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Abstract: - The COVID-19 pandemic has resulted 

in more than a million deaths worldwide and 

wreaked havoc on world economies. SARS-CoV-

2, the virus that causes COVID-19, belongs to a 

family of coronaviruses that have appeared in the 

past; however, this virus has been proven to be 

more lethal and have a much higher infection rate 

than coronaviruses that have previously emerged. 

Vaccines for COVID-19 are still in development 

phases, with limited deployment, and the most 

effective response to the pandemic has been to 

adopt social distancing and, in extreme cases, 

complete lockdown. This paper adopts a modified 

SIRD (Susceptible, Infectious, Recovered, Deaths) 

disease spread model for COVID-19 and utilizes 

agent-based simulation to obtain the number of 

infections in four different scenarios. The 

simulated scenarios utilized different contact 

rates in order to identify their effects on disease 

spread. Our results confirmed that not taking 

strict precautionary procedures to prohibit 

human interactions will lead to increased 

infections and deaths, adversely affecting 

countries’ healthcare infrastructure. The model is 

flexible, and other studies can use it to measure 

other parameters discovered in the future. 

 

Key-Words: - Agent-based simulation, SIR Model, 

SIRD model, COVID-19, Modeling and 

simulation, Mathematical model 

 
I. INTRODUCTION 

 
COVID-19 is an infectious disease that spread 

according to populations density and social 

interactions. Detecting these viruses spread between 

people on later stages is costly and can lead to huge 

pressure on healthcare sector and consequently 

increase number of deaths over the time. 

Medical professionals and healthcare services 

need to know how one patient's infection can be 

transmitted to other patients in order to reduce 

outbreaks. They must determine how many patients 

are likely to be infected, how rapidly the infection 

could spread, and what types of contact spread the 

infections throughout society. To this end, simulation 

techniques can be used to examine various scenarios 

and understand the effects of changing one or more 

parameters in each scenario [1]. 

COVID-19 is a new disease that appeared for the 

first time in Wuhan City, Hubei Province of China, at 

an animal and seafood market. Its spread was 

announced on January 7, 2020, by the Chinese 

authorities. SARS-CoV-2, the virus that causes 

COVID-19, belongs to the coronavirus (CoV) family, 

the members of which cause different illnesses 

ranging from moderate to severe. It is particularly 

dangerous for older people and those suffering from 

chronic diseases. In addition, there is currently no 

vaccine or effective treatment for it. Due to the nature 

of this virus, it is spread very quickly between 

humans as social interactions increase [2].  

In epidemiology, compartmental models, which 

simplify the mathematical modeling of infectious 

diseases, have been used to study the spread of 

infectious diseases. One of the most commonly used 

models is SIR (Susceptible, Infectious, Recovered). 

A number of variants of the SIR model have been 

developed to take other factors into account. One 

such model is SIRD (Susceptible, Infectious, 

Recovered, Deaths), which incorporates the number 

of deaths from the disease into the model. 

 Both the standard SIR and SIRD models assume 

long-lasting immunity such that a recovered person 

will not become susceptible again. We adopted the 

modified SIRD model, which introduces a parameter 

ν that represents the mean time until immunity 

wanes. After recovery, a person may become 

susceptible again after a time ν. We used an agent-

based simulation to simulate the proposed SIRD 
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model for COVID-19 spread. The simulation 

incorporated four scenarios to investigate the effect 

of different contact rates on the spread of the disease 

using the proposed model.  The contributions of this 

paper are as follows: 

1. Application of the modified SIRD disease spread 

model that takes waning immunity into account. 

2. An agent-based simulation of the modified SIRD 

model to investigate the effect of different 

contact rates on COVID-19 spread. 

3. The sharing of the model through a web-based 

interface on which different what-if scenarios 

can be investigated interactively. 

The rest of the paper is arranged as follows: 

Section 2 presents a brief review of the literature 

related to COVID-19 infection simulation. Section 3 

introduces the research model and its variables, 

parameters, and relationships between them, and 

explains the simulation methodology in detail. 

Section 4 presents the results of the study and 

discussion. The last section concludes the paper by 

proposing future studies. 

