
 

 

 
Abstract— Effective segmentation of electromyography 

(EMG) burst that synchronizes with 

electroencephalography (EEG) for long-duration 

recording is important steps to better understand the 

quantification of brain-muscle connectivity in periodic 

motoric activities. The work proposes an alternative 

automatic EMG segmentation scheme consists of four 

main steps, i.e. denoising of EMG burst signal using 

discrete wavelet transform, enveloping signal using time-

windows averaging of RMS amplitude, an adaptive 

threshold to detect start/end burst envelope with 

accommodation of muscle contraction characteristic and 

the final step is conversion enveloping signal to binary 

segmentation signal.  

The proposed scheme is evaluated to detect contraction 

period/duration of EMG for the subject under repetitive 

holding and releasing grasp using a physiotherapy device. 

During exercise, the bio-amplifier board is customized to 

acquire simultaneous EEG and EMG from the region of 

flexor digitorum superficialis (FDS) of muscle and cortical 

motor of the brain, with total 284 EMG burst that 

counting by manual segmentation. The automatic 

segmentation can detect the total EMG burst by 6.25% 

error of false burst detection.  

The usefulness of proposed scheme is also tested to 

association analysis according to the power of EMG burst 

and the power of mu-wave of EEG recorded on the motor 

cortex.  The changing trend of the power of mu-wave 

associated with muscle relaxation, muscle contraction 

strength and the synchronization level on the motor cortex 

during exercise are analyzed with integrated information 

that is relevant with biofeedback concept. The results 

demonstrate that proposed scheme has potential to be an 

effective method for the evaluation of biofeedback 

rehabilitation exercise. 
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I. INTRODUCTION 
repetitive movement exercise is suggested for patients 
with motor function deficits in order to help patients 

regain muscle function, muscle elasticity, joint range of 
motion and prevent muscle shortening [1].  The method to 
provide physiological information for patients during physical 
rehabilitation is called biofeedback. The majority of 
biofeedback research has focused on the effects of 
biofeedback therapy in the exercise of the upper and lower 
limb motor deficits in patients.  For bio-feedback, muscle 
activities could be evaluated using electromyography (EMG). 
The conventional EMG quantification is focused for fatigue 
evaluation for specific activities [2,3] and characteristic of 
muscle contraction [4,5]. 

Biofeedback quantification using electroencephalography 
(EEG) is also an intensive research [6,7,8] related to motor 
activities. A mu-wave has reported as one of the parameters 
for quantifying the level of desynchronization of neuron on the 
motor cortex [8,9,24].  

Segmentation of EEG signal with synchronizing muscle 
activities during contraction and relaxation is important to 
better understand the quantification of brain-muscle 
connectivity in periodic motoric activities [10,11].  

Several approaches have proposed to find the localization 
and start/end (timing) of those bursts in the EMG signal, 
particularly for repetitive exercise and long duration 
recording. In [12], the algorithm to automatically detect and 
segment the muscle contractions existed in EMG signal was 
proposed based on thresholding techniques of instantaneous 
energy that is estimated from the time-frequency signal 
analysis.  In this approach, the fixed threshold value only 
worked well for a limited condition. 

Another approach of EMG segmentation is proposed in 
[15]. The higher-order low-pass FIR filter was applied to 
determine burst signal envelope. The peak detection of the 
signal envelope was used to estimate timing and time interval 
of the burst.  In this work, a video recording was also used to 
estimate interval time of the burst using the change of marker 
position on the legs. Under the real situation, this approach 
becomes inefficient.  
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The effort to increase the accuracy of the interval time of 
the burst was also reported in [2]. The time and frequency 
algorithm were applied to predict the beginning of EMG 
amplitude changes from relaxation to contraction.  For EMG 
segmentation, a threshold value on the specific windows was 
determined by taking into account a variation of the amplitude 
signal.  However, in real condition, those approaches are still 
challenging to determine the specific interval of the burst, 
particularly for cyclic burst during repetitive exercise. 

The effort to develop an algorithm for accurately detecting 
interval time of the bursts using an iterative approach was 
proposed in [16]. An iterative algorithm was developed to 
select the change-points between two segments of the bursts 
signal based on some local statistics. This approach also 
attempted to estimate a local shape of EMG envelope in each 
bursts cycle using the likelihood-ratio. Without effective 
denoising EMG signal, the computation load of this approach 
becomes a problem, particularly in case of EMG segmentation 
on repetitive exercise and long duration recording. 

