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Abstract—Hematopoiesis is an extensively studied model sys-
tem for cell differentiation. Cell-type-specific gene expression
patterns are observed during hematopoiesis. Gene expression is
governed by regulatory networks composed of cell-type-specific
transcription factors. Resolving the transcriptional regulatory
network for cell-type-specific gene expression provides a promis-
ing means of understanding the mechanisms underlying cell fate
decisions. In this study, transcriptional regulatory networks in
hematopoietic stem and progenitor cells were predicted based
on gene expression profiles and distributions of transcription
factor binding motifs in the promoter regions of cell-type-specific
transcription factors. In particular, structural changes that oc-
cur when pluripotent stem cells progress to lineage-committed
progenitors were evaluated. Marked changes in the regulatory
circuit of transcription throughout the differentiation process
could be elucidated by network analysis. Modular structures were
a frequently described feature of biological networks observed in
estimated networks. Within a module, most transcription factors
were found to be regulated by a small number of regulators
acting as downstream targets. Certain regulators within these
modules coincide with known key regulators of hematopoietic
cell differentiation. In addition to the modular structure, a two-
layered structure was clearly observed in progenitor regulatory
networks. Transcription factors could be distinctly divided into
regulators within the regulatory layer and into targets in the
output layer according to their degree of distribution. The
restriction of mutual regulation between transcription factors
was remarkable in that it allowed for alterations in network
structures between hematopoietic stem cells and progenitors.
Thus, using this approach, the relationships among transcription
factors could be revealed by a reduction in mutual regulation to
form a modular structure within the regulatory network.

Index Terms—hematopoiesis, transcriptional regulatory net-
work, cell-type-specific gene expression,

I. INTRODUCTION

In multicellular organisms, a variety of cell types exist
owing to diverse gene expression patterns governed by distinct
regulatory networks composed of cell-type-specific transcrip-
tion factors (TFs). It is difficult to explain how regulatory
networks for cell-type-specific gene expression are developed
throughout the differentiation process. Hematopoiesis has
been well studied as a model system of cell differentiation.
More than 10 types of hematopoietic cells are differentiated
from hematopoietic stem cells (HSCs) via the formation

of various progenitors committed to specific lineages. The
differentiation process is controlled by the orchestration of
intrinsic gene regulatory circuitry and external signals by vari-
ous cytokines, chemokines, and growth factors [1]. Cell-type-
specific gene expression patterns, including surface markers,
are observed throughout hematopoiesis. Cell-type-specific
gene expression is governed by regulatory circuitry that is
composed of cell-type-specific TFs. Binding of TFs to specific
sequences on genomic DNA is a primary step for gene expres-
sion. Then, TFs mutually activate or inhibit their expression
to facilitate gene regulatory programs [2]. Cascades of TFs
that range from upstream regulators to downstream targets
ultimately form a complicated network.

Numerous efforts have been made to resolve the genetic
programs of cell-type decisions. Cell type is defined by its
cell-type-specific gene expression. Gene expression is gov-
erned by transcriptional regulatory networks (TRNs). Com-
prehensive analyses of TRNs have been performed, yielding
large-scale datasets obtained from next-generation sequencing
(NGS)-based technologies to estimate various large networks
present within different organisms [3]–[6], [8]–[13]. TRNs
are observed not only in hematopoietic cells but also in many
other tissues, and these networks allow us to better understand
the mechanisms underlying cell fate decisions [13]–[19]. Esti-
mated networks are becoming more accurate and useful owing
to findings obtained by advanced technologies. For example,
the hierarchy and heterogeneity of the differentiation trajectory
from HSCs to progenitors has been revealed by single-cell
gene expression data [20]–[23]. Despite such sustained efforts,
it remains challenging to resolve TRNs in the context of the
entire system. One of the major difficulties in estimating
the TRNs underlying cell-type-specific gene expression is
that functional interactions between TFs must be correctly
identified. A portion of TFs functionally regulate each other,
whereas others are merely co-expressed in a particular cell
type. A number of TF binding events onto genomic DNA
are also functionally silent [24]. Combining gene expression
profiles and sequence-based network modeling provides a
promising means to model TRNs.

Network analysis provides an effective tool for analysis of
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biological systems [25], [26]. Modules can be established
as structures of TRNs [27] and various biological and social
networks [28]–[31]. Numerous modules are known to occur
within regulatory networks at the global level of genetic
interactions. In addition to modules, various network motifs,
such as positive and negative feedback circuitry in TRNs,
play crucial roles in cell fate decisions [32], [33]. Structural
changes in TRNs that occur during cell differentiation are
currently an important research topic. One of the difficulties
of network analysis is determining the means to evaluate these
structural differences among networks. It is necessary to
consider differences in the number of nodes or the probability
of edges among networks. Various TRNs that function within
numerous cell types throughout the process of differentiation
must be considered. HSCs can be functionally distinguished
from progenitors by their pluripotency and self-renewal capa-
bility. Structural differences between the TRNs of HSCs and
those of progenitors may reflect these functional difference
between HSCs and progenitors. Thus, it may be useful to
consider the lineage commitment of progenitors.