 

II. LITERATURE REVIEW 

 
The COVID-19 pandemic has motivated many 

researchers to conduct modeling and analysis 

techniques in order to help control the disease spread. 

The majority of studies use modified SIR models that 

include parameters that are not included in the 

standard model [3]. One of the studies used a 

modified SIR model for disease spread that was 

based on official data about the spread of COVID-19 

in Italy up to the end of March 2020 in order to 

identify parameters for the model [4]. The 

nonstandard part of their solution was that they 

considered the initial number of susceptible people as 

model parameters, as well as including a proportion 

factor related to the reported number of positive 

individuals and the approximate and unknown 

number of infected individuals. The main limitation 

of the study was that they did not run an appropriate 

analysis for the parameters and predictions of the 

model. The SIR model was also adopted by the 

authors of [5], in which the main control factors were 

human interaction, transmission, health treatment, 

and initial infection. The results of the simulation 

showed the effects of these factors and their roles in 

the spread of COVID-19. However, the analysis 

included the treatment factor, which is based on a 

noncredible data resource.   

      

In [6], the estimates of basic reproductive number 

(R0) and the rates of recovery, mortality, and 

infections per day were given. The study attempts to 

predict the outbreak evolution at the epicenter three 

weeks in advance by resetting the parameters of the 

SIRD model to the data available. Their analysis 

showed a substantial decrease in the case-fatality 

ratio for the specified duration to which different 

variables, such as strict control measures, may have 

contributed. The main limitation of the study is that 

it did not take into account the heterogeneous 

transmission by contact, which affects the measures 

taken to resist the pandemic. 

Another analysis initially relied on a mean field 

model that helped gather a quantitative image of the 

spread of the disease in three countries (France, Italy, 

and China) and, in particular, the time and height of 

the peak of the number of recorded infected people. 

The use of the same reported data in a simple SIRD 

model showed that, regardless of the region, the 

kinetic factor that describes the recovery rate seems 

to be the same [7]. The analysis updated the forecast 

of the SIRD model with the expected results caused 

by fading infectivity due to lockdown. However, 

declines in the pandemic peak and the rate of 

mortality were also noted. The limitation of the study 

is that it relied on the simple SIRD model, which does 

not consider further critical parameters such as 

waning rate of immunity and infection period.  

By adopting the user-defined SEIR (Susceptible, 

Exposed, Infectious, Recovered) model, a study 

simulated the distribution dynamics of the COVID-

19 outbreak and the impact of various control 

mechanisms. The authors of this study conducted a 

sensitivity analysis to identify the main factor, traced 

the trend graph of potential reproduction number, and 

obtained data fits after the simulation [8]. The model 

revealed the highest confirmed current cases of 

50,000 arriving on February 15, 2020, via simulation 

and data fitting, with the determination coefficient 

close to 01, indicating high accuracy of data-fitting 

performance. The SEIR model does not consider a 

long-lasting immunity such that a recovered person 

will not become susceptible again. This reduces its 

reliability for predicting the disease spread curve.        

A regenerated SEIR model that takes into account 

a new infected state, the impact of preventive 

interventions, and the main infection parameters for 

COVID-19, including latent period, quarantine 

period, and the specific replication number, evaluated 
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these factors in a fairly reliable manner [9]. The 

frequently interested point of inflection, stopping 

time and maximum cases of infection in hot regions 

are forecast and confirmed by both directly and 

indirectly evidences. In addition, the starting date of 

this outbreak is calculated at 3 estimation points via 

inverse reasoning. A new infected state, along with 

the state of recovery, replaces the original R state in 

the SEIR model and accurately accounts for the 

identified cases and recovered cases reported daily. 

The study was limited by the incomplete data 

reported, as its proposed model depends on multiple 

and complicated parameters. 

Another study developed a model of stochastic 

distribution with parameters specific for the COVID-

19 pandemic [10]. It used the model to measure the 

possible efficacy of contact tracing and case isolation 

in managing SARS-CoV-2. Its scenario assumed that 

the number of preliminary cases, the simple 

replication number, the period from the onset of 

symptoms to isolation, the likelihood that contacts 

were identified, the proportion of infection that 

existed before the onset of symptoms, and the 

proportion of clinically significant infections were 

discovered. Isolation is presumed to prevent any 

further distribution in the model. The main limitation 

of the study was that they did not rely on a 

mathematical model and only considered the 

isolation parameter in order to relax their 

assumptions. 

