (SA) node. The sympathetic and parasympathetic 
units are ANS subsystems with significant influence on heart 
rate and its variability [6]. The sympathetic activity is known 
to increase heart rate and decrease rate variability. On the 
other hand, parasympathetic activity acts to decrease heart rate 
and increase its variability. On the whole, HRV can be a 
measure of cardiovascular stress and fitness, as well as a 
measure of other related pathological variables, [7].  

Conceptually, the Poincare map is a numerical integration 
approach for visualizing the inner evolutionary structures of 
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dynamical systems. It gives a visual analogue of the exact 
nonlinear dynamics because the topology of its phase space 
describes the systems behavior in the neighborhood of 
prevalent fixed point(s). As a rule, topology of the phase space 
(of some iterative maps e.g. the Poincare plot) is a basis for 
determining the stability properties of system’s fixed points 
and vice versa. Thus, iterative maps have found very useful 
applications in many fields including astrophysics, economics, 
engineering, geophysics, mathematics etc. Although, its 
reliability is often challenged in large dynamical systems due 
to the use of relatively long time intervals. In medical science, 
the Poincare map is gradually becoming a handy marker for 
heart rate variability analyses [8]. It is a more efficient 
operational tool compared with averaging method that is the 
often considered alternative. 

The averaging method for visualizing autonomous 
dynamical systems is semi-analytical. In principle, it is a 
perturbation analysis of complex dynamical systems 
presenting trajectories identical to those of linear systems. In 
its simplest form, the technique is a power series expansion 
that is truncated at certain admissible order. In some cases, the 
truncation error masks the underlying physics of the 
dynamical system. On the other hand, if many (i.e. higher) 
order terms of the approximating function are retained, the 
asymptotic perturbation series may not converge. This trend is 
common with the averaging approach since most of the 
nonlinear dynamical systems have no (or non-unique) 
integrands. Thus, the validity of the averaging method is 
limited to the neighborhood of stable and well-posed fixed 
points. Clearly, when a system develops chaotic motion with 
large perturbation from asymptotically stable equilibrium, the 
method of averaging fails.  This structural behavior is typical 
of stressed cardiovascular system; hence the choice of the 
iterative Poincare map for visualization and analysis of heart 
rate variability in this work.  

II. ADVANCES IN CLINICAL APPLICATIONS OF ITERATIVE MAPS 
OF HEART RATE VARIABILITY  

 In a pioneer work on the application of iterative maps for 
the visualization of heart beat dynamics, Przemyslaw et al., 
[9] investigated the symmetrical properties of the heart rate R-
R intervals in adults with normal cardiovascular functions. For 
this purpose, analytics of the Poincare plots were extended to 
define sub descriptors that describe heart rate symmetry. Five 
minutes ECG recordings of fifty healthy subjects were 
sampled. The first standard deviation from the line of identity 
i.e. SD1 was divided into two components, SD1up

   and 
SD1down. These describe the outcome of SD1 above and below 
the identity line of the Poincare plot of R-R intervals. 
Subsequently, binomial test was used to determine whether the 
probability of SD1up >SD1down is higher than the probability of 
SD1up≤ SD1down. On the whole, the work established that 
probability marker for the upper rank R-R distribution from 
the identity line was significantly (i.e. 12%) higher than that of 
the lower rank. This revealed that the pattern of R-R interval 
changes differently during acceleration and deceleration of 
heart rate. Summarily, it was concluded that heart rate 

acceleration (i.e. reduction of consecutive R-R intervals) and 
deceleration (i.e. widening of successive R-R intervals) are 
asymmetric.                                                                                                                                                                                                 

In a related work, the effect of missing R-R-interval data on 
nonlinear heart rate variability analysis for a clinically 
impaired patient was studied, [10]. Simulated missing data in 
the actual R-R interval tachogram and actual missing R-R 
interval data was used for the analysis.  Randomly selected R-
R intervals ranging from one to a hundred samples were 
removed from actual data obtained from the MIT-BIH normal 
sinus rhythm R-R interval database. After a hundred Monte 
Carlo runs and Poincare sections of detrended fluctuation, and 
entropy of nonlinear HRV parameters in each run, authors 
concluded that nonlinear system identification processes that 
exclude the analysis of iterative Poincare maps may be 
inappropriate for accurate heart rate variability analysis 
especially if incomplete dynamical information is known.   

