
 

 

 
Abstract— The COVID-19 pandemic has introduced to 

mild the risks of deadly epidemic-prone illnesses sweeping 

our globalized planet. The pandemic is still going strong, 

with additional viral variations popping up all the time. For 

the close to future, the international response will have to 

continue. The molecular tests for SARS-CoV-2 detection 

may lead to False-negative results due to their genetic 

similarity with other coronaviruses, as well as their ability 

to mutate and evolve. Furthermore, the clinical features 

caused by SARS-CoV-2 seem to be like the symptoms of 

other viral infections, making identification even harder. 

We constructed seven hidden Markov models for each 

coronavirus family (SARS-CoV2, HCoV-OC43, HCoV-

229E, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-

CoV), using their complete genome to accurate diagnose 

human infections. Besides, this study characterized and 

classified the SARS-CoV2 strains according to their 

different geographical regions. We built six SARS-CoV2 

classifiers for each world's continent (Africa, Asia, Europe, 

North America, South America, and Australia). The dataset 

used was retrieved from the NCBI virus database. The 

classification accuracy of these models achieves 100% in 

differentiating any virus model among others in the 

Coronavirus family. However, the accuracy of the continent 

models showed a variable range of accuracies, sensitivity, 

and specificity due to heterogeneous evolutional paths 

among strains from 27 countries. South America model was 

the highest accurate model compared to the other 

geographical models. This finding has vital implications for 

the management of COVID-19 and the improvement of 

vaccines.  

 

Keywords—COVID-19, Geographic classification, 

Profile hidden Markov model, SARS-CoV2 

identification.  

I. INTRODUCTION 
oronaviruses are single-stranded positive-sense RNA 
viruses with genomes up to around 32-kilo base-pairs 

(kbps) in length. Coronaviruses have four main sub-groups: 
alpha, beta, gamma, and delta coronavirus [1]. Human 
coronaviruses were first identified in the mid-1960s. 
Coronaviruses mainly affect the respiratory tract of animals and 
humans that causes mild to severe respiratory tract infection [2]. 
The common types that can infect humans are 229E and NL63 
(alpha coronavirus), OC43, and HKU1 (beta coronavirus). 
Also, the two highly pathogenic beta coronaviruses, MERS-
CoV and SARS-CoV, that appeared in the last twenty years 
caused East Respiratory Syndrome (MERS) and severe acute 
respiratory syndrome (SARS), respectively [3]. Including the 
most recent SARS-CoV2 that causes COVID-19 pandemic 
disease. Extensive research efforts were made to understand the 
SARS-CoV2, considering its genome, origin, and evolution to 
stop or cure the covid-19 disease. Many studies have reported 
high similarities in the genomic features between SARS-CoV-
2 and other coronaviruses [2]. Also, the similarity in the 
disease's symptoms that caused by these coronaviruses and 
COVID-19 infection. 

Molecular techniques, like quantitative RT-PCR and DNA 
sequencing techniques, are typically used to detect pathogens. 
One main issue with the RT-PCR test is the risk of obtaining 
false positive and false negative outcomes [4]. It is said that 
many 'suspected' instances with common clinical characteristics 
of COVID-19 and equal computed tomography (CT) scan 
images have been no longer identified [4]. Therefore, a bad 
result does no longer excludes the possibility of COVID19 
disease and should no longer be used as the only criterion for 
treatment or patient control decisions. It seems that using both 
real-time RT-PCR and clinical characteristics allows control of 
SARS-CoV2 outbreak. Several challenges regarding the 
detection of SARS-CoV2 using RT-PCR like time-consuming 
and calls for optimizing additional parameters [5]. Ultimately, 
rules need to be carefully decided to ensure the assay's 
reliability and detect experimental errors[4].  
Due to the frequently growing rate of novel viral sequences, 
many studies attempt to improve diagnostic procedures and 
classify these viral genome sequences using computational 
methods that can provide rapid and reproducible outcomes. 
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There was an attempt to assemble viral sequences from various 
viral taxonomic groups into coordinated databases in recent 
years. The taxonomic classification primarily based on 
alignment approaches is considerably successful in locating 
sequence similarities and grouping the relatively correlated 
viruses as approved by ICTV (International Committee on 
Taxonomy of Viruses) [5].   

.  