Another study fitted a reported serial duration 

(standard deviation and mean) with a regression 

distribution and applied the 'recent R' programming 

package in R to measure the initial number of 

infections early in the COVID-19 epidemic [11]. The 

study used the "projections" module in R to estimate 

realistic cumulative disease trajectories and expected 

daily infection by fitting current daily incidence data, 

serial distribution intervals, and the approximate 

initial number of infections into a model based on the 

fact that daily infections approximately obey the 

average Poisson distribution of infections. As the 

study based on data-driven analysis, it is limited by 

the reported data, in which the number of infected 

individuals increases and the portion of susceptible 

individuals decreases rapidly. Their results are thus 

restricted to a limited time frame, and this could 

affect the outcome.  

Another study was based on linear regression 

models, a popular technique for predicting the effect 

of certain variables on the COVID-19 pandemic. 

Data from March 31 to May 29, 2020, were collected 

from the website of the Nigeria Centre for Disease 

Control. In this analysis, to assess the effect of 

contacts and travel history on the spread of the 

disease in Nigeria, the researchers adopted the 

ordinary least-square estimator and made a prediction 

[12]. The study was based on the invalid assumption 

that travel history is not highly correlated with 

confirmed cases. Thus, the regression predictions are 

not accurate. 

With Gaussian models, COVID-19 spread could 

be predicted using field mean to collect quantitative 

data on disease spread, including fatality, recovery, 

and infection rates. The regression Gaussian model 

expected that in the USA, the epidemic would exceed 

saturation in July 2020 [13]. The findings indicate 

that new containment actions could be effective with 

further restrictions on prevention techniques 

introduced in the USA, but it could cause a high rate 

of infections and deaths in the following two months. 

The study was restricted, as the analysis relied on the 

total number of cases reported by timely short-term 

forecasts. 

A simulation of the COVID-19 transmission cycle 

on a tour ship, determining the number of infections 

among approximately 3700 passengers, was 

conducted in [14]. The virus spread rule between 

passengers was developed based on the crowd 

flowing model and was used to analyse the spread of 

infection caused by close contact during the regular 

activities of passengers on a tour ship. Three 

situations were simulated, with the main scenario 

emphasizing the function of virus transmission 

triggered by a virus transporter and the impact of 

personal preventive measures against the virus. 

Control conditions were designed to simulate the 

influence of compulsory or recommended steps on 

virus spread. The study was limited by a lack of data 

availability (103 out of 300 records) and may thus be 

affected by a downward bias. However, their 

transmission potential estimates pointed to the high 

potential for SARS-CoV-2 to be transmitted in 

restricted settings. 

 

ΙΙΙ. METHODOLOGY 

 
 As the aim of the study was to investigate the effect 

of contact rate on the number of infections, we 
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proposed the following null and alternative 

hypotheses: 

 H0: There is no relationship between c, the 

contact rate, and I, the number of infected individuals 

in the population. 

 H1: There is a relationship between c, the contact 

rate, and I, the number of infected individuals in the 

population. 

 To test the null hypothesis, we developed a 

modified SIRD model and used agent-based 

simulation to manipulate the independent variable c 

and investigate its effect on the dependent variable I.  

The following subsections explain the SIRD model 

and the agent-based simulation in detail. 

 

A. Modified SIRD Model 

 
The modified SIRD compartmental model divides 

the population into four compartments (stocks). The 

block diagram in Fig. 1 depicts these four stocks and 

their relationship in the proposed model. 

 

 Susceptible (S): The number of susceptible 

individuals in the population. When a susceptible 

person comes in contact with and infected person, 

he/she becomes infected with a probability p. 

 Infectious (I): The number of infected individuals 

in the population. These individuals are capable of 

infecting susceptible individuals. An infected 

individual may recover with a recovery rate γ or die 

with a fatality rate μ 

 Recovered (R): The number of recovered 

individuals. These are individuals who were infected 

and 

are 

recovered from their infection. 