Poincare analysis of heart rate variability has been used to 
explain cardiovascular autonomic function in obesity, [11]. 
The effect of obesity on cardiovascular activities using an 
iterative map was evaluated. It compared HRV of thirty-one 
obese adult males with body mass index BMI 26.84±2.47 of 
ages 25.42±2.86years with thirty-one normal male subjects of 
ages 25.38±4.61years. The map showed that decrease in 
parasympathetic activity in obese candidates’ results in 
decreased heart rate variations. Scatter plots on the maps are 
concentrated towards the line of identity compared with those 
of normal subjects where the points are relatively divergent 
from the line of identity. Hence, the work established that 
heart rate variability is an effective index of the effect of 
obesity on cardiovascular autonomic function.  Similarly, [12], 
analyzed the response of HRV to Cholinesterase inhibitor 
poisoning in humans.      

III. THEORETICAL BACKGROUND OF THE POINCARE MAP 
According to [13], the Henri Poincare map is an innovative 

tool for analyzing complex cyclic dynamical systems. 
Considering an autonomous rate system with periodic or 
quasi-periodic dynamics as represented by:   

x̀= f(x),     x ∈ Rn.                                       (1) 
Depending on the nature of f(x), (1) may present periodic or 

quasi-periodic solution.  Let µ(x, t), be a solution of (1) 
satisfying µ(x, 0) = x.  Then O(x) = [µ(x, t): t Є R] is its orbit 
or trajectory passing through the point x. 

Iteratively, an orbit of (1) can be approximated in small 
time increments.  Given an initial value (x0, t0), some 
numerical techniques may approximate the solution at 
successive grid points (xk, tk), k≥1, such that the condition x 

(k)~µ(x0, tk) is satisfied to construct a first return map. Thus, 
successive intersections of the trajectory are mapped on a co-
dimension one surface of the phase space Rn.  

In this wise, the discrete phase variables xk is plotted against 
discrete time values tk to obtain an iterative transient 
approximation of the graph of µ(x, t). For the avoidance of 
doubt, this map differs from the phase portrait which is the 
plot of a phase variable with respect to another on the phase 
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plane.   
For the autonomous system in (1), the existence of a 

Poincare map is far from obvious, and in many cases the map 

may not exist. However, the iterative map is defined if the 
system admits periodic or aperiodic solutions. As a result, if x0 
is a point on 

the trajectory, then there exists a positive and finite period T 
of the orbit, such that µ(x0, T + t) = µ(x0, t) for all t ∈ R. 
Specifically, µ(x0, T) = µ(x0, t0) = x0, so that the point x0 
returns to itself after it has flowed for period T.  

Considering a surface 𝜀𝜀  that is transversal to the flow, i.e. 
the surface normal at x(0) satisfying < 𝑛𝑛 ∈ (x (0)), f(x (0))) >≠ 0; 
where <·> denotes the inner product operator. By the implicit 
function theorem, an open neighborhood U of x (0) can be 
defined such that for all x ∈ U, there exists a positive number 
𝜏𝜏(x) such that if z = µ(x,𝜏𝜏(𝑥𝑥)), then the following conditions 
apply: 

(a) z ∈ 𝜀𝜀 (x  returns to the plane at point 𝜀𝜀 after time 𝜏𝜏(𝑥𝑥)); 
(b) sign < (n Є (x), f(x)) > = sign < (n Є (z), f(z)) > given 

that ε is approached from the same direction.                                                                                                                                                                                 
The function 𝜏𝜏 ∶ Rn →R+ is continuous, and represents the time 
it takes for point x to return to 𝜀𝜀 according to condition (b). 
The point  z = µ(x , 𝜏𝜏(𝑥𝑥)), is called the first return of x, and 
the Poincare  map P :U →  𝜀𝜀 is defined by P(x) =  µ(x , 𝜏𝜏(𝑥𝑥)). 
Clearly, by this definition, we have 𝜏𝜏(x (0)) =T and P(x (0)) = x 

(0), [14]. These attributes supports iterative Poincare 
visualization of large time behavior of periodic/aperiodic 
nonlinear systems. 

A. Acquisition and Pre-Processing of Stress 
Electrocardiograph Data 
Stress ECG data for this study is obtained from a 175cm 

tall, 71.5kg, healthy, non-smoking, forty years old male adult. 
His body surface area is 1.94m2.  Clinical history and physical 
examination of the subject yielded normal findings. He had 
normal resting electrocardiogram and normal haemogram. 
Modified Bruce thread- mill protocol was used to acquire 
stress ECG data. For the purpose of this work, the subject was 
marginally stressed beyond threshold 85% of predicted MCR 
heart rate.   Details of the applied protocol is reported on Table 
I.    