BLAST algorithm is a common way to discover sequence 
similarity. However, BLAST search algorithm has some issues 
associated with remote homology detection described in [6]. 
Profile hidden Markov model (Profile HMM) is one of 
Sequence similarity searches' most important methods, 
especially among viruses. HMMs are statistical models that 
convert Multiple sequence alignment (MSA) data into a set of 
probability values that reflect the position-specific scores about 
how conserved each residue of the Alignment is and which 
residues are likely. These models display higher sensitivity than 
BLAST for the detection of remote homologs [7]. One of the 
interesting uses of viral profile HMMs is the sequence 
recognition and reconstruction of precise viral genomes from 
metagenomic information. Prior studies used HMM models to 
build highly accurate models for classifying Influenza (A) 
pandemics according to their outer surface proteins [8, 9].  

 
Authors had proposed other solutions primarily based on 

deep learning to classify viruses by splitting the sequences into 
portions of fixed lengths, from 300 bps to 3000 bps [10]. 
However, this method hardly achieves 0.923 AUC as they 
ignored a part of the data that cannot fill the fixed-length 
number. Another study used a deep learning method to separate 
50 sequences of SARS-CoV2 from 352 sequences of related 
viruses, considering all DNA genome sequences. This study 
achieved 0.97 AUC, 0.9939 specificity and 0.9 sensitivity [11]. 
The latest study [12] used a convolutional neural network 
(CNN) and a bidirectional long short-term memory (Bi-LSTM) 
neural network CNN-Bi-LSTM to identify the SARS CoV-2 
virus from coronaviruses and predict the short regulatory motifs 
bound to the proteins. They used an unbalanced dataset with 
10.3% (SARS CoV-2) and 89.7% negative samples belonged to 
other viruses among the Coronavirus family, and their binary 
classification achieved an accuracy of 99% as SARS CoV-2 or 
non-SARS CoV-2. One More binary classification study [13] 
had been done by extracting the genome characteristics of 
SARS CoV-2 vs. other forms of coronaviruses. They used 
SVM, KNN, Naïve Bayes, and Random Forest for classifying 
the samples however, they hardily achieved accuracy of 87%, 
92%, 88%, and 93% respectively. 

 
The main goal of our research is twofold: first, to study the 

diversity of Coronavirus family and build a classifier model for 
each one of the seven known coronaviruses (SARS-CoV2, 
HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-HKU1, 
MERS-CoV, and SARS-CoV), to facilitate patient diagnosis 
and manage the pandemic spread. Second, to investigate and 
characterize the SARS-CoV2 strains from different 
geographical regions. We build six classifiers for each world's 

continent (Africa, Asia, Europe, North America, South 
America, and Australia) to compare and classify the virus 
strains from different areas. This finding has vital implications 
for the management of COVID-19 and the improvement of 
vaccines.  

 
 

Table I. The number of genome sequences for each virus as 
NCBI naming convention. 

 
 Organism Number of sequences 
1 SARS-CoV2 860 
2 MERS-CoV 466 
3 HCoV-OC43 401 
4 HCoV-NL,.63 170 
5 HCoV-229E 122 
6 HCoV-HKU1 117 
7 SARS-CoV 20 

 
 
Table II. The number of SARS-CoV2 genome sequences 

from six as retrieved from the NCBI virus database. 
 

 
Location Number of 

sequences Countries 

1 North 
America 815 USA, Canada 

2 Asia 569 

China, Taiwan, India, 
Vietnam, South Korea, 
Pakistan, Kazakhstan, Sri-
Lanka 

3 Europe 620 
Italy, France, Germany, 
Sweden, Spain, DEU, 
Greece, Czechia, Poland 

4 Australis 430 Australia  

5 Africa 262 Egypt, Tunis, Morocco, 
Nigeria 

6 South 
America 45 Brazil, Colombia, 

Argentina 
 
 

II. MATERIALS AND METHODS 

A. Dataset 

This study downloaded all the available isolates of the 
common Coronavirus types from the NCBI virus database [9] 
till 8 Oct 2020. A total of 2136 human coronaviruses sequences 
for seven types were filtered and downloaded in Fasta file 
format. The downloaded sequences were forced to be unique, 
in complete isolation, and from different geographical origins. 
The samples were organized and labeled for each virus, as 
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summarized in Table I.  The average sequence length is 30 Kbps 
for each type of Coronaviruses. Finally, we divided the 
available sequences into two parts, 90% of each virus's data is 
used for training the HMM models, and the remaining part is 
used for testing.  