 Deceased (D): The number of individuals who 

died after becoming infected. 

 The SIRD model is a dynamic model; thus, the 

above population stocks can be represented as S(t), 

I(t), R(t), and D(t), indicating the number of 

Susceptible, Infectious, Recovered, and Deceased 

individuals, respectively, at time t. The proposed 

SIRD model can be represented with the following 

set of differential equations: 

 

 𝑑𝑆

𝑑𝑡
=  

−𝛽 𝐼 𝑆

𝑁
 

(1) 

 𝑑𝐼

𝑑𝑡
=

𝛽 𝐼 𝑆

𝑁
−  𝛾𝐼 −  𝜇𝐼 

(2) 

 𝑑𝑅

𝑑𝑡
=  𝛾𝐼 −  𝜈𝑅 

(3) 

 𝑑𝐷

𝑑𝑡
=  𝜇𝐼 

(4) 

Where 

 𝛽 = 𝑐 ×  𝑝 (5) 

 

And 
 

β is the infection rate 

c is the contact rate 

p is the probability of disease transmission 

γ is the recovery rate 

ν is the waning rate 

N is the population size 

Note that  
 

 𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
+

𝑑𝐷

𝑑𝑡
= 0 

(6) 

 

From the above it follows that 

 
 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡) = 𝑁 (7) 

 

Fig. 1: Block diagram of the modified SIRD model 
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 To solve the above system of differential 

equations, we employed agent-based simulation. The 

pseudocode below shows the loop for the specified 

stocks in the modified model: 

 

INITIALIZE total population 

INITIALIZE Infectious cases 

SET mean infection period = 14 

SET mean time until of wining immunity = 100 

SET fatality rate = 0.01 

START LOOP 

 IF individual contacts with Infectious THEN 

  COMPUTE infectious  

  PRINT the number of infected cases  

 END IF 

 IF infected individual recovered THEN 

  COMPUTE recovery  

  PRINT the number of recovered cases  

  COMPUTE susceptible  

  PRINT susceptible cases 

 ELSE 

  COMPUTE death 

  PRINT the number of deceased  

 END IF 

END LOOP 

 

B. Agent-based Simulation 

 
Modeling based on agents reflects the different active 

entities of a situation. This differs from both the 

theoretical approaches to system processes and the 

discrete approach of events focused on the flow. 

Active components, defined as agents, can only be 

described with agent-based modeling and their 

specified activity. Agents can be individuals, 

families, cars, machinery, goods, or businesses, as 

relevant to the situation. Connections are formed 

between them; contextual variables are set and 

simulations are run. Thus, the system's overall 

dynamics arise from the associations of many agents’ 

behaviors.  

 This paper uses the COVID-19 data repository 

from Johns Hopkins [15] to investigate parameters 

that affect the spread of COVID-19. They developed 

an interactive dashboard to visualize and track 

reported cases in real time. Reports are released from 

the dashboard to present daily of infections, deaths, 

and recovered patients. These numbers are updated 

frequently in a time-series manner in order to reflect 

current numbers. 

                                                 
1 https://cloud.anylogic.com/model/4d546172-12b4-

4d0599ed2d3f60155698?mode=SETTINGS&tab=GENE

RAL  

      The model was implemented in AnyLogic, a 

multimethod simulation modeling tool that supports 

agent-based, discrete event, and system dynamics 

simulation.  We used AnyLogic Cloud, which 

enables users to store, access, run, and share 

simulation models online, as well as analyze 

experiment results. The four population stocks are 

represented as agents, and to solve the system of 

equations, their interactions are represented as flows 

from one type of agent to the other. These flows 

define the quantities on the right-hand sides of the 

equations. These flows are as follows: 

 
(1) infection (flow between susceptible & infectious) = β 

* I/N * S 

(2) recovery (flow between infectious & recovered) = γ 

* I 

(3) waningImmunity (flow between recovered & 

susceptible) = ν * R 

(4) death (flow between infectious & deceased) = μ * I 

 

 The proposed model has four agents which are 

displayed as squares and the four flows are depicted 

as double-lined arrows. A number of intermediate 

variables were used to facilitate the computation. 