In general, when a regulatory network is estimated from
gene expression profiles, it is important that truly regulated
genes are selected among the co-expressed genes. Among
co-expressed genes, indirect regulation exists. To address this
problem, researchers have developed the database for iRegulon
cytoscape APP [34], curated by chromatin immunoprecipita-
tion sequencing (ChIP-seq) data, which can indicate direct
binding of TFs to genomic DNA in addition to sequence
motifs.

In this study, TRNs from hematopoietic stem and progenitor
cells (HSPCs) were estimated from gene expression profiles
of 14 hematopoietic cells and the distributions of TF binding
motifs within the promoter regions of cell-type-specific TFs.
Critical changes between HSCs and progenitors were clarified
in the context of network analysis.

II. METHOD

A. Detection of differentially expressed transcription factors

RNA-seq data for 14 types of hematopoietic cells were ob-
tained from the GEO database (accession number GSE60101).
This dataset was used because it includes the comprehensive
expression profiles of 14 cell types from hematopoietic stem
cells (HSCs) to terminally differentiated cells. Cell types
and their abbreviations are summarized in Table??. Fastq
formatted sequence tags were mapped onto mouse reference
genome version mm10 using the mapping software tophat, and
differentially expressed genes (DEGs) were detected by cuffd-
iff [51]. DEGs were selected as having false discovery rates
of less than 0.05. Expression profiles were processed and vi-
sualized using cummeRbund R package [52]. Among DEGs,
TFs deposited onto RIKEN Transcription Factor Database [53]
were selected for subsequent analysis. Expression levels of
TFs in HSCs were compared with those in multipotent progen-
itors (MPPs) to identify HSC-specific TFs whose expression
levels in HSCs were significantly higher than those in MPPs.
Inversely, the expression levels of MPP-specific TFs were

Cell Name Abbreviation Pluripotency Self-renewal SRA Accession number
Hematopoietic stem cell HSC pluripotent + SRR1536380

SRR1536381
Multi-potent progenitor MPP multipotent + SRR1536383

SRR1536384
Common lymphoid progenitor CLP olygopotent + SRR1536385

SRR1536386
Common myeloid progenitor CMP olygopotent + SRR1536389

SRR1536390
Megakatyo erythroid progenitor MEP olygopotent + SRR1536423

SRR1536424
Granulocyte-monocyte progenitor GMP olygopotent + SRR1536393

SRR1536394
Erythroid A Ery A differentiated - SRR1536427

SRR1536427
Monocyte Mono differentiated - SRR1536407

SRR1536408
Granulocyte GN differentiated - SRR1536401

SRR1536402
Macrophage MF differentiated - SRR1536397

SRR1536398
Natural killer cell NK differentiated - SRR1536421

SRR1536422
B cell B differentiated - SRR1536411

SRR1536412
CD4(+) T cell CD4T differentiated - SRR1536413

SRR1536414
CD8(+) T cell CD8T differentiated - SRR1536417

SRR1536418

TABLE I: Cell name abbreviations: Names and abbreviations
of hematopoietic cells. Cells were divided into four groups:
pluripotent, multipotent, olygopotent, and differentiated, ac-
cording to the pluripotency status. HSPCs and differentiated
cells were clearly divided by the self-renewal capability.

significantly higher than those in HSCs. Common lymphoid
progenitor (CLP)- and common myeloid progenitor (CMP)-
specific TFs were identified as having higher TF expression
levels in CLPs or CMPs than those in MPPs. These lists of
TFs were imported into the iRegulon plugin of cytoscape to
detect TF binding motifs within the promoter regions of these
TFs [34].

B. Construction of TRNs

TF expression is regulated by TF binding motifs that exist
within the promoter regions of target TFs. A representative
case with three TFs is shown in Fig1. In this scenario, the
binding motif of TF B was detected in the promoter region of
TF A. This indicated that TF A was regulated by TF B. The
binding motif of TF A was detected in the promoter regions
of TF B and C. Thus, TF A regulated TFs B and C. Not
only binding motif of of TF A but also biding motif of TF
C was detected in promoter region of TF C. Thus, TF C was
regulated by TF A and C. Based on these findings, a TRN was
obtained as a directional graph. The node and edge indicated
the TF and the relationships among TFs, respectively. Arrows
were drawn from the regulating TF to the regulated TF.

C. Network analysis

Network analysis was performed using the igraph R package
[54]. Reciprocity, transitivity, and closeness were calculated
using functions available in this package.