To classify SARS-CoV2 geographical origins, we 
downloaded all the newly available isolates of the SARS-CoV2 
genome from the NCBI virus database [14] till 15 Dec 2020. 
All the previous considerations, such as uniqueness, 
completeness, and differential geographical origins, have been 
considered. The downloaded sequences were from 27 countries 
organized and grouped according to the world's continents, as 
summarized in Table II. The study downloaded a total of 2741 
human SARS-CoV2 sequences in Fasta file format for 
geographical analysis. 

  

B. Multiple Sequence Alignment (MSA) 

Multiple sequence alignment MSA is the Alignment or 
comparison of three or more sequences (DNA, RNA, or 
protein) to investigate their diversity. MSA can compare 
homologous sequences and place them above each other in a 
matrix with a minimum number of spaces (gaps), where each 
column in the matrix represents a set of characters that are 
homologous. So that the characters may coincide when the 
sequences are closely related but may conflict as the sequences 
diverge [15]. Such MSA representation can produce a 
consensus sequence showing the preserved regions from the 
aligned sequences. These alignments mainly support exploring 
evolutionary relationships, phylogenetic tree reconstruction, 
and Profile hidden Markov model.  

Algorithms like ClustalW[13] and MUSCLE[16] are well-
known and widely used in MSA. In our study, MSA is done for 
each Coronaviruses strain separately using the CLC genomics 
workbench [17].  

 

C.  Modeling using Profile HMM 

Profile HMMs are powerful statistical models that transform 
MSA data into a set of probability values that reflect the 
position-specific scores for each residue in the group of 
sequences. Profile analysis has long been a helpful tool in 
finding and aligning distantly associated sequences and 
identifying known sequence domains in new sequences[18]. A 
profile is a description of the consensus of a multiple sequence 
alignment. It uses a position-specific scoring system to capture 
information about conservation at various positions in multiple 
Alignment. This makes it a much more sensitive and specific 
method for searching the database than pairwise methods such 
as regular BLAST to recognize remote homologs. 

Within the following, we have two essential steps: building 
profile HMM model and database searching. Building a model 
means changing a multiple alignment of every group of 
sequences right into a probabilistic model, while searching the 
database means scoring a sequence to the Profile HMM. One of 
the most broadly used profile HMM applications is the 
HMMER package [19]. 

 
a. Model Building 

 
Profile HMM is represented as a series of states (begin, 

match, insert, delete, and end states) and arrows indicating state 
order as shown in figure1. The "Match" states (M1, M2, ...M5) 
each represents one column in the alignment that emits residue 
with probabilities learned through model estimation. 
Simultaneously, the "insert" state (I0, I1, ...I5) means placing 
new residues preceding each "match" state. While "delete" 
states (D1, D2, ...D5) are silent that can be used to pass or skip 
the "match" state. The transition arrows indicating that we can 
go through the insert states, placing new residues or go through 
the silent states, skipping one or extra of the match states. This 
architecture guarantees that we can examine each new sequence 
and, at the same time, reduce the range of parameters in the 
constructed model. 

In this study, we construct a unique HMM profile for each 
type of coronaviruses using the 'Hmmbuild' program in 
HMMER package v3.3.1[19]. The 'Hmmbuild' program's input 
was the pre-aligned sequences of the training dataset 
summarized in table I. To improve the database search 
sensitivity, we used the 'hmmcalibrate' program in HMMER to 
calculate the expectation values E-value. E-value is the 
statistical significance of the match to this sequence. The more 
significant sequence, the lower the E-value, and the larger the 
database you seek, the more the range of expected false 
positives. Finally, HMM database has been constructed using 
concatenating HMM files that are already built and calibrated 
[22]. 

 

 
.  

Figure 1. A profile HMM modelling a multiple sequence alignment. 
https://www.ebi.ac.uk/training/online/sites 

 
 

b. Database Searching  

  Searching database asks if the complete target sequence 
is homologous (or now not) to a query profile. Every 
sequence in the test dataset can be matched to a profile model 
by calculating its probability generated by that model.  

The ’nhmmer’ program in HMMER3 can scan each 
comparison between a test sample and target searching for 
high-score un-gapped alignment segments. A window 
around each such segment is extracted, merging overlapping 
windows. HMMER3 implements two search algorithms to 
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score a sequence fit to HMM:  Viterbi algorithm that 
provides the score of the most likely alignment with the 
sequence or forward algorithm that calculates the score as the 
sum over all possible alignments to the HMM of the Profile 
the total probability of a sequence aligning to the HMM [20].  
The classification is done by scoring the whole test-sets for 
each group (Table I), with each coronavirus HMM model, 
using the 'nhmmer' program in HMMER3. For classifying 
SARS-CoV-2 from other related coronaviruses, we labeled 
SARS-CoV2 by "1" and grouped the other viruses in label 
"0". Matches to the right coronavirus type are classified as 
true hits. The results of this program are the sequence top hits 
list, ranked with the E-value. The rankings and E-values here 
reflect the certainty that this target sequence consists of one 
or more domain names belonging to the hmm family [19]. 