Following is the full list of variables used in the 

model. 
 forceOfInfection: F = β * I/N 

 contactRate: c 

 probabilityOfTransmission: p 

 infectionRate: β = c * p 

 prevalenceOfInfection: I/N 

 meanInfectiousPeriod: P 

 recoveryRate: γ = 1/P 

 fatalityRate: μ 

 meanTimeUntilWaningImmunity: W 

 waningRate = ν 

 population: N 

 

The COVID-19 model is available at the AnyLogic 

Cloud1. 

 

C. Experiment Settings 

 
The AnyLogic application was used to run the model 

to simulate 30 days of SARS-CoV-2 infection, which 

is the critical duration for infection spread [7], [14]. 

Since the goal was to investigate the effect of contact 

rate on disease spread, we kept all other parameters 

constant and manipulated c, the contact rate. The 

simulation was run in four scenarios: in the initial 
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scenario, the contact rate was 100% among people in 

the population; the second decreased the contact rate 

to 50%; the third set the contact rate equal to 25%; 

and the last allowed only 10% contact among people 

in the population. 

 The model parameters were fixed in order to 

observe the changes caused by the desired variable 

(the contact rate). The parameters are set as follows: 

probability of transmission (p) = 0.04, fatality rate (μ) 

= 0.01, mean time until waning immunity (W) = 100 

days, and mean infection period (P) = 14 days [16].  

The initial numbers were: susceptible people (N) 

= 1,000,000, infectious (I) = 3, recovered (R) = 0, and 

deceased (D) = 0. The simulation model was 

validated by comparing the result of the proposed 

model and a data-driven model established in [17]; 
the comparison process revealed that both results 

were almost the same; thus, our simulation model is 

valid. 

 
IV. FINDINGS AND DISCUSSIONS 

 
Running the COVID-19 simulation model resulted in 

the following scenarios: In the first scenario, in which 

the contact rate is 100%, the entire population 

became infectious, with only 1641 susceptible 

individuals remaining at the end of the simulation (30 

days). Of the infectious population, 43,272 recovered 

and 8,182 had died by the end of the simulation. The 

number of infectious individuals at the end of 

simulation was 46,903. This represents the situation 

in which no precautionary measures are taken. The 

results are depicted in Fig. 2 (a).  

  

By adjusting the contact rate value to be 50%, with 

some assumed preventive procedures, it is clear from 

Fig. 2 (b) that the result obtained in the first scenario 

will still be true. This means that most of the 

population will be infected by day 30. The only 

difference is in the number of susceptible individuals, 

which stood at 3194 at the end of the second scenario. 

The number of recoveries was 46,943, the number of 

deaths was 7,382, and the number of infectious 

individuals was 46,943 at the end of the 30-day 

simulation. 

 

In the third scenario, shown in Fig. 2 (c), in which 

the contact rate is 25%, the number of susceptible 

individuals was increased to 5516 and the number of 

deaths was decreased to 5726. The number of 

infectious individuals was 48,364, and there were 

40,115 recoveries at the end of the simulation.  

 
The final scenario, displayed in Fig. 2 (d), 

confirms the result obtained in the previous scenario. 

In this case, when the contact rate is 10%, with strict 

precautionary procedures and quarantine, the number 

of susceptible people remained at 82,048 and only 

256 deaths were reported. The number of infectious 

individuals was 14,933, and there were 2,761 

recoveries at the end of the simulation. 

 

It is important to note that recovered individuals 

can be infected again if they contact infected 

individuals. This is clear from the third scenario, in 

which the number of infected people increased 

compared to the first and second scenarios. Based on 

the results obtained from these four scenarios, we 

reject the null hypothesis that there is no relationship 

between contact rate and the number of infections 

and conclude in favor of the alternative hypothesis. It 

is important to note that the relationship was not 

obvious in the first three scenarios, and it was only 

the fourth scenario that described the inverse nature 

of the relationship between contact rate and number 

of infections. It follows from the above that even a 

25% contact rate among individuals in the population 

resulted in a higher number of infections and deaths 

than when the contact rate is only 10%. The 10% 

contact rate represents a lockdown situation in which 

only individuals who are crucial to support the 

country’s infrastructure services are allowed to go 

outside. 