For dyad census, z-scores of mutual, asymmetrical, and
null dyads were calculated as follows. Briefly, 1000 random
graphs containing the same degree and probability of edges
as HSC, MPP, CLP, and CMP networks were generated using
the random.graph.game function in igraph package. Means
and standard deviations (SDs) of mutual, asymmetrical, and
null dyads of 1000 random graphs were calculated. Numbers
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Fig. 1: Network construction. TF expression was assumed to
be regulated by TF binding motifs enriched within promoter
regions. Relationships among TFs are presented in a direc-
tional graph. Circles represent TFs, and relationships among
TFs are indicated by arrows from regulators to downstream
targets. Adjacency matrix is obtained. In this case TF A
regulates B and C. B regulates A. C is regulated by A and
C.

of mutual, asymmetrical, and null dyads were subtracted from
the mean and divided by the SD to obtain the z-score. All
codes for the analysis in this study are summarized in the
Supplementary Methods.

III. RESULTS

A. Structural changes in TRNs from HSCs to progenitors

1) Identification of cell-type-specific TFs in HSPCs: Ex-
pression profiles of 14 types of hematopoietic cells origi-
nally deposited by Lara-Astiaso et al. were re-analyzed [35].
According to gene expression profiles, hematopoietic stem
and progenitor cells (HSCs, MPPs, CLPs, and CMPs) were
clustered into one group by hierarchical clustering. Similar
to hierarchical clustering, HSPCs were expected to exist in
proximity in a two-dimensional surface by multidimensional
scaling. The classification of hematopoietic cells by gene
expression profiles was nearly identical to that of the con-
ventional theory of hematopoiesis. These results indicated
that gene expression patterns of HSPCs were distinguished
from those of terminally differentiated cells. Thus, expression
patterns of HSPCs were common to some extent. Among
HSPCs, HSCs are distinguished from progenitors by their
pluripotency and self-renewal capability. To clarify the cause
of the differences observed between HSCs and progenitors,
the structures of TRNs of specific gene expression in HSPCs
were investigated.

First, TFs significantly expressed in specific cells throughout
hematopoiesis were identified to select TFs that functionally
contributed to hematopoietic cell differentiation. Differentially
expressed genes were identified based on whether their expres-
sion levels increased or decreased significantly in at least one
cell type using 14 types of hematopoietic cells assessed by the
cuffdiff program under the condition that the q-value was less

than 0.05. TFs were isolated from these DEGs as candidates
of cell-type-specific TFs. These results indicated that a total
of 823 TFs satisfied these criteria. HSC-, CLP-, and CMP-
specific TFs were defined based on having expression levels
higher than those found in MPPs. Conversely, MPP-specific
TFs were defined based on having expression levels that were
higher than those found in HSCs. From these results, 414
HSC-specific, 396 MPP-specific, 370 CLP-specific, and 343
CMP-specific TFs were identified. Lists of these TFs used
to detect the enriched TF binding motifs in their promoter
regions were uploaded to the iRegulon database [34].

B. TRNs in HSPCs

1) Modular structures of TRNs in HSPCs: TRNs of HSPCs
presented as directional graphs are shown in Fig2(a-d).

(a)HSC (b)MPP

(c)CLP (d)CMP

Fig. 2: TRNs in HSPCs. (a) TRNs in HSCs, (b) MPPs,
(c) CLPs, and (d) CMPs TRNs are presented as directional
graphs. Circles in the graph represent TFs. Labels in the
vertex designate gene symbols of TFs. Arrow indicate the
relationships among TFs from regulators to their downstream
targets. TFs in these networks are subdivided into groups
using the spinglass method. The groups are indicated by
colors. Vertexes in the graphs are arranged by the Kamada-
Kawai layout algorithm. Borders between groups in HSC
network are ambiguous compared with TRNs in MPPs, CLPs,
and CMPs.

2) Clustering TFs using the spinglass algorithm: TFs in
TRNs were heuristically clustered into certain groups by
maximizing the ratio of network density within a group to
that between groups using the spinglass algorithm [36]. In

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2020.14.20 Volume 14, 2020

ISSN: 1998-4510 146



Fig2, colors indicates groups obtained by spinglass algorithm.
As shown in Fig2, most TFs were clustered by their regulators.
The results indicate modules within the TRNs. In a random
graph having the same sizes of TRNs as observed in HSPCs,
these modules were not observed (Data not shown). Modules
in TRNs have been described in detail in previous studies [27],
[37] as an important feature of TRNs. Some of the modules in
the TRNs estimated in this study coincided with previously re-
ported modules. For example, a module including C/EBP fam-
ily members in CMPs (Fig2) coincided with the granulocyte
and monocyte modules in human hematopoiesis, as described
by Novershtern. Moreover, CEBPA and CEBPD have been
reported to be included in this module. A module including
Hbp1, Klf3, and Irf2, as indicated in the CLP network in
Fig2, is equivalent to the erythroid, B-cell, and T-cell “re-use”
module described by Novershtern [27]. Additionally, HBP1 ,
KLF3, and IRF2 are included in this Module, consistent with
previously reported modules, supporting the validity of the
TRNs estimated in this study.