The work proposes an alternative scheme for the automatic 
segmentation of an EMG burst that synchronizes with an EEG 
recording for periodic motoric activities.  An automatic EMG 
segmentation scheme consists of four main steps. The first 
step is noise reduction processing of EMG burst signal using 
discrete wavelet transform (DWT). The second step is 
enveloping signal using time-windows averaging of RMS 
amplitude. The third step is converting the signal envelop to 
binary segmentation signal using an adaptive threshold to 
detect start and end of EMG burst envelope. The method to 
determine threshold is by accommodating muscle contraction 
characteristic as function of cycle repetitive contraction.  The 
final step is converting the resulting signal envelope to a 
binary segmentation signal.  

The proposed scheme is tested to detect the start/end 
contraction of burst EMG for the subject under repetitive 
holding and releasing grasp using a physiotherapy device. 
Furthermore, the usefulness of proposed scheme is also tested 
to analyze the relationship between the powers of EMG burst 
with the power of mu-wave as a function of periodic motoric 
muscle activities. 

The paper is organized as follows. Section 2 briefly reviews 
the literatures related to some approaches for EMG 
segmentation and the concept behind the proposed scheme 
presented. In section 3, the methodology of the proposed 
scheme further explained and followed by the explanation of 
the experiment design. Finally, the experiment results and 
conclusion are presented in section 4.  

II. METHODS 

A. EMG and EEG signal characteristic on motoric 

activities 

EMG signal represents the combination of action potentials 
from all muscle fibres of a single motor unit called motor unit 
action potential (MUAP). A non-invasive technique is applied 
by placing surface electrodes on the skin surface with respect 
to the motor points in the muscle. 

For surface EMG signals, the amplitude is in a range 
between 10 mV. The higher amplitude often occurs on the 
period of maximum contraction, with a signal pattern which is 
often called EMG “burst” [18]. EMG is one of biofeedback 
modalities that investigates actively in medical rehabilitation 
exercise [12,3,5]. In exercise, repetitive/periodic movement 
can increase the improvement of motor skills and the 
smoothness of movement progressively. Information 
extraction from EMG burst can be used to predict the dynamic 
of muscle strength [13] and the process of muscle toward 
fatigue [14]. 

In contrast with EMG, the electrical activity of the brain can 
be recorded using EEG signal by placing gold electrodes on 
the scalp. This signal manifests the cortical electrical activity, 
measured in the order of micro-volts with restricted frequency 
range from 3 to 40 Hz. Some muscle activities, for instance, 
the repetitive flexion and extension, are usually related to the 
increase of brain activity in motor coordination, attention, 
cognition process, and decision-making process [8,9]. The 
previous study reported that repetitive movements would 
trigger a de-synchronization of neuron activity in the motor 
cortex that called a mu-brain wave. The mu-wave is EEG 
signal with frequency range lies in 8 to 13 Hz. The previous 
researcher has reported that [6,7,8] the decrease in mu-wave 
activity over the motor cortex of the brain shows the presence 
of information processing related to planning, decision-
making, and preparation of motoric activities.   

 Previously [10,11], coupling analysis between muscle 
activities and the motor cortex has been researched based on 
EMG and EEG data. The objective of these investigations is to 
better understand the brain-muscle connectivity in relation to 
motor function, particularly on repetitive movement. To 
support this research, processing scheme with the capability 
for comprehensive of EEG and EMG synchronization and less 
operator intervention is required. Next section describes the 
overview concepts of our proposed approach. 

 

B. Proposed Scheme     

Actually, segmentation is an effort for separating EMG 
signal in specific duration corresponding to the relaxation and 
EMG burst signal. Due to noise, determining the timing of 
periodic bursts signal is challenging.  