An in-house built data acquisition device was connected to 
ECG Lead I of the GE MAC 1200 monitor at D-3 
Cardiograph, Surulere-Lagos, Nigeria.  The acquired QRS 
complex is digitized at 500Hz with 12-bit resolution over 
±10𝑚𝑚𝑚𝑚 range. Recording was done for a period of 
36minutes. Also recorded are ten annotated beats (unaudited 
R-waves and T-waves peaks annotations from an automated 
detector). 

In addition to the QRS complex, P and T waves, the 
waveform also contains 60-Hz noise from power line 
interference. This is in addition to convolution noise from 
electromyogram (EMG) due to muscles motion, artifacts from 
electrodes-skin interactions, as well as interference from other 
hardware in the surrounding. Consequently, the QRS complex 
is extracted the by a band pass filter.  

B. Preprocessing of Acquired Stress ECG Data   
R-peaks detection is fundamental in electrocardiogram data 

analysis. Given that Poincare method examines heart rate 

variability through the inter-beat interval, it is important to 
obtain accurate values of R-R interval from ECG data. 
However, the challenges include; irregular distance between 
ECG peaks, irregular peak form, presence of low-frequency 
component in ECG due to subject respiration. Hence, the pre-
processing algorithm is designed to minimize noise. At this 
stage, low frequency components are removed from raw ECG 
signal. Subsequently, the signal is processed in frequency 
domain through the use of Fast Fourier Transform (FFT). This 
enables the removal of convoluted noise. Subsequently, the 
Inverse Fast Fourier Transform (IFFT) returns the ECG signal 
to time domain. This is followed by the detection of R-peaks 
through the use of windowed filter to find local maxima. 
Finally, an optimum threshold is defined such that the 
preprocessing algorithm uses relative differences to register 
only significant values of R-peak.  

 

C. Construction of Poincare Map using Preprocessed ECG 
Data. 
To visualize the dynamics of the inter-beat intervals (i.e. the 

R-R intervals) on an iterative map, the detected R-peaks are 
sequenced as R1, R2 … Rn-1, Rn. The sequence is then 
regrouped into piece-wise pairs (R1, R2), (R2, R3)… (Rn-1, Rn).  
Following [14], consecutive nodes were connected to track the 
trajectory of the inter-beat intervals. The value of n at each 
stage of the analysis is determined by the number of detected 
R-peaks. Clearly, given the cyclic nature of heart beats, these 
R-peaks are linearly independent.  Precisely, the (n-1) 
hyperplane Є is constructed by specifying a point xЄ on the 
plane and constructing its normal direction field h = f(xЄ), 
Using the method of [15], positions of the limit cycles are 
identified as xЄ  =  x*. Thus, identically, x* is a fixed point of 
f(xЄ). Therefore, Poincare plot of HRV is a scatter plot of the 
current R-R interval plotted against the preceding R-R 
interval. Points above the line of identity indicate R-R 
intervals that are longer than the preceding R-R interval, and 
points below the line of identity indicate a shorter R-R than 
the previous. In line with the requirements of the sequence of 
R-peaks for the construction of the Poincare map.                                                                  

 

D. Poincare Maps and Identification of Chaotic Dynamics      
In context, chaos is aperiodic long-term behavior of 

deterministic systems that exhibit sensitive dependence on 
initial conditions. Aperiodic long-term behavior implies the 
onset of trajectories that do not settle down to fixed points, 
periodic orbits, or quasiperiodic orbits as time tends to 
infinity. Here, deterministic system is described as one with no 
random/noisy inputs or parameters. Also, system’s irregular 
behavior is due to nonlinearity and not from noisy excitations. 
Finally, sensitive dependence on initial conditions indicates 
that orbits originating from a close neighborhood separate 
exponentially fast. According to [16], this response implies  
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that the system has a positive Lyapunov exponent in the 
neighborhood of the prevalent fixed point. 

 

Table I. Modified Bruce Stress Thread-Mill Procedure 

E. Ellipse Fitting for Topology Analysis   
To identify onset of chaotic dynamics in the stressed 

cardiovascular system, ellipse is inserted on the map for 
topology. In concept, ellipse facilitates analyses of the type 
one genus iterative map. To insert the ellipse, centroid of all 
the R-R interval data points is determined to locate the 
coordinate of its center. Subsequently, the vector of the 
relative position of each point with respect to the center is 
constructed and pre-multiplied by its transpose to obtain a 2×2 
matrix. The resulting matrices are summed to obtain a single 
2×2 matrix. Finally, direction and length of the ellipse axes are 
determined by the Eigen-vector and Eigen-values of the 
realized matrix.   