TFs known as master regulators of differentiation for spe-
cific cell type are also included in such modules. In this study,
TFs that act as key regulators of hematopoietic cell differen-
tiation were included in the modules of TRNs estimated in
this study. For example, a module including C/EBP family
members (C/EBPα, β, δ, and ϵ), which are master regulators
of myeloid cell differentiation [38]–[40], was observed in
the CMP network. Lef1 and Tcf7 are master regulators of
lymphoid cell differentiation [41] and were included in a
module in the CLP network. Transcription factors within these
modules contribute to the differentiation of specific cell types
under the control of master regulators.

The formation of modules occurs prior to gene expression,
and the average expression level of genes within the module
gradually increases during progression from a progenitor to
a terminally differentiated cell. The average expression level
of TFs in a module was monitored to test whether the mod-
ular structure occurred prior to gene expression. Similar to
Noversthtern’s granulocyte/monocyte module, the average ex-
pression level of the C/EBP module gradually increased from
CMPs to terminally differentiated myeloid cells. Moreover,
the average expression level of TFs in the Lef1 module in-
creased from CLPs to B- and T-cell lineages and erythroid and
myeloid lineages, similar to the erythroid B- and T-cell “re-
use” module detailed by Novershtern. These results indicated
that module formation in TRNs preceded gene expression.

3) Two-layered structure: The basic statistics of these
networks are summarized in TableII. The average path
lengths derived from 1000 random graphs generated by the
random.graph.game function in igrpah package possessing the
same number of nodes and probabilities of edges for HSCs,
MPPs, CLPs, and CMPs were 2.599165, 3.07034, 3.273771,
and 3.64743, respectively. The average path lengths of TRNs
from HSPCs were shorter than those of random graphs. These
results, combined with the modular structures described in the
previous subsection, suggested that both short path length and
high modularity may be characteristics of TRNs of HSPCs.

Next, differences among TRNs in HSPCs were considered.
The numbers of nodes and edges in the HSC network were
305 and 3539, respectively. The nodes and edges in the HSC
network were both larger than those in progenitors. The
average degree of the HSC network was larger than that of
progenitors. The diameter and average path length of the HSC
network were similar to those of progenitors. As described
above, the HSC network appeared dense compared with the
TRNs of progenitors. The borders between groups in the HSC
network were ambiguous, but became clear in the TRNs of
progenitors, as shown in Fig2 (a-d). Thus, the structure of
the HSC network was different from that of progenitors.

To fully clarify the network structure, degree distribution
was investigated. The probability of degree was plotted
against the degree, as shown in Fig3(a-d). The degree
distribution of the HSC network was wide and continuous.
In contrast, the degree distribution of the progenitors was
wide but discontinuous. TFs in the TRNs of hematopoietic
progenitors were clearly subdivided into two groups according
to their degree distribution. The first group included TFs
exhibiting a high degree distribution, and the second group
contained TFs exhibiting a low degree distribution, reflecting
two-layered structure of TRNs. TFs with a high degree
distribution that occupied the central regions of TRNs mutually
regulated their expression, suggesting the presence of a regula-
tory layer. In contrast, most TFs with a low degree distribution
surrounding TRNs were regulated by a small number of TFs,
suggestive of an output layer. This two-layered structure,
including regulatory and output layers, was clearly observed
using the Kamada-Kawai layout algorithm [42] in Fig2(a-d).
Assortativities of the HSC, MPP, CLP, and CMP networks
calculated using the assortatibity.degree function in igraph
package were -0.2937269, -0.1255377, -0.3657887, and -
0.5141146, respectively, as shown in TableIII. These values
indicated that the degree distribution was negatively correlated.
TFs having a high degree distribution in the TRNs of HSPCs
tended to regulate TFs having a low degree distribution. The
observed assortativity also supported the two-layered structure
of TRNs, in which TFs were clearly divided into regulators
and targets.

TABLE II: Basic statistics of TRNs in HSPCs

HSCs MPPs CLPs CMPs
Number of nodes 305 234 244 196
Number of edges 3539 1567 1449 881
Average degree 23.20656 13.39316 11.87705 8.989796

Diameter 5 3 5 4
Average path length 1.892139 1.46323 1.924054 1.846971

TABLE III: Assortativity.

