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Abstract- In this paper, we describe a new statistical
approach to estimate blood glucose concentration along
time during endurance sports based on measurements of
glucose concentration in subcutaneous interstitial tissue.
The final goal is the monitoring of glucose concentration
in blood to maximize performance in endurance sports.
Blood glucose concentration control during and after aer-
obic physical activity could also be useful to reduce the
risk of hypoglycemia in type 1 diabetes mellitus subjects.
By means of a low invasive technology known as "contin-
uous glucose monitoring", glucose concentration in sub-
cutaneous interstitial tissue can now be measured every
five minutes. However, it can be expressed as function
of blood glucose concentration along time by means of a
convolution integral equation. In the training phase of
the proposed approach, based on measurements of glu-
cose concentration in both artery and subcutaneous in-
terstitial tissue during physical activity, the parameters of
the convolution kernel are estimated. Then, given a new
subject performing aerobic physical activity, a deconvolu-
tion problem is solved to estimate glucose concentration in
blood from continuous glucose monitoring measurements.

Keywords- Endurance sports, blood glucose concen-
tration, continuous glucose monitoring

I. INTRODUCTION

PHYSICAL activity (PA) in endurance sports is character-
ized by prolonged muscular work at high intensity (high

heart frequency). The energy needed to maintain muscular
fiber contraction during endurance sports is mainly produced
by means of chemical transformations of fatty acids and glu-
cose. Although energy production obtained from lipids is
necessary in endurance PA, glucose as source of energy plays
a very important role. Glucose is stored in the human body in
muscles and liver in the form of glycogen, and several grams
of glucose are diluted in blood. During PA, glucose is pro-
duced in muscles by glycogenolysis. In addition, it is also
transported there by means of blood circulation: the sources
are liver glycogenolysis, gluconeogenesis in liver and kidneys

and ingested food [11]. Demand of glucose in high inten-
sity exercise is substantial and could potentially lead to hy-
poglycemia, i.e. drop of blood glucose (BG) concentration
below 3.6 mmol/l (glycemia) [10]. Thus, to keep glycemia
within the normal range (3.6-5.6 mmol/l) (see [10]) the influx
of glucose from blood to the muscles is regulated by several
hormons among which insulin plays the major role. Insulin
production is decreased during exercise to prevent excessive
leak of glucose into the muscles [17]. From the above con-
siderations, it is clear that monitoring glucose concentration
in tissues and blood can be very relevant to maximize perfor-
mance in endurance sports. Moreover, it is absolutely essen-
tial for subjects with type 1 diabetes mellitus (T1D) in which
insuline is not produced and must be injected subcutaneoulsy.
Thus, the risk of hypoglycemia in T1D subjects during PA is
relevant because the physiological system to minimize it is
disrupted. To minimise such a risk it is recommended that
the insulin dose administered before and after an exercise pe-
riod should be decreased, carbohydrates should be ingested
regularly and glycemia should be measured as frequently as
possible (at least every 30 min) [20].

Recently, a new and low invasive technology has been in-
troduced, known as continuous glucose monitoring (CGM),
by which glucose concentration in subcutaneous interstitial
tissue can be measured every five minutes [15]. This tech-
nique is mainly used by T1D subjects, who greatly benefit of
it to monitor the level of glucose in tissues and blood in order
to control it. Studies proved that T1D patients can signif-
icantly benefit of regular aerobic PA, which reduces glucose
concentration in both blood and tissues [4]. Unfortunately, the
fear of the potentially severe effects of getting hypoglycemia
during or after performing PA is a major reason why most
T1D subjects do not perform PA [3].

We point out that by CGM we can only measure glucose
concentration in subcutaneous interstitial tissue Gs(t) at sam-
pling times while we are interested more in temporal glucose
level in tissues and blood. Fast and large changes in glu-
cose concentration in blood Gb(t), can be observed during
PA. However, it is well known that related changes in Gs(t)
are seen after a time delay (lag time) [9], [23]. The quantity
Gs(t) can be modeled as a function of Gb(t) by means of a
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convolution integral equation with asymmetric kernel involv-
ing only the past due to causality [6].