 

The result of the COVID-19 spread model 

simulation confirms that not taking strict 

precautionary procedures to prohibit human 

interactions at a critical time leads to increased 

infections and deaths. This means that without a 

lockdown, the number of infections and deaths is 

higher than there would be with one. These high 

numbers may lead to a breakdown of the healthcare 

infrastructure of a country.  

 

We compared our work with four other COVID-

19 spread studies and the results are summarized in 

Table 1. The authors in [4] used two-dimensional 

grid search instead of a simulation to estimate the 

model parameters and reported a 78% uncertainty in 

the reported infections. Our model used an agent-

based simulation approach and hence is more capable 

of answering what-if scenarios. The second study [6] 

also reported high uncertainty in the simulation 

results due to the large differences between the lower 

and upper bounds of infected cases, recovered 

population, and deaths. Moreover, it did not consider 

a variable contact rate, which is an important 
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parameter in our proposed model to measure the 

spread of COVID-19. The third study in our 

comparison [18] used a fixed contact rate which 

limits the model’s capability as it is an important 

factor to determine a suitable lockdown strategy. 

Further, the use of the SIR model (without 

calculating the number of deaths) is a limitation in the 

fourth study [19] that is resolved in our agent-based 

modified SIRD model. 

Table 1: Comparison of similar studies 

Ref. Approach Results 

[4] Modified SIR 

model 

78% uncertainty in 

reported infections 

[6] Linear regression 

and SIRD 

simulation  

High uncertainty in 

reported infections 

and the effect of 

contact rate not 

considered 

[18] Modified SIRD 

Model  

Considered a fixed 

transmission rate 

[19] SIR Model High uncertainty in 

reported infections 

 
V. Conclusion 

 
COVID-19 is an infectious disease that has spread 

internationally. The developed model confirmed that 

contact rate is the primary factor for the rapid 

increase in the number of infected and dead 

individuals. By minimizing contact rate, the number 

of infected people and deaths decreased. Because 

there is not yet a vaccine for COVID-19 and effective 

treatment for this disease remains unknown, curfews 

and other strict procedures must be enacted in order 

to reduce the number of contacts between humans. 

Those who have recovered are assumed to be 

susceptible to reinfection unless clinical tests show 

the opposite. For future work, adding more 

parameters obtained from future medical studies is 

encouraged in order to further develop the model, as 

is building a dashboard to provide up-to-date 

information about disease spread, which will be 

helpful for future research. 

 

 

 

Fig. 2: (a) first scenario with 100% contact rate, (b) second scenario with 50% contact rate, (c) third scenario 

with 25% contact rate, (d) fourth scenario with 10% contact rate 

 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2020.14.28 Volume 14, 2020

ISSN: 1998-4510 216



References: 

 

[1] E. Hunter, B. Mac Namee, and J. Kelleher, “An 

open-data-driven agent-based model to simulate 

infectious disease outbreaks,” PLoS One, vol. 13, 

no. 12, p. e0208775, 2018. 

[2] C. Sohrabi et al., “World Health Organization 

declares global emergency: A review of the 2019 

novel coronavirus (COVID-19),” Int. J. Surg., 

2020. 

[3] A. Anirudh, “Mathematical modeling and the 

transmission dynamics in predicting the Covid-19 

- What next in combating the pandemic,” Infect. 

Dis. Model., vol. 5, pp. 366–374, 2020, doi: 

10.1016/j.idm.2020.06.002. 

[4] G. C. Calafiore, C. Novara, and C. Possieri, “A 

Modified SIR Model for the COVID-19 

Contagion in Italy,” pp. 1–6. 

[5] A. M. Harb and S. M. Harb, “Corona COVID-19 

spread - a nonlinear modeling and simulation ☆,” 

Comput. Electr. Eng., vol. 88, no. October, p. 

106884, 2020, doi: 

10.1016/j.compeleceng.2020.106884. 

[6] C. Anastassopoulou, L. Russo, A. Tsakris, and C. 

S. Id, “Data-based analysis, modelling and 

forecasting of the COVID-19 outbreak,” pp. 1–21, 

2020, doi: 10.1371/journal.pone.0230405. 