HSC MPP CLP CMP
assortativity -0.2937269 -0.1255377 -0.3657887 -0.5141146

4) Bow-tie decomposition: Within various social and bio-
logical networks, the bow-tie structure is frequently observed
[43]. Accordingly, the bow-tie structure in TRNs of HSPCs
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(a)HSC (b)MPP

(c)CLP (d)CMP

Fig. 3: Degree distributions of TRNs in HSPCs. (a) TRNs in
HSCs, (b) MPPs, (c) CLPs, and (d) CMPs. Graphs indicate
the degree distributions of TRNs in HSPCs. Vertical and
horizontal axes indicate the degree numbers and distributions,
respectively. Both axes are presented in log scale. The degree
distribution of the HSC network was wide and continuous.
There was a gap in the degree distributions of MPPs, CLPs,
and CMPs. TFs having an intermediate degree were absent
in the TRNs of these progenitors.

was investigated according to Yang’s protocol. As shown in
Fig4(a-d), a small fraction of TFs in the TRNs was classified
into input and output layers; these were considered output-
oriented bow-ties, as described previously [19]. TRNs in
HSPCs showed a two-layered structure rather than a bow-tie
structure. These data supported the idea that TRNs in HSPCs
exhibited a two-layered structure composed of regulators and
targets.

5) K-core decomposition: Next, a k-core decomposition
of the graph was performed. Maximal subgraphs in which
TFs possessed at least degree k were detected. Degree k
is indicated in the node and reflected as the diameter of the
node, as shown in Fig5(a-d). In the HSC network, TFs with
various degree k values overlapped each other, particularly in
the central region of the network. In contrast, TFs with the
same degree were clearly clustered in the TRNs of progenitors.
In these networks, TFs with a small degree k surrounding the
network and TFs with a large degree k in the central region
of the network were both clustered depending on the degree
k. The structure of the TRNs in progenitors, but not HSCs,
was arranged properly.

(a)HSC (b)MPP

(c)CLP (d)CMP

Fig. 4: Bow-tie decomposition. Input, regulatory, and output
layers are indicated by green, orange, and light blue, respec-
tively. The ratio of the output layer to the input and regulatory
layers was extremely large in TRNs in HSPCs. The two-
layered structure, rather than a bow-tie structure, was shown
by these networks.

C. Mutuality of TRNs of HSPCs

1) Dyad census: The modular structures within the TRNs
of progenitors were clearer than those in the HSC network.
Changes in TRNs that contributed to module formation within
the network were considered. Mutual regulation between
TFs in the regulatory layer of the HSC network appeared
complicated compared with that observed in the TRNs of pro-
genitors. Thus, mutual regulation among TFs was restricted
in the TRNs of progenitors compared with that of HSCs. To
confirm the changes in mutual regulation between TFs from
HSCs to progenitors, a dyad census was performed. The
results of the dyad census are summarized in TableIV. The
number of mutual dyad values in the HSC network was larger
than that in the TRNs of progenitors. Z-scores in mutual,
asymmetrical, and null dyads were calculated. Although the
mutual dyad of the HSC network showed greater deviations
than the means of the 1000 random graphs having the same
node and probability degree in the HSC network, the mutual
dyad in the TRNs of progenitors showed smaller deviation
than the means of the 1000 random graphs. Conversely, the
asymmetrical dyad in the TRNs in HSCs showed deviations
larger than the means of 1000 random graphs. Reciprocity
(proportion of mutual connection) was also smaller in the
TRNs in progenitors compared with those in HSCs. The mean
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(a)HSC (b)MPP

(c)CLP (d)CMP

Fig. 5: K-core decomposition. Maximal subgraphs in which
TFs exhibit at least degree k were detected. Degree k is
indicated by the numbers in the circles in the TRNs of the
HSPCs. TFs possessing the same degree k values are indicated
by the same colors. TFs with various k values overlapped with
each other in the HSC network. TFs were arranged properly
in the TRNs of MPPs, CLPs, and CMPs.

reciprocities of 1000 random graphs with the same nodes and
probability of edges for HSC, MPP, CLP, and CMP networks
were 0.03815487, 0.02887527, 0.02413445, and 0.02312244,
respectively. In particular, the reciprocity of the CMP network
was smaller than those of the HSC, MPP, and CLP networks
and smaller than that of the mean of 1000 random graphs using
the same nodes and probability of edges as the CMP network.
These results indicated that mutual regulation among TFs in
HSCs was dramatically restricted in progenitors.

TABLE IV: Dyad census. Mutual and asymmetric interactions
between pairs of TFs in TRNs in HSPCs were identified by
the dyad.census function of igrpah package. To compare the
mutuality among TRNs in HSPCs, deviations from random
graphs possessing the same number of nodes and probabilities
were estimated. Z-scores were obtained as described in the
Methods.

HSC MPP CLP CMP
mutual number 82 27 21 3

z-score 1.755567 0.9826579 0.7565645 -2.192493
asymmetrical number 3374 1513 1407 875

z-score -0.5751004 -0.2531842 -0.1600614 0.5568425
null number 42904 25721 28218 18232

z-score 0.3076151 0.1298958 0.07200748 -0.2939236
reciprocity 0.04256527 0.02825947 0.02359473 0.004550626

z-score 0.9731325 -0.1059991 -0.09469029 -2.687319

2) Triad census: Next, a triad census was performed.
Similar to the dyad census, a reduction in the mutual regu-
lation among TFs was observed. The transitivity values of
HSCs, MPPs, CLPs, and CMPs were 0.210478, 0.1347141,
0.1381967, and 0.05728737, respectively as shown in TableV.
The ratio of triangles to connected triples in the network
reduced during progression from HSCs to progenitors. This
result also indicated that mutual regulation among TFs was
reduced during progression from HSCs to progenitors.