In the scheme, denoising process of a raw EMG signal is 
applied based on multi-resolution discrete wavelet transform 
(DWT). Then, segmentation is processed on denoising EMG. 
The final output of a segmentation process is binary 
segmentation that is used to segment EEG signals that 
synchronize with the condition of muscle contraction and 
relaxation. The summary of processing scheme, with starting 
process of simultaneous EMG-EEG recording, steps for 
segmentation process and coupling analysis of EMG-EEG on 
the contraction phase and EEG on the relaxation phase is 
shown in Fig. 1.  
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Fig. 1 The summary of processing scheme of automatic 

segmentation, dedicating to biofeedback coupling analysis of EMG-
EEG 

 

C. EMG Burst Denoising using DWT 

The actual EMG signal originating from muscle activities 
can degrade due to the mixing noise or artifacts [13,17,18]. 
These noises could arise from several factors, such as motion 
artifact due to muscle and electrodes movement concerning 
one another and the power line interference. Furthermore, 
anatomical factors, such as the number of muscle fibers per 
unit, depth and location of active fibers, and tissue thickness, 
could affect EMG amplitude and the lowering signal to noise 
ratio (SNR).  For supporting automatic segmentation, noise 
reduction of the EMG signal is required in the pre-processing 
stage. The ideal objective of denoising is to optimize the 
reduction process of noise in a raw EMG signal and also to 
preserve the useful signal frequency spectrum as much as 
possible. 

The use of a digital filter approach is a standard method for 
noise reduction. However, due to EMG signals non-stationary 
characteristics, applying various digital filter approaches is not 
the most efficient [14,13,19]. 

A potential substitution for a digital filter is the discrete 
wavelet transform (DWT), considering the capability of 
studying the variable resolution both in the time and frequency 
domain simultaneously [13,20].  The multi-resolution level 
and basis wavelet function could be tuned more flexibly to 
remove noise and artifact on a raw EMG signal.   

Suppose, S(n) is the raw EMG signal, the decomposition 
procedure on DWT is started by passing a signal through the 
low pass filter (LPF) go and high pass filter (HPF) ho.  The LPF 
and HPF result in an approximation signal and a detail signal, 
respectively. The approximations are low-frequency 
components of the time series (AL(n)), and the details are 
high-frequency components (DL(n)), where L represents the 

decomposition level [12]. For DWT process, the S(n) can be 
denoted by the approximation of A0 (n) at L=0, then, the 𝐴L 

and 𝐷L of the DWT at level L can be formulated as  

𝐴𝐿(𝑛) = ∑ 𝑔𝑜(𝑗 − 2𝑛)𝐴𝐿−1(𝑗)𝑗∈

(1)
𝐷𝐿(𝑛) = ∑ ℎ𝑜(𝑗 − 2𝑛)𝐷𝐿−1(𝑗)𝑗∈

(2)

where j and L represent the translation parameter in the time 
domain and the inflation or deflation of time scale wavelet 
function, respectively. As represent in Eq.1 and Eq.2, go is 
related to the scaling function  (often called father wavelet 
function) and ho is related to the mother wavelet function . 
Both functions can be defined as  

𝜃𝐿,𝑗(𝑛) = 2−
𝐿

2𝜃(2−𝑗𝑛 − 𝑗)

(3)

𝜓𝐿,𝑗(𝑛) = 2−
𝐿

2𝜓(2−𝑗𝑛 − 𝑗)

(4)

 
S(n)=A0(n)

fm=0.5fs

LPF  A1(n)
0-0.5fm

HPF  D1(n)
0.5fm-fm

¯ 2

LPF  A2(n)
0-0.25fm

HPF  D2(n)
0.25fm-0.5fm

¯ 2

LPF  AL(n)
0  -  (0.5)L  fm

HPF  DL(n)
 (0.5)L fm  - 2(0.5)L fm 

L=1

L=2

L

 
 

Fig. 2 The L level of repeating DWT decomposition of signal S(n). 
At each L, the signal is decomposed into approximations (AL) and 

detail (DL), decimated by 2 (↓2) relative to AL-1. fs is sampling 
frequency 

 
At L=1, A0(n) is processed through an LPF and HPF to 

obtain coefficient subset A1(n) and D1(n), that are decimated 
by 2 (↓2) relative to A0(n). The approximation coefficients are 
then processed to the second stage to repeat the procedure. 
Finally, the signal is decomposed at a targeted level (L). The 
illustration of decomposition tree of DWT is shown in Fig.  2. 

The general process for optimal denoising of S(n) needs the 
selection of four parameters of processing steps:  

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2020.14.19 Volume 14, 2020

ISSN: 1998-4510 138



 

 

1) Determining the type of wavelet basis function and 
wavelet decomposition level L. 