[7] S. Zhang, M. Diao, W. Yu, L. Pei, Z. Lin, and D. 

Chen, “Analysis and forecast of COVID-19 

spreading in China, Italy and France,” Int. J. 

Infect. Dis., vol. 93, pp. 201–204, 2020, doi: 

10.1016/j.ijid.2020.02.033. 

[8] Y. Fang, “Transmission dynamics of the COVID 

‐  19 outbreak and effectiveness of government 

interventions : A data ‐  driven analysis,” doi: 

10.1002/jmv.25750. 

[9] S. Zhao and H. Chen, “Modeling the epidemic 

dynamics and control of COVID-19 outbreak in 

China,” vol. 8, no. 1, pp. 11–19, 2020. 

[10] J. Hellewell et al., “Articles Feasibility of 

controlling COVID-19 outbreaks by isolation of 

cases and contacts,” pp. 488–496, 2020, doi: 

10.1016/S2214-109X(20)30074-7. 

[11] S. Zhang, M. Diao, W. Yu, L. Pei, Z. Lin, and D. 

Chen, “Estimation of the reproductive number of 

novel coronavirus (COVID-19) and the probable 

outbreak size on the Diamond Princess cruise ship: 

A data-driven analysis,” Int. J. Infect. Dis., vol. 93, 

pp. 201–204, 2020. 

[12] R. O. Ogundokun, A. F. Lukman, G. B. M. Kibria, 

J. B. Awotunde, and B. B. Aladeitan, “Predictive 

modelling of COVID-19 con fi rmed cases in 

Nigeria,” Infect. Dis. Model., vol. 5, pp. 543–548, 

2020, doi: 10.1016/j.idm.2020.08.003. 

[13] N. Science, C. Phenomena, D. Fanelli, and F. 

Piazza, “Chaos , Solitons and Fractals Analysis 

and forecast of COVID-19 spreading in China , 

Italy and France,” Chaos, Solitons Fractals 

Interdiscip. J. Nonlinear Sci. Nonequilibrium 

Complex Phenom., vol. 134, p. 109761, 2020, doi: 

10.1016/j.chaos.2020.109761. 

[14] K. Mizumoto and G. Chowell, “Transmission 

potential of the novel coronavirus ( COVID-19 ) 

onboard the diamond Princess Cruises Ship , 

2020,” Infect. Dis. Model., vol. 5, pp. 264–270, 

2020, doi: 10.1016/j.idm.2020.02.003. 

[15] J. H. U. CSSE, “COVID-19 Data Repository by 

the Center for Systems Science and Engineering 

(CSSE) at Johns Hopkins University.” 2020. 

[16] “Coronavirus Update (Live): 44,179,799 Cases 

and 1,170,220 Deaths from COVID-19 Virus 

Pandemic - Worldometer.” 

https://www.worldometers.info/coronavirus/?fbcl

id=IwAR2Ak_lT4Q9jx0z8_1H2ojosGD2hqedek

LDBOkPQv6CGWR0xV-KSKLrYO3Y 

(accessed Apr. 01, 2020). 

[17] “Minimizing Coronavirus’ impact is a race against 

time - this chart explains why | World Economic 

Forum.” 

https://www.weforum.org/agenda/2020/03/this-

one-chart-shows-why-minimizing-coronavirus-

impact-is-a-race-against-time/ (accessed Apr. 01, 

2020). 

[18] A. Sedaghat, A. Mostafaeipour, and S. A. Abbas 

Oloomi, “Prediction of COVID-19 Dynamics in 

Kuwait using SIRD Model,” Integr. J. Med. Sci., 

vol. 7, pp. 2–5, 2020, doi: 10.15342/ijms.7.170. 

[19] D. K. Bagal, A. Rath, A. Barua, and D. Patnaik, 

“Estimating the parameters of susceptible-

infected-recovered model of COVID-19 cases in 

India during lockdown periods,” Chaos, Solitons 

and Fractals, vol. 140, p. 110154, 2020, doi: 

10.1016/j.chaos.2020.110154. 

 

 Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2020.14.28 Volume 14, 2020

ISSN: 1998-4510 217