TABLE V: Triad census. Mutual and asymmetric interactions
among three TFs in TRNs in HSPCs were identified using the
triad.census function of igrpah.

HSC MPP CLP CMP
null 3925220 1866759 2130787 1122660
012 502644 135840 179471 57193
102 16886 4684 1289 19

021D 195467 92755 71377 53202
021U 8704 757 1784 1067
021C 6376 1147 1210 275
111D 347 30 21 5
111U 7254 1234 1447 249
030T 12871 2750 2749 996
030C 13 0 0 0
201 71 0 4 0

120D 266 51 30 0
120U 5745 2122 1227 108
120C 153 5 12 5
210 283 31 28 1
300 60 19 8 0

transitivity 0.210473 0.134714 0.138197 0.057287

D. Evaluation of key regulators in modules based on network
structures

1) Closeness centrality: In the previous section, the results
showed that a reduction in mutual regulation was responsible
for structural differences in TRNs in HSCs and progenitors.
Most TFs were unidirectionally regulated by a small number
of regulators. Imbalance between incoming and outgoing ties
was the key feature of TRNs in HSPCs and was apparent
as cells progressed from HSCs to progenitors. To further
evaluate the network structure of TRNs, closness centrality
was calculated to reflect the features of the network structure.
As shown in Fig6(a-d), calculated closeness was reflected by
the diameter and color density of TFs. Certain TFs exhibiting
large closeness coincided with known key regulators. For
example, C/EBP family members in the CMP network pos-
sessed large closeness values. These results indicated that
indexes such as centrality could be used to evaluate these key
regulators of hematopoietic cell differentiation as important
players in TRNs. The top 20 TFs exhibiting large closeness
centrality are summarized in TableVI. These TFs may play
critical roles as key regulators determining cell-type-specific
gene expression patterns.

E. Prediction of new key regulators

As described above, key regulators appeared in TRNs
and contributed to specific lineage determination. Such key
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(a)HSC

(b)MPP

(c)CLP (d)CMP

Fig. 6: Closeness centrality. Closeness centrality was reflected
by the diameters of TFs in TRNs in HSPCs. (a) TRNs in
HSCs, (b) MPPs, (c) CLPs, and (d) CMPs.

TABLE VI: Top 20 TFs exhibiting large closeness centrality.

HSC MPP CLP CMP
1 Cebpe E2f4 Tfdp1 E2f5
2 Cebpg Tfdp1 Egr1 E2f6
3 Tbpl1 Srf Gata3 Tfdp1
4 Pbx4 Zfp362 Mef2a Cebpb
5 Tfap4 E2f1 E2f7 Cebpd
6 Sirt6 E2f2 Pbx3 Cebpe
7 Klf5 E2f3 Tbpl1 Pbx3
8 Klf16 E2f5 Zfp384 Pbx1
9 Klf6 E2f7 Tox4 Cebpa

10 Klf7 Tox Tox Tbp
11 Mtf1 Pbx2 Tcf7 Eed
12 Zbtb7b Hoxa7 Lef1 Etv6
13 Pbx3 Tbx6 Tcf7l2 Pias1
14 Pbx1 Hoxa5 Tbp Gas7
15 Zfp384 Sirt7 Mef2c Myef2
16 Nfe2l1 Psmd9 Myb Sp3
17 Smad4 Rfx5 Hif1a Hbp1
18 Irf7 Mcm2 Zbtb2 Lmo2
19 Egr1 Mcm7 Phf8 Rest
20 Zfp281 Mcm5 Zdhhc1 Sp1

regulators may be correctly evaluated by indexes representing
the features of the network. Finally, other key regulators that
play crucial roles in specific hematopoietic cell differentiation
patterns were predicted based on network structure. In the
CMP network, many TFs were mainly regulated by Pbx1 and
Pbx3, as illustrated in Fig7a. The average expression levels of
TFs in this Pbx module were assessed. The results showed that
the average expression levels of these Pbx module members
specifically increased from CMPs to Ery-A, as indicated in
Fig7b. This result suggested that Pbx1 and Pbx3 regulate
many TFs in the context of erythropoiesis. Importantly, Pbx
family members are known to be important TFs that play
critical roles in maintaining the pluripotency of HSCs rather
than in erythrocyte differentiation.