Basically, the larger eigenvector determines the magnitude 
and direction (i.e. SD2) of the maximum variance of the R-
peak distribution. On the other hand, the smaller orthogonal 
eigenvector shows the magnitude and direction (i.e. SD1) of 
its minimum variance. Thus, SD1 and SD2 are the minor and 
major axes of ellipse fitted on the map. These standard 
descriptors are quantitative measures for classifying the 
geometry of genus one type iterative map. In terms of linear 
statistics, these standard descriptors guide visual inspection of 
the R-R distribution for chaos identification. It reveals a useful  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
pattern of the R-R interval data by representing both short 

and long term variations of the signal. SD1 shows the standard 
deviation of the short-term variability of the data while SD2 
shows standard deviation of the continuous long-term R-R 
intervals. The point where both axes intersect corresponds to 
the mean of the R-R intervals.      

IV. RESULTS AND DISCUSSION      
As stated in section 3.2, R-peak detection and noise removal 

are the fundamental electrocardiogram preprocessing 
operations for the Poincare plots. Standard algorithm for R-
peak detection on the Kubios was repeatedly applied with the 
Fast Fourier transform for data processing and filter noise in 
frequency domain.  The R-peak detection process is repeated 
for other samples and the corresponding Poincare Plots for 
each of the samples are presented in Figures 1 to 5. Data is 
acquired for a period of 30.36 minutes. For the objective of 
this study, the R-R intervals were grouped into five samples. 
The Poincare map and corresponding statistical measures were 
obtained in the manner of [17].  

 
 
 
 
 
 
 
 

 

Stage Speed 
km/h 

Grade % METS  Time Progression (min) Analysis 
Duration 
(min) 

   Heart Rate (bpm) 

Start 
Time 

Stop Time Initial Final 

1. 1.1 0.0 1.0 0.03 1.38 1.35 `68 77 

2. 1.6 0.0 1.2 2.20 3.02 1.18 77 83 

3. 2.7 10.0 4.6 3.48 7.41 3.53 83 99 

4. 4.0 12.0 7.0 8.21 14.11 5.50 99 108 

5. 5.4 14.0 10.0 15.53 24.43 8.50 108 120 

6. 6.8 16.0 12.5 25.27 30.36 5.09 120 151 

7 6.8 16.0 12.25 30.41 35.53 5.12 151 169 
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Table II.  Statistical Attributes of Samples 

 

Fig. 1: Poincare plot of the Sample 1 and 2 

 
 

Statistical Markers Samples 1 and 2 Sample 3 Sample 4 Sample 5 Sample 6 
Mean R-R(ms) 976.2 984.9 985.7 1049.9 1049.6 

Standard deviation R-R(ms) 19.2 46.9 43.4 161.13 161.10 

Mean Heart Rate(/m) 61.13 62.18 60.99 58.526 58.541 

Standard deviation Heart 
Rate(/m) 

1.20 3.04 2.77 9.0980 9.0941 

SD1(Standard 
deviation1)(ms) 

8.7 10.7 11.0 38.584 34.526 

SD2(Standard 
deviation2)(ms) 

25.8 65.3 60.6 225.31 225.29 
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Fig. 2: Poincare plot of the Sample 3 
 
 

Fig. 3: Poincare plot of the Sample 4 
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Fig. 4: Poincare plot of the Sample 5 
  

Fig. 5: Poincare plot of the Sample 6 

 

A. Discriminant Measures for Chaos Identification on 
Poincare Maps 

The topological layout of continuous interplay of 
sympathetic and parasympathetic response of the subject’s 
autonomic nervous system resulting from stress variation and 
its effect on his cardiovascular condition are described in 
Figures 1 to 5. Precisely, the iterative map of the warm up 
state of the stress ECG test consisting of pre stress stages 1 
and 2 is shown in Figure 1. The corresponding statistical 
attributes of detected R-R intervals at the warm up stages are 
detailed in Table II. On the iterative map, the inserted ellipse 

illustrates that only 32.56% of sampled heartbeat dynamics 
has precise closed orbits with equal periods. The remainder 
are aperiodic and uniformly distributed outside the ellipse in 
the four quadrants outlined by the SD1 and SD2 axes at an 
average of 17.44% per quadrant except for the first quadrant 
with marginally fewer (i.e. 16.28%) orbits. This profile, 
implies a well behaved dynamics with near symmetry between 
sympathetic and parasympathetic activities except for 0.016 
probability of parasympathetic activities exceeding 
sympathetic activities of the ANS.  

At stage three of the protocol, the response of the subject’s 
HRV is characterized by Poincare section shown in Figure 2. 
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The detailed test conditions are   specified on Table I, while 
the statistical attributes of acquired signal are summarized on 
Table II.  Compared with stages 1 & 2; there is relative 
reduction of the numbers of closed orbits with equal period. 
This is indexed by increased eccentricity of inserted ellipse as 
shown in Figure 2. In this case, only 24.53% of the trajectories 
have a specific period. Also, the total number of non-unique 
aperiodic orbits have increased. Hence, the onset of a period 
doubling process is established. However, the process is 
skewed in favour of sympathetic activities. Collectively, the 
number of aperiodic orbits on the lower part of the SD2 axis is 
approximately 3.78% higher than orbits on the upper SD2 
axis. Meanwhile, the lower and upper quadrants defined by the 
SD1 axis have equal number of aperiodic orbits. Thus, there is 
a steady increment in sympathetic ANS activities, and a delay 
in the response of corresponding restorative parasympathetic 
activities.  

Next, the intensity of stress in the exercise is increased to 
stage four of the protocol.                                    
Corresponding test variables for this stage are also listed on 
Table I. The statistical attributes of the outcome of sampled 
signal are as reported in Table II. At this stress level, only 
34.28% heart beats are completed in an exact period. The 
remainder are aperiodic orbits, located in the upper and lower 
parts of SD1/SD2 axes. In distribution, exactly 29.53% and 
26.66% aperiodic beats are located outside the ellipse on the 
upper and lower bands of the SD2 axis. At the same time, 
28.57% and 27.62% are orbits without specific periods. 
Though this structure is ergodic, it is apparent at this stage that 
parasympathetic activities are accelerating on both sides to 
resolve the stress induced heart rate acceleration by the 
sympathetic ANS of the subject. This distribution is delineated 
by the realization of a more eccentric ellipse on the Poincare 
section in Figure 3 when compared with Figure 2.  

At the fifth stage of the test protocol; there is rapid increase 
in the total number of orbits as shown by the detected R-R 
intervals. This indicates a positive Lyapunov exponent in the 
underlying structure of the systems dynamics. In addition, the 
outline of inserted ellipse is further tapered, accommodating 
only 27.86% periodic orbits. On the upper and lower sides of 
the SD2 axis are 33.75% and 38.46% aperiodic orbits. On the 
other hand, aperiodic orbits on the upper and lower parts of 
the SD1 axis are 43.96% and 28.25% respectively. This 
structure revealed pronounced difference between sympathetic 
and parasympathetic ANS activities. Thus, according to Figure 
4, sympathetic activities are significantly accelerated beyond 
the restorative response of parasympathetic activities. This 
realization indicates the precipitation of chaotic terminal order 
of HRV dynamics.  

Furthermore, relative to the third stage of the protocol, the 
number of orbits indicated by the R-R interval at the 
penultimate and final stages have doubled. However, 
replicating exponential increment in number of orbits in 
autonomous cyclic systems is the benchmark index of fully 
developed chaotic motion. In topology, the map shows 
30.91% periodic heart beats. Though there is an apparent 
increase in the fraction of periodic orbits when compared with 

stage 4; the increment is transient and a realization of systems 
nonlinearity. Furthermore, Figure 5 shows a widened gap 
between the sympathetic and parasympathetic ANS activities 
as indexed by the distribution of aperiodic orbits. There, are 
33.51% and 35.58% outliers across the upper and lower SD2 
axis. This is against 41.20% and 27.89% aperiodic orbits 
flanking the upper and lower bands of the SD1 axis. Clearly, 
there is a limiting ability of the receding parasympathetic 
activity to regulate the randomly accelerating heart beats. This 
response suggests that the dynamics is limiting at this stage, 
and has attained the cardio-pulmonary reserve of the subject.  

V. CONCLUSION  
Cardiovascular disorder is a leading cause of morbidity and 

mortality across the globe. Hence, development and 
advancement of prognostic techniques for early and efficient 
detection of cardiac disorderliness would minimize 
consequent paralysis and untimely death. Thus, this work 
extends biomedical applications of one-dimensional Poincare 
sections to include computational inversion of 
electrocardiogram data. The developed iterative maps for ECG 
signals acquired from a subject on a Modified Bruce Treadmill 
protocol show significant sensitivity to stress level as well as 
sufficient ability to identify terminal dynamics of the 
cardiovascular system as the subject approaches the limit of 
cardio-pulmonary reserve. Hence, the Poincare map presents a 
high resolution numerical inversion scheme for assessing the 
impact of cardiovascular stressors at varied intensities using 
electrocardiogram data.    
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