2) Selecting the coefficient of DWT for signal reconstruction. 
The DWT coefficients at L have the specific frequency 
range of signal of 0-0.5Lfm for AL(n) and 0.5Lfm-2(0.5Lfm) 
for DL(n). Removing a frequency range of S(n) due to 
motion artefact is considered to select DWT coefficients 
{AL,DL-1,DL-2,…, D1}.  

3) Determining the threshold function, selection rule of 
threshold and the threshold rescaling method of selected 
set of DWT coefficients. 

4) The final step of signal reconstruction (denote by SF(n)) is 
targeted to improve SNR of signal transition between 
relaxation to contraction and vice versa. 

 

D. Method of EMG signal segmentation   

The general steps of the proposed EMG segmentation is 
presented in Fig. 3. In this work, S(n) is acquired using the 
lowest tolerable limit of sampling frequency (fs) for EMG in 
about 256 Hz [19]. Based on various report studies on DWT 
for EMG signal, the wavelet basis function based on 
Daubechies’s (dB45) is chosen. In step 1 (see Fig. 3), 
denoising of S(n) starts with removing noise due to motion 
artefact, with DWT decomposition with L=5 and selected 
DWT coefficients. Before reconstruction, these wavelet 
coefficients are selected using the ‘sqtwolog’ function, soft 
threshold and rescaling using a noise estimation based on the 
first-level coefficients.  

 
Denoising   

using DWT

Windows 

averaging of RMS 

Burst Envelope 

Start/End point of 

Burst Envelope

Contraction/

Relaxation Masking

Step 1

Step 2 Step 3

S(n)

SF (n)

SE (n)

Tr

Binary Segmentation

Step 4

SB (n)

 
Fig. 3 Summaries of processing steps for automatic segmentation 

 

 
Fig. 4 EMG (S(n)) and denosing EMG (SF(n)) 

 

The example of signal reconstruction of thresholding DWT 
coefficients {D4, D3,D2 and D1} is shown in Fig. 4. Compared 
with Sn(f), resulting denoising EMG SF(n) could reduce the 
background noise in between cyclic burst as well as preserving 
the shape of burst signal.  

In step 2, the root mean square (RMS) of SF(n) is used to 
reverse the polarity of the negative peaks into the positive 
peaks, without losing the information of a time interval of 
EMG burst.  The RMS of SF(n) is determined by:  
 
𝑆𝑅(𝑛) = √𝑆𝐹(𝑛)2                                  (5) 
 

The enveloping process starts with setting the sliding 
window of length w samples in the SR(n).  The envelope signal 
at the data points n is determined by: 
 

𝑆𝐸(𝑛) =
1

𝑁
∑ 𝑆𝑅(𝑖). ℎ(𝑛 − 𝑖)

𝑛+
𝑤
2

𝑖=𝑛−𝑤
2

                            (6) 

 
where h(.) is the rectangular window, N is number of point 

data in window length.   

Fig. 5 Plot of SR(n) with superimposed enveloping RMS SE(n). The 
envelope extraction over all trend of the burst signal used sliding 

window with w sample 12.5%, 9.38%, 12.5% and 18.75% sps. Black 
arrow marked a small fluctuations that may arise in a period of 

muscle contraction 
 
 
Selection the length of w must consider two aspects of the 

prediction of the shape of envelope SR (n), i.e. 
1) Consistency of determination of the start/end point of 

SE(n) under small fluctuation of background noise. 
2) The envelope shape of SE (n) must accommodate a small 

fluctuation that may arise in a period of muscle 
contraction. These fluctuations may occur due to unstable 
firing rates of the motor units and motion artifacts that are 
not optimally removed in wavelet denoising.  

 
As an illustration, the shape of envelope SE(n) on burst 

SR(n) in one muscle contraction period is shown in Fig. 5. The 
effect of length of w in 6.25%, 9.38%, 12.5% and 18.75% 
from sample per second (sps) are demonstrated. Note, the sps 
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represents frequency sampling (fs) in Hz. With consideration 
of trade-off for SE(n) prediction, w with 12.5% sps is 
considered for the next processing step.  
 