IV. DISCUSSION

A. Validation of network estimation

In this study, using comprehensive datasets of expression
profiles from 14 types of hematopoietic cells, differentially
expressed genes that likely contributed to cell fate decisions
through hematopoiesis were properly selected. The results
showed that expression profiles from 14 types of hematopoietic
cells were sufficient to select appropriate genes contributing
to differentiation. Among the co-expressed genes, indirect
regulation exists. Information regarding TF binding motifs
in the promoter regions was suitable for selection of direct
interactions between TFs [44]. Analysis of the database
for iRegulon cytoscape APP [34] curated by ChIP-seq data
indicated direct binding of TFs to genomic DNA in addition
to sequence motifs. Notably, genome-wide TF binding maps
are useful for detecting the key regulators of mast cell dif-
ferentiation [5], and binding sites detected by iRegulon are
sufficiently probable.

TRNs of cell-type-specific gene expression in HSPCs were
estimated from gene expression profiles and the distributions
of TF binding motifs in the promoter regions of cell-type-
specific TFs. Gene expression of TFs was assumed to be
regulated by TFs, as their binding motifs were enriched in the
promoter regions of target TFs. Regulator TFs could positively
or negatively regulate the expression of their targets. When
cell-type-specific TFs were identified, TF expression was
increased in specific cell types, and these TFs were selected
for further analysis. Using these criteria, activation was a
prerequisite, and negative regulation was ignored. Although
positive and negative regulation of transcription occur com-
plementarily, it was likely that activating the genetic switch
may play a critical role in cell fate decisions. For cell fate
decisions, signature genes characterizing a particular cell type
must be expressed.

In estimated networks, modular structures are observed.
TFs in a particular module regulate numerous targets, such
as the C/EBP family in the CMP network and Lef1 in the
CLP network. Certain modules in TRNs in HSPCs coincide
with previously reported modules. This result supported
the validity of the modeling method and estimated TRNs
evaluated in this study. TFs that truly contribute to cell fate
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Fig. 7: Pbx module in the CMP network. TFs clustered
into a group with Pbx1 and Pbx3 in the CMP network were
identified. The average expression levels of these TFs are
reflected by the diagram of hematopoiesis. These TFs were
specifically expressed in the erythroid lineage.

decisions through hematopoiesis were precisely identified as
differentially expressed genes using 14 types of hematopoietic
cells. Indirectly co-expressed genes were eliminated from the
TRNs by a combination of TF binding motif analysis within
promoter regions. Overall, the findings of this study overcame
a major problem with predicting genome-wide networks.

B. Structure of TRNs with cell-type-specific gene expression
in HSPCs

1) Two-layered structure: The importance of modular
structures in regulatory networks has been established in
studies of biological sciences. The TFs in the TRNs estimated
in this study were clustered into various groups using the
spinglass algorithm. Similar to previous studies, a modular
structure in TRNs was observed. In such modules, most TFs
are specifically regulated by a small number of regulators to
form the functional ensemble of TFs.

In addition to the modular structure, a two-layered structure
was observed in the TRNs of HSPCs, and this was particularly
true in progenitors. TFs in the TRNs of progenitors were
clearly divided into regulators and targets according to the
degree distribution. Moreover, regulators were identified in
the central region of the TRNs through the use of the Kamada-
Kawai layout algorithm, representing the regulatory layer.
Additionally, TRNs were surrounded by targets, representing
the output layer. In previous reports, various biological
networks have been shown to exhibit a bow-tie structure [45];
however, the TRNs in HSPCs exhibited output-oriented bow-
tie structures wherein the ratio of the output layer to the input
and regulatory layers was extremely large compared with that
in the typical three-layered bow-tie structure. Notably, the
two-layered structure was observed in TRNs in HSPCs.

2) Structural differences between the HSC network and
TRNs in progenitors: HSPCs were clustered into one group ac-
cording to their gene expression profiles. HSCs, however, are
functionally distinguished from lineage-committed progenitors
according to their pluripotency and self-renewal capabilities.
In the HSC network estimated in this study, Klf family mem-
bers known to contribute to self-renewal and pluripotency were
included [46]–[48]. These factors were found to possess large
closeness centrality values. Additionally, these factors have
been shown to play critical roles in maintenance of the self-
renewal and pluripotency of HSCs. In addition to investigating
individual TFs, the structure of the entire regulatory network
was also assessed. In this study, differences between HSCs
and lineage-committed progenitors are clearly shown in the
context of network analysis.

Differences between HSCs and progenitors can be deter-
mined from the structure of the TRNs. The HSC networks ap-
peared different from those of progenitors. When performing
integrative analysis of regulatory networks of hematopoiesis
[6], [27], [49], it is important to clearly depict structural
differences in regulatory networks between HSCs and progen-
itors. The borders between modules in the HSC network were
ambiguous compared with those in the TRNs of progenitors.
Moreover, the HSC network appeared similar to a random
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graph, and the modular structure was developed during the
differentiation process from HSCs to progenitors.