III. RESULTS AND DISCUSSION 
Multiple sequence alignments (MSA) were done for SARS-

CoV2 sequences and each type of coronaviruses (table I) 
separately using the CLC genomics workbench [17]. Then we 
built HMM specific model for each aligned group of 
coronaviruses, followed by HMM calibration and database 
searching using the HMMER.3 package. Regarding SARS-
CoV2 geographic classification, MSA was done for each 
organized continent group as summarized in Table II. As the 
previous structure, each aligned group of SARS-CoV2 
continent was used to build a specific HMM model for that 
continent, followed by HMM calibration and database 
searching in the same package. In the following subsections, we 
would present and discuss the classification results of 
Coronavirus family and geographic classification results of 
SARS-CoV2, respectively.  

 

A. Classification results of Coronavirus family  

Large The proposed HMM models improved the accuracy of 
Covid-19 diagnosis and accomplished classification accuracy 
of 100%. The classification of each proposed virus model vs. 
others in the Coronavirus family like (SARS-CoV2 vs. non-
SARS-CoV2), (MERS-CoV vs. non- MERS-CoV), (HCoV-
OC43 vs. non- HCoV-OC43) achieved 100% sensitivity and 
specificity. Besides, the proposed models improved the 
accuracy of Covid-19 diagnosis compared to literature studies. 
The authors in [13] performed one binary classifier (COVID-
19 vs. other types of coronaviruses) and hardly achieved an 
accuracy of 87%, 92%, 88%, and 93% using SVM, KNN, Naïve 
Bayes, and Random Forest, respectively. The study in [10] used 
deep learning to classify SARS-CoV2. However, their results 
hardly achieved 0.923 AUC as they ignored a part of the data 
that cannot fill the fixed-length number. While the authors in 
[11] used a small dataset of complete sequences to separate (50 

SARS-CoV2 among 352 from others), the result achieved a 
specificity of 99% and a sensitivity of 90% using a 
convolutional neural network.  

 

B.  Geographic classification results of SARS-CoV2 

According to the geographic classification of Covid-19, 
identifying the geographical origin of SARS-CoV2 strains and 
classifying them according to the six world continents has been 
done by scoring each continent model with its corresponding 
test-set (Table I). We used ‘nhmmer' program in HMMER3 to 
search DNA test queries against each continent model. Receiver 
operating characteristic (ROC) curve plot the true positive TP 
rate (sensitivity) versus the false-positive FP rate (100-
specificity) for different cut-off points. Each point on the ROC 
figure denotes a sensitivity-specificity pair consistent with a 
particular decision or threshold. The following ROC curves 
were plotted using the MedCalc program [21]. The curves show 
the observed threshold values that achieved maximum 
sensitivity and specificity. Figure 2 showed the ROC curves of 
each continent model according to the geographical origin of 
SARS-CoV2 sequences. The area under the ROC curve (AUC) 
varied between 0.526 and 1. Table III summarizes the 
geographic classification results of continent models in terms 
of AUC, sensitivity, and specificity. 

 
 
Table III Summary of geographic classification results of 

SARS-CoV2 using HMM. 
 

 Model AUC Sensitivit
y 

Specificit
y 

Significan
t level P 

1 South 
America 

1 100% 100% 0.001 

2 Asia 0.73
4 

94.74% 62.5% 0.001 

3 North 
America 

0.73 66.7% 76.2% 0.05 

4 Europe 0.60
9 

100% 55% 0.03 

5 Africa 0.53
9 

62.5% 65.62% 0.07 

6 Australi
a 

0.52
6 

42.11% 80.95% 0.07 

 

IV. CONCLUSIONS 
With the high transmissibility of the SARS-CoV2, the proper 
diagnosis of Covid-19 is urgent to prevent the virus from 
spreading also. Considering the false negatives given by RT- 
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(a) Africa Model (b) Asia Model 
 

          

 
 

 

(c) Europe Model 
 

(d) Australia Model 

 
 

 

 
 

 
(e) South America Model (f) North America Model 

 
  

Figure 2. ROC curves for geographical classification results of SARS-CoