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Abstract—In this paper a stochastic differential equation (SDE)
model of generic body temperature (such as axilla, mouth, anus,
etc.) fluctuation is developed. We consider a mean-reverting SDE
process and use zero-mean martingale estimation function to get the
parameters. Subsequently we use data generated from another dy-
namic model of core body temperature a ground truth for comparison
with test our SDE model.
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I. INTRODUCTION

HUMAN body temperature is not a static process but
fluctuates throughout the day with amplitudes varying

over time, and it is subject to many affections both endogenous
(e.g. fitness, aging, hormones,and circadian) and exogenous
(e.g. ambient temperature, diet, and lifestyle) [2]. Meanwhile,
different measuring sites have varying temperature charac-
teristics [2]. The present manuscript investigates the general
body temperature, T (t), which could be axillary, oral, core
temperature, etc. Despite of all these uncertainties, human
body temperature follows circadian rhythms, which means it
varies diurnally with a nadir in the early morning, a zenith
in the late afternoon, and a mean amplitude of variability of
0.5◦C (0.9◦F)[4], [1].

There are researches about dynamic modeling of body
temperature such as [10] and [11] referred to in Section IV.
However, what we are trying to do in the manuscript is to
introduce the stochastic process, i.e. W (t), into the simulation
of body temperature. The result shows the feasibility.

The approach of the manuscript is to leverage a modified
mean-reverting process. By assuming the body temperature,
T (t), satisfies a mean-reverting SDE, where the reverted mean
function is assumed to be expressible as a Fourier series, we
obtain T (t) after solving the SDE with Itô’s Formula. Section
III details a method for detail the way to parameter estimation
of θ and volatility σ which uses martingale estimation function
from [7] . To provide a quantitative evaluation of our method,
an extant autoregressive model (with AR(1)) [10], [11] is
employed as a ground truth for comparison with our SDE
model. We compare the results of the two models which
turn out to be match in the general trend and indicate the
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basic feasibility of our model in terms of portraying body
temperature.

II. GENERAL ASSUMPTIONS

In this paper, we consider the human body temperature vari-
ation on an hourly basis. Let’s assume the body temperature
T (t) to be the solution of the following stochastic differential
equation (SDE):

dT (t) = θ(M(t)− T (t))dt+ σ(t)dW (t) (1)

where θ, a parameter, determines the speed of mean-reversion,
M(t) is the mean to which the process reverts, and W (t) is
a Wiener process.

Notably, M(t) has to be constant if (1) only reverts to M(t)
(Prop 4.1 [3]). However, M(t) is a deterministic function that
expresses the trend and seasonality of body temperature. To
obtain a stochastic process reverting to M(t) we add the term
dM(t)
dt to the drift term in (1). Now we get a model for body

temperature is given as

dT (t) = [
dM

dt
+ θ(M(t)− T (t))]dt+ σ(t)dW (t) (2)

with solution

T (t) = (T (0)−M(0))e−θt+M(t)+

∫ t

0

e−θ(t−u)σ(u)dW (u)

(3)
which can be solved by Itô’s Formula through, say, function
F satisfying F (t, Tt) = T (t)eθt.

For the mean temperature M(t) we use a Fourier series to
depict body temperature’s periodic characteristic. Additionally,
it is assumed that there is no trend in M(t), since we know
body temperatures fluctuate around a fixed average value.

III. PARAMETERS ESTIMATION

A. Estimation of the mean temperature function

Write M(t) in the form of a Fourier series as follows

M(t) = a0 +
n∑
i=1

[aicos(ωit) + bisin(ωit)] (4)

where ω = 2π
24 with assumed period of 24 hours. To estimate

the parameters of the above function we apply the least square
method.
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B. Estimation of the volatility σ
In this section we adopt the method of [5]. This method

needs two estimators for σ. The first estimator is the quadratic
variation of T (t):

σ1
2 =

1

N

N∑
i=0

(T (i+ 1)− T (i))2. (5)

where N denotes the number of data points collected each
day. The second estimator is derived by discretizing (2) which
can be seen as a regression of the present temperature against
previous moment temperature. After discretizing (2) becomes

Ti = Mi−Mi−1+θMi−1+(1−θ)Ti−1+σεi−1 i = 1, ..., N

where {εi}Ni=1 are independent standard normally distributed
random variables. Let T̂i ≡ Ti − (Mi −Mi−1). Hence

T̂i = θMi−1 + (1− θ)Ti−1 + σεi−1.

By following [6] we obtain an efficient estimator of σ as

σ2
2 =

1

N − 2

N∑
i=1

(T̂i − θMi−1 − (1− θ)Ti−1)2. (6)

To complete the estimator in (6), an estimator for θ must be
determined. This is the objective of the next section.

1) Estimation of parameter θ: One of the significant ap-
plication of Girsanov theorem is to obtain an estimation of a
function that satisfies dTt = µ(Tt; θ) +σ(Tt; θ) as follows [7]

dP

dPw
= exp(

∫ t

0

µ(Ts; θ)

σ2(Ts)
dTs −

1

2

∫ t

0

µ2(Ts; θ)

σ2(Ts)
ds)

where P and Pw are the probability distributions of Tt and
Wiener process respectively. Using Itô and Riemann summa-
tions to approximate the above integral and differentiating with
respect to θ, we can get
n∑
i=1

µ̇(Ti−1; θ)

σ2(Ti−1)
(Ti−Ti−1)−∆

n∑
i=1

µ(Ti−1; θ)µ̇(Ti−1; θ)

σ2(Ti−1)
, (7)

where the dot denotes differentiation with respect to θ and
∆ is the time interval length. When σ does depend on θ the
above estimation function becomes

Sn =
n∑
i=1

µ̇(Ti−1; θ)

σ2(Ti−1; θ)
(Ti−Ti−1)−∆

n∑
i=1

µ(Ti−1; θ)µ̇(Ti−1; θ)

σ2(Ti−1; θ)

(8)
. However, this estimating function is not consistent when the
time between observations is bounded away from zero [8], and
can be strongly biased when the time between observations is
not small enough [9]. Here we apply the method of [7] to
adjust (7) by subtracting its compensator in order to get a
zero-mean martingale regarding the filtration defined by Fi =
σ(T1, ..., Ti). The compensator is calculated as

n∑
i=1

Eθ{Si − Si−1 | Fi−1}

=
n∑
i=1

µ̇(Ti−1; θ)

σ2(Ti−1; θ)
(Eθ(Ti | Ti−1)− Ti−1)

−∆
n∑
i=1

µ(Ti−1; θ)µ̇(Ti−1; θ)

σ2(Ti−1; θ)
(9)

. By taking the difference between (7) and (9) we finally get
the estimation function

n∑
i=1

µ̇(Ti−1; θ)

σ2(Ti−1; θ)
(Ti − Eθ(Ti | Ti−1)) = 0. (10)

Meanwhile, by equation (3) we have

Ti = (Ti−1 −Mi−1)e−θ +Mi +

∫ i∆

(i−1)∆

e−θ∆σdW

from which E[Ti | Ti−1] = (Ti−1−Mi−1)e−θ∆ +Mi. It fol-
lows the Itô integration property that E(

∫ i∆
(i−1)∆

e−θ∆σdW ) =
0. Now it is possible to get the unique zero solution of (10)
by substituting E[Ti | Ti−1] in (10) as

θ = −log

 ∑n
i=1

Mi−1−Ti−1

σ2
i−1

(Ti −Mi)∑n
i=1

Mi−1−Ti−1

σ2
i−1

(Ti−1 −Mi−1)


where σ is obtained through (5).

IV. EXPERIMENT

In this section, we use data generated from another model-
ing of human core temperature developed in [10] and [11] to
estimate our parameters.

Based on [10], [11] core temperature may be expressed as

y(t) = µ+ s(t) + v(t)

where µ is the mean temperature, s(t) is the circadian compo-
nent and the noise v(t) represents thermoregulatory response
and other non-circadian perturbations. Moreover, s(t) is the
solution of the van der Pol equation of second order with

s(t) = a(t)cos(ωt+ ψ0)− εa(t)

8γ2
sin(3ωt+ 3ψ0) +O(ε2)

, where ω = 2π
24 since we assume period is 24 hours, ε is

internal stiffness parameter, and ψ0 is the phase angle, a(t)
represents the dynamic amplitude of the circadian pacemaker
satisfying

da(t)

dt
=

1

2
εω[a(t)− a(t)3

γ2
].

The function v(t) is approached with AR(1) process as follows

v(t) = ρv(t− 1) + η(t)

where ρ is the coefficient of AR(1) process and η(t) is
an independent Gaussian random variable with 0 mean and
variance σ2.

Table I presents the parameters for three simulated
experiments. These parameters were obtained in [10], [11]
from real world data. The mean temperature µ is assumed to
be 98.6◦F or so. And the data is generated with intervals of
20 minutes.

Each of the three simulations leveraging the parameters
given in Table I are presented in Fig. 1, Fig. 2, and Fig. 3.

We use these simulated data as our ground truth to obtain
parameters for the stochastic differential equation (1) based on
the parameter estimation method in Section III. (Table II)
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FIG. 1: Regenerated Experiment 1

FIG. 2: Regenerated Experiment 2

FIG. 3: Regenerated Experiment 3

Experiment
No.

Mean
Temp. a0 ε γ ψ0 ρ σ2

1 98.6 0.40 0.023 0.500 2 0.7 0.026
2 98.4 0.66 0.015 0.601 -0.84 0.75 0.017
3 98.0 0.70 0.200 0.438 1.50 0.90 0.020

TABLE I: Experiments parameters corresponding to Fig.1, Fig.2,
Fig.3 respectively

Experiment
No. θ σ1 σ2

1 0.4193

0.0307
0.0346
0.0247
0.0372
0.0331
0.0301
0.0303

0.0281
0.0243
0.0242
0.0285
0.0275
0.0241
0.0202

2 0.3514

0.0201
0.0236
0.0164
0.0237
0.0219
0.0184
0.0208

0.0177
0.0154
0.0158
0.0187
0.0179
0.0157
0.0131

3 0.1659

0.0234
0.0242
0.0178
0.0282
0.0244
0.0222
0.0211

0.0203
0.0178
0.0177
0.0211
0.0200
0.0179
0.0155

TABLE II: SDE parameters corresponding to SDE simulations in
Fig.7, Fig.8, Fig.9 respectively

In Fig. 4, Fig.5, Fig.6, σ1 and σ2 are compared graphically.
In Fig 7, Fig 8, Fig 9, SDEs of 3 Experiments are simulated

(cf. [12]) at a numerical cost of 4w = 4t ∗ ε, where we
set 4t = 1/3 hour and ε is a standard normal distribution.
Notably, the numerical cost does not have have a significant
effect on the results of the simulation. In Fig. 10 and Fig. 11,
the simulations with 4t = 1/60 hour and 4t = 1/1000 hour
of Experiment 1 are displayed.

V. CONCLUSION

In this work, a mean-reverting SDE model, which is ex-
tensively used in industry, is introduced to simulate generic
human body temperature. Then we leverage simulated data
from an established model [10], [11] as our ground truth. The
method of the present manuscript compares favorably with that
of the established model.

Even though both models are dynamic with diffusion or
perturbation the two models have their distinct advantages.
Our reference model [10], [11] is the solution of van der
Pol equation concerning the periodic trend, and it obtains the
ability to express more detail (such as dynamic amplitude)
in temperature variation. Also the established model from
[10], [11] has the advantage inherent in its expression as an
autoregressive model. Remarkably, our model may be easily
modified to suit other body temperature areas (e.g. axilla,
mouth, rectum, etc.), and has fewer parameters and a simpler
expression.

However, there is a limitation to the SDE model presented
in this manuscript. Even though our model follows the general
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trend of temperature fluctuation, it is lacking in terms of the
violation σ. This violation has been discussed in other contexts
where this method has been employed (cf. [5]). Future efforts
will be directed towards the resolution of this limitation.
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FIG. 4: σ of Experiment 1

FIG. 5: σ of Experiment 2

FIG. 6: σ of Experiment 3
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FIG. 7: SDE Simulate of Experiment 1

FIG. 8: SDE Simulate of Experiment 2

FIG. 9: SDE Simulate of Experiment 3

FIG. 10: SDE Simulate of Experiment 1 with 4t = 1/60 hour

FIG. 11: SDE Simulate of Experiment 1 with 4t = 1/1000 hour
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