According to an analysis of the basic statistics of TRNs
in HSPCs, the HSC network was dense compared with the
other networks. The average degree of the HSC network was
larger than that of the progenitor network. Additionally, the
degree distribution of the HSC network was different from
that of the progenitor network. The degree distribution of
the HSC network was wide and continuous, whereas that of
the progenitor network was wide but not continuous. TFs in
TRNs in progenitors could be clearly divided into regulators
and targets. Furthermore, a two-layered structure was clearly
observed in TRNs in progenitors but not in TRNs of the
HSC network. In particular, the regulatory layer of the HSC
network was complicated. When the TFs in the TRNs were
clustered into various groups using the spinglass method, TFs
clustered into various groups overlapped. In the TRNs of
progenitors, the TFs were all properly arranged.

Next, the causes underlying the structural differences be-
tween the HSC network and the TRNs in progenitors were
considered. The dyad census revealed that a reduction in
mutual regulation between TFs occurred as cells progressed
from HSCs to progenitors. Most TFs possessing low degree
distributions were unidirectionally regulated by a small num-
ber of key regulators and were clustered to form a modular
structure. Relationships among TFs were arranged according
to this reduction in mutual regulation among TFs. According
to Waddington’s landscape model, cell-fate can be induced
by activation of a positive feedback system [50]. Once key
regulators for a specific cell lineage, such as the C/EBP family
for myeloid cells or Lef1 for lymphoid cells, are activated by
a positive loop within mutual regulatory networks in TRNs,
pluripotency may be lost. As a result, many targets are uni-
directionally regulated by a small number of regulators within
a particular module in lineage-committed progenitors. This
provides a potential scenario for the differentiation process
that involves structural changes in TRNs as cells progress from
HSCs to progenitors.

C. Prediction of new key regulators of hematopoietic cell
differentiation

The TRNs estimated in this study not only coincided with
previously reported networks but were also useful for predict-
ing new critical regulators of hematopoietic cell differentiation.
Pbx1 and Pbx3 regulate many TFs as their targets in the
CMP network. Although Pbx family members are known
as important regulators of the maintenance of pluripotency
in HSCs, their roles in the context of terminal differentiation
are poorly understood. The average expression levels of
TFs regulated by Pbx1 and Pbx3 in this Pbx module were
found to be particularly increased in erythrocytes, indicating
that Pbx1 and Pbx3 function as key regulators of erythrocyte
differentiation. It is useful to find new key regulators for
understanding about both normal hematopoiesis and diseases
caused by abnormal hematopoiesis. The prediction of these
proteins as key regulators can be confirmed by experiments

that perturb these TFs in TRNs. The findings of this study
reinforced the concept that network analysis is an important
tool for studying biological regulatory networks.
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[13] SF. Boj, M. PÃ¡rrizas, M. A Maestro, and Jorge Ferrer. ”A transcription
factor regulatory circuit in differentiated pancreatic cells,” Proc Natl Aca
Sci, vol. 98(25), pp. 14481–14486, Dec 2001.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2020.14.20 Volume 14, 2020

ISSN: 1998-4510 152



[14] LA. Boyer, TI. Lee, MF. Cole, SE. Johnstone, SS. Levine, JP. Zucker,
et al. ”Core transcriptional regulatory circuitry in human embryonic stem
cells,” Cell, vol. 122(6), pp. 947–956, Sep 2005.

[15] V. Chickarmane, C. Troein, UA. Nuber, HM. Sauro, and C. Peterson.
”Transcriptional dynamics of the embryonic stem cell switch,” PLoS
Comput Biol, vol. 2(9), pp. e123, Sep 2006.

[16] V. Kashyap, NC. Rezende, KB. Scotland, SM. Shafier, JL. Persson,
LJ. Gudas, and NP. Mongan. ”Regulation of stem cell pluripotency and
differentiation involves a mutual regulatory circuit of the nanog, oct4,
and sox2 pluripotency transcription factors with polycomb repressive
complexes and stem cell micrornas,” Stem Cells Dev, vol. 18(7), pp.
1093–1108, Sep 2009.

[17] J. Kim, J. Chu, X. Shen, J. Wang, and SH. Orkin. ”An extended
transcriptional network for pluripotency of embryonic stem cells,” Cell,
vol. 132(6), pp. 1049–1061, Mar 2008.

[18] I. Kyrmizi, P. Hatzis, N. Katrakili, FT.ronche, FJ. Gonzalez, and I. Tal-
ianidis. ”Plasticity and expanding complexity of the hepatic transcription
factor network during liver development. Genes Dev, vol. 20(16), pp.
2293–2305, Aug 2006.

[19] J. Li, X. Hua, M. Haubrock, J. Wang, and E. Wingender. ”The architec-
ture of the gene regulatory networks of different tissues. Bioinformatics,
vol. 28(18), pp. i509–i514, Sep 2012.

[20] H. Ema, Y. Morita, and T. Suda. Heterogeneity and hierarchy of
hematopoietic stem cells. Exp Hematol, vol. 42(2), pp. 74–82, Feb 2014.

[21] FK. Hamey, S. Nestorowa, S. J Kinston, DG. Kent, NK. Wilson, and B.
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