Here, we focus on the estimation of glucose concentra-
tion dynamics in blood during aerobic PA from CGM mea-
surements. To this aim, we propose to first perform some PA
experiments on one or more subjects. During training, CGM
measurements are performed together with those of glucose
concentration in both artery and capillaries, that reveal to be
very close to each other. These data are then used to esti-
mate the convolution kernel parameters. Given a new sub-
ject, a deconvolution problem is then solved to estimateGb(t)
from CGM measurements during PA. This task could be in-
troduced within a general tool, which also includes glucose
concentration forecasting either by machine learning or by
mathematical models [1], in order to monitor glucose con-
centration in blood aiming to maximize performance in en-
durance sports. In connection to the control of BG concen-
tration during PA and after it could also be useful to reduce
the risk of hypoglycemia in T1D subjects, and recent work,
[2, 7, 8, 12, 13, 16, 18, 19, 21, 24], indicate the importance
of handling PA for T1D patients. The current paper makes
progress in this direction by obtaining a more precise descrip-
tion of BG levels in artery. Utilizing this new information may
be the key to better BG control during PA.

Here we present initial results that indicate that the well-
known delay in CGM measurements can be significantly re-
duced. This delay may be life threatening for T1D patients,
in particular during PA where the BG level can be lowered
rapidly. Future utilization of these results are therefore ex-
pected to improve the BG behavior in T1D patients in general
and in particular during PA.

II. PA EXPERIMENTS AND MODELS

PA experiments are performed using an electrically
braked ergometer at the target heart rate (THR) according
to an intensity I corresponding to 50% of individual heart
rate reservoir, calculated following the Karvonen equation:
THR = (HRmax −HRrest) ∗ I/100+HRrest [14]. Mea-
surements of CGM and glucose concentration in artery and
capillaries are performed every 5 and 10-15 minutes, respec-
tively both during PA and for 60 minutes after its end. The
training begins approximately 120 minutes since breakfast
and after 10 minutes warm up phase. The exercise is inter-
rupted when either symptoms of hypoglycemia occurred or
BG concentration of 3.5 mmol/l is measured. Immediately at
end of training, 20 g of glucose diluted in 150 ml of water is
ingested.

We focus here on experiments with a PA phase followed at
its end by glucose solution ingestion. To describe both Gb(t)
and Gs(t) we therefore adopted a model with two sine func-
tions. The first sine function decreases until its local min-
imum is reached. Then, the second sine function increases
starting from this point which corresponds to its local mini-
mum. This ensures that also right and left derivatives at com-
mon local minimum point are equal. The model used has the
following parameters: minimum location, 3 parameters for
each sine function, but only six of them are free because of
the continuity constraint of the two sine functions at their lo-
cal minimum point.

The quantity Gs(t) as a function of Gb(t) is commonly
modeled [6] by means of asymmetric convolution, due to
causality, with exponential kernel h(t):

Gs(t) =

∫ t

0

Gb(τ)h(t− τ)dτ + ε, ε ∼ N(0, σ2), (1)

which is discretized to:

Gs = HGb + ε, ε ∼ N(0, σ2I). (2)

However, due to the two phases of glucose decrease and
increase with different dynamics, here we use two different
exponential functions for the convolution kernel, one before
the minimum location of Gb(t) and the other one after it.
Given the functions Gb(t) and Gs(t) estimated for one sub-
ject or more, the convolution kernel parameters are estimated
by minimizing the mean squared error between Gs(t) and its
estimate by numerical convolution ofGb(t). In a new subject,
model parameters of Gs(t) are estimated from CGM mea-
surements by minimizing mean squared error between data
and model values at sampling times. Deconvolution of Gs(t)
is then performed to estimate model parameters for Gb(t)
by minimization of mean squared errors between estimated
Gs(t) and the numerical convolution of Gb(t). Here the con-
volution kernel is assumed to be known since we use the one
already estimated before. This minimization is performed
here by Simulated Annealing, which will be the dominating
algorithm in terms of complexity, O(k5), as given in [22],
where k is the length of the data vector for each patient. The
complexity of least square estimation is O(k3), due to matrix
inversion and for the convolution (i.e. matrix-vector multipli-
cation), O(k2), both given in [5]. The method is summarized
in Algorithm (1).

Algorithm 1 The CGMPA algorithm
Input: Measurements of CGM and arterial glucose con-
centration
Training:

For i = 1 : n
Model fitting to CGM data of subject i
Model fitting to arterial data of subject i

End
Estimation: Kernel parameters via convolution
Input: CGM measurements for a new subject
Estimation:

Gs(t) parameters via CGM data fitting
Gb(t) parameters via deconvolution of Gs(t)

III. RESULTS

In Fig. 1 we can observe the data of both CGM and arterial
glucose concentration measured for one subject during the PA
experiment. A double sine model is fitted by minimizing the
mean square error for both the Gs(t)-data and the Gb(t)-data.
As seen, there is a very good agreement between model and
data. In the initial phase, Gb(t) decreases due to PA. The
ingestion of a glucose solution at the end of PA, makes Gb(t)
to increase again. The changes of Gs(t) due first to PA and
then to glucose ingestion appear clearly delayed w.r.t. those
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Fig. 1: Example of data for CGM (+) and arterial glucose concentration (o)
measured for one subject during PA experiment. Continuous lines show best
data fits by double sine model for Gs(t) and Gb(t), respectively.

of Gb(t). This can be claimed since it is clear, for e.g. the
upper panel of Fig. 2, that the variation in CGM is delayed
compared to BG in artery during both PA and after intake of
glucose at the end of PA. To see this, draw a horizontal line
for e.g. a value of 8 mmol/l. During PA, Gb(t) arrives to
this value after around 35 minutes while Gs(t) arrives to this
value after around 50 minutes. This means a delay of around
15 minutes, a length that may be life threatening for a T1D
patient. The same behavior for this horizontal line is observed
during the glucose ingestion where Gb(t) arrives to 8 mmol/l
after around 95 minutes while Gs(t) arrives there after 110
minutes. Note that also here the delay is around 15 minutes.
Given the functions Gb(t) and Gs(t) estimated for this sub-
ject, the convolution kernel parameters are estimated by mini-
mizing the mean squared error betweenGs(t) and its estimate
by numerical convolution of Gb(t). This is done by exhaus-
tive search on a finite 2d-grid of values for the time constants
(in minutes) of the two exponential functions from 1 minute
to the maximum value of sampling times (in minutes) with
steps of 1 minute.

Fig. 2 shows similar data of CGM and arterial glucose
concentration for two other subjects. The best model fit for
Gb(t) is superimposed on the arterial glucose concentration
data. Based on the convolution kernel estimated before, an
estimate for Gs(t) is obtained by numerical convolution of
Gb(t). A good agreement is observed between CGM data
and estimated Gs(t) computed at sampling times.

In Fig. 3 the same data of CGM and arterial glucose con-
centration as in Fig. 2 appear. The best model fit for Gs(t)
is superimposed on the CGM data. Based on the convolution
kernel estimated before, an estimate for Gb(t) is obtained by
numerical deconvolution of Gs(t). A good agreement is ob-
served between arterial glucose concentration data and esti-
mated Gb(t) computed at sampling times.

The percentage total mean square error for the mean
square error minimization fitting for the convolution and de-

0 20 40 60 80 100 120 140

minutes

4

5

6

7

8

9

10

11

12

13

m
m

ol
/l

0 20 40 60 80 100

minutes

2

3

4

5

6

7

8

9

10

11

m
m

ol
/l

Fig. 2: Data for CGM (+) and arterial glucose concentration (o) measured for
two additional persons performing a similar PA experiment. The best model
for Gb(t) fitted to arterial glucose concentration data is also superimposed
on them. For each of the two subjects, estimate of Gs(t), as obtained by
numerical convolution of Gb(t), is superimposed on the CGM data.
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Fig. 3: Data for CGM (+) and arterial glucose concentration (o) as in Fig. 2.
Best model for Gs(t) fitted to CGM data is also superimposed on them. For
each of the two subjects, estimate of Gb(t) obtained by numerical deconvo-
lution of Gs(t) is superimposed on the arterial glucose concentration data.

convolution estimates for the two subjects in Figs. 2 and 3 are
shown in Table 1.

Subject Convolution Deconvolution

1 Gb : 7% Gs : 5% Gs : 2% Gb : 10%
2 Gb : 6% Gs : 5% Gs : 0.3% Gb : 11%

Table 1: Percentage total mean square error for the mean square error mini-
mization fitting for the convolution and deconvolution estimates for the two
subjects in Figs. 2 and 3.

IV. CONCLUSION

The present work shows that a statistical approach can be
used to successfully estimate BG concentration along time
during PA from CGM measurements. This task could be in-
troduced within a general tool to monitor glucose concentra-
tion in blood aiming to maximize performance in endurance

sports. This could also be used to reduce the risk of hypo-
glycemia in T1D subjects performing PA.
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