For repetitive contractions, the SE(n) pattern produces 
maximum amplitude and burst duration that depends on 
contraction characteristic, such as the strength and the 
endurance of hand muscle gripping load (See Fig. 6-I). A 
threshold value (TR) must be defined to detect the location of a 
start/end point of a cyclic burst signal. In step 3, on the 
segmentation scheme, an adaptive TR with accommodation of 
a varying pattern of burst describe as follows.  For common 
repetitive movements exercise, a number of contractions in the 
certain duration TD is determined on the specific scenario as 
follow.  

 
1) We defined set of N points data SE(n) in each TD duration, 

and ordered values from the least to the greatest that is 
represented as {SEmin-max-n}={ SE(n),…… SE(n+TD)}. The 
plot example of {SEmin-max-n} on three different TD (TD1, 
TD2, TD3) is shown in Fig. 6-II.  On these plots, a turning 
point of value from the least to the greatest may be 
indicated as a Tr candidate. 

 

Tr(r)

(I)

TD 1 TD 2 TD 3

(II)

(III)

(IV)

 

Fig. 6 The examples of a pattern of SE(n) in repetitive contraction (I), 
set of {SEmin-max-n} in a specific TD1,TD2 and TD3 (II), determined 

binary segmentation SB(n) using fixed Tr (III) and determined binary 
segmentation SB(n) using adaptive Tr (IV) 

2) Formally, a Tr is determined based on the nearest rank 
method of P-th percentile {SEmin-max-n} that is calculated 
using m = [0.01P x N]. Then Tr is determined from ordinal 
rank m of {SEmin-max-n} [21]. 

3) The value of P can be defined based on characteristic of 
{SEmin-max-n} in P with range of 50-60, for determined Tr (n) 
in each TD.   

 
Given an adaptive value of Tr, in step 4 (see Fig. 4), a 

binary segmentation (SB(n)) of SE(n) is determined based on: 
 

𝑆𝐵(𝑛) = 1    𝑖𝑓  𝑆𝐸(𝑛) ≥ 𝑇𝑟(𝑛)                 (7) 
𝑆𝐵(𝑛) = 0    𝑖𝑓  𝑆𝐸(𝑛) < 𝑇𝑟(𝑛)              (8) 
 

As an illustration, given Tr(n) from P =50 from percentile 
{SEmin-max-n} in TD1, a false of SB(n) on TD2 is demonstrated 
(See Fig. 6-III). In this case, the endpoint of contraction is 
missed to be detected. Using a value of Tr(n) based on specific 
distribution {SEmin-max-n} on each TD, it could solve false 
problem on SB(n) (See Fig. 6-IV). 

III. EXPERIMENTS AND ANALYSIS 

A. Experimental data collection 

The simultaneous EEG and EMG are acquired using 
biosensing device based on the ADS1299 analog front-end as 
bio-amplifier with 8 channels and programmable gain. The 
packaged data are sent to computer using a wireless Bluetooth, 
with maximum sampling rate in about 256 Hz.  In the 
experiments, the disposable surface electrodes for EMG and 
gold cup surface electrodes for EEG are placed on the hand 
and scalp of head, respectively.  The biosensing device is 
customized to acquire simultaneous EEG and EMG from the 
region of flexor digitorum superficialis (FDS) of muscle and 
cortical motor (Fz, Cz and Pz) of the brain (See Fig. 7).  
 

reference

Fz

Cz

Pz

reference

flexor digitorum 

superficialis 

Hand Physiotherapy  

Device

Fig. 7 Experimental data collection for simultaneous recording of 
EEG and EMG 
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The right-handed healthy male subjects (22 years old) are 
participated in the experiment. The subject is asked to perform 
repetitive motor contraction tasks. With color stimulus guiding 
in monitor, the subject is requested to hold and release the 
grasp of hand physiotherapy device (See Fig. 7) twice in 
TD=2 seconds duration. The activity repeats for about 5 
minutes for simultaneous recording of EEG and EMG. 

 

B. Evaluation Automatic Segmentation Performance 

Performance evaluation is done by calculating the number 
of EMG burst that occur for the duration of repetitive 
movement. As an illustration, the typical EMG signal for 4TD 
duration (in about 8 seconds) during the repetitive exercise 
using hand physiotherapy device is shown in Fig. 8. 
  

Evaluation is done after the baseline recording stage in 
about 60 seconds. Then, the total number of bursts 
occurrences is calculated for each repetitive movement on 
duration each periode 40 second. Using manual counting, the 
total number of bursts due to contraction is 248 times. The 
automatic segmentation is evaluated to count and segment 
cyclic bursts. Based on the data set {SEmin-max-n} in the 
initialized periode of 4TD, fixed Tr is determined using P=55.  
The total errors of fail burst  detection automatic segmentation 
with fixed threshold Tr is 28.5%. 
 

Burst 

Segmentation 

Fault

SB(n=4)SB(n=3)SB(n=1) SB(n=2)SB(n=4)X SB(n=3)

Fig. 8 The typical EMG signal for 4TD duration during the tasks 
which the subject is requested to hold and release grasp of hand 

physiotherapy device. In duration of 8 seconds, with manual 
segmentation, 4 burst signals can be counted.  In the illustration, 

fixed Tr segmentation only counts 2 contraction phase and adaptive 
Tr segmentation successfully to detects 4 contraction phases 

 
Table 1. Comparison  of counting EMG burst due to repetitive 
movement using manual, fixed Tr segmentation and adaptive Tr 

segmentation. Hold and release grasp of hand physiotherapy device is 
take account start from 60 second after baseline activities 

Point Data 

Sample for 

each 40 

seconds 

Manual 

(total number 

of bursts 

detected) 

Fixed Tr 

(total number 

of bursts 

detected) 

Adaptive Tr 

(total number 

of bursts 

detected) 

1 20 17 18 
2 24 17 22 
3 26 24 24 
4 24 18 22 
5 24 19 18 
6 24 17 24 
7 26 14 26 
8 25 15 25 

9 27 22 26 
10 28 15 27 

 
As a comparison, with set of P=55, adaptive threshold Tr(n) 

with a value on data distribution of {SEmin-max-n} on each 4TD 
cyclic, the total errors of fail burst  detection can be reduced to 
6.5%. 

Furtherly, the results of the number of contractions 
determination for each sample data point and total data point, 
as well as the percentage of failed burst counting using manual 
and automatic segmentation are tabulated in Table 1.  
 

C. Method of EMG-EEG Quantification 

A change of strength of muscle contraction is determined 
based on the total RMS power of SF(n) on each duration 4TD 
in about 8 seconds. A power of SF(n) is estimated using 
estimation power spectral density (PSD) using periodogram 
Welch [19,20].  

Suppose, the segmented contraction of SF(n) are partitioned 
with length of D= 4TD. They overlaps with one another, so 
that one segment of the next segment is displaced along S data 
(SD). Thus, the maximum 𝑃 = (𝑁 − 𝐷)/𝑆 + 1. The 
obtained 𝑆𝐹

(𝑝)(𝑘) are: 
 
𝑆𝐹

(𝑝)(𝑘) = 𝑤(𝑘)𝑆𝐹(𝑘 + 𝑝𝑆). 𝑆𝐵(𝑘 + 𝑝𝑆),  0 ≤ 𝑘 ≤ 𝐷 − 1
                                (9) 

where, 0 ≤ 𝑝 ≤ 𝑃 − 1. From those data, it is obtained: 
 
𝑃̃𝑥𝑥

(𝑝)
(𝑓) = |∑ 𝑆𝐹

(𝑝)(𝑘) 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑠)𝐷−1
𝑘=0 |

2
       (10) 

 
At frequency range of −1/2𝑓𝑠 ≤ 𝑓 ≤ 1/2𝑓𝑠, and 𝑤(k) is 

Hamming windows. Eventually, the PSD estimation is given 
by: 
 
𝑃𝑊(𝑓𝑖) =

1

𝑃
∑ 𝑃̃𝑥𝑥

(𝑝)
(𝑓)𝑃−1

𝑝=0                     (11) 
 

Average of PW(fi) for fi is used to calculate RMS power of 
EMG.  

Quantification analysis of EEG in relation to motoric 
activities is evaluated using RMS power of the brain wave for 
type of mu-wave on the frequency range of 8-13 Hz. PSD of 
EEG signal from channel Fz, Cz and Pz is processed using 
PSD estimation as formulated in Eq. 9, with changed variable 
SF(n), and signal from three channels representing the motor 
cortex that denoted by SF-FZ(n), SF-CZ(n) and SF-PZ(n). The 
power of mu-wave from PSD of EEG is evaluated based on 
the average of PW(fi) for fi in mu-wave range of 8-13Hz with 
data length of 4TD. 

IV. RESULT AND DISCUSSION 
 

The usefulness of automatic segmentation for a specific 
study case of EMG-EMG quantification is described in this 
section. The proposed scheme is tested to association analysis 
according to the power of EMG burst and the power of mu-
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wave of EEG that is recorded on the motor cortex. Information 
from the segmentation of the EMG signal will be used to 
evaluate the mu-wave conditions in the SF_FZ(n), SF_CZ(n), and 
SF_PZ(n) signals for muscle conditions in relaxation and 
contraction. 

Quantification of the RMS power SF(n) under contraction 
conditions for each duration of 8 seconds is presented in Fig. 
9. Curve fittings provide information about muscle 
biofeedback during holding and releasing grasp repeatedly. In 
the sampled data of 20-30 (in about exercise duration from 
160 sec to 240 sec), muscle contraction tends to be in the 
maximum power then gradually decreases. 

With regards to the biofeedback responses from the brain, 
the motor activity will be associated with the changes of the 
power of mu-wave in the motor cortex region in Frontal (Fz), 
Central (Cz), and Parietal (Pz) [7,8,9]. The results of 
automatic segmentation for the synchronization of EMG-EEG 
quantification is shown in Fig. 9. Separation of the EEG signal 
SF_CZ(n) into contraction and relaxation conditions provide 
information on the different mu-wave RMS power for both 
conditions.  

burst burst
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Fig. 9 Plot of example automatic segmentation for synchronization 
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 Fig. 10 Average RMS power of EMG contraction and mu-wave 
rhythm in contraction and relaxation condition 

 
The fluctuations of the power of mu-wave during 

contraction are shown in Fig. 10, as the results of the 
recording on the Cz region. Biofeedback evaluations for the 
average power of muscle and brain activities in the three 

recording regions are shown in Fig. 10. Fig. 10 shows the 
average power from the measured signal activities for 40 
seconds duration. In general, the power of mu-wave during the 
relaxation is higher than during the contraction conditions. 

While the RMS power in the EMG tends to increase, the 
power of mu-wave between two repetitive contractions is 
contrarily decreasing (see Fig. 11 at the 3rd segment of sample 
data). In the final segments, the brain activities show an 
increase in the power of mu-wave during relaxation (see Fig. 
11 at the 3rd – 5th segment of sample data). Changes in the mu-
wave conditions during contraction have smaller dynamics ( 
= 0.0637 mVRMS), compared to relaxation conditions ( = 
0.1338 mVRMS). 
 

 
Fig. 11 Segmentation of average RMS power of EMG contraction 

and mu-wave rhythm on Fz, Cz, and Pz region 
 

Associated with the concept of the mu-wave response 
phenomenon, under contraction conditions, the asynchronous 
event over the motor cortex will cause the attenuation of the 
power of mu-wave. Conversely, the synchronous condition 
marked by an increase in the power of mu-wave occurs in a 
state of relaxation. This condition is under the principal 
characteristics of the mu-wave, representing the relaxed state. 

The study results show that the ability to separate the 
analysis of EEG signals in conditions of relaxation and 
contraction is potential as an effective for biofeedback 
rehabilitation exercise.  

V. CONCLUSION 
The proposed scheme utilizes the EMG signal pre-

processing strategy before implementing signal enveloping 
based on DWT denoising methods. The DWT denoising 
methods are obtained on five decomposition levels, which are 
performed thorough consistency in determining the segment 
duration of related contraction. The signal enveloping process 
uses a sliding window with a width of 12.5% sps and an 
adaptive threshold.  
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The proposed scheme of automatic segmentation EMG-
EEG can improve the efficiency time for biofeedback analysis, 
particularly for repetitive/periodic motor exercise in the 
medical rehabilitation devices.  

In many situations, recording EMG-EEG is also influenced 
by the patient's condition and a typical exercise scenario of 
rehabilitation therapy. Therefore, determining a threshold 
parameter using a machine learning approach and large data 
sets may improve the current performance of our proposed 
scheme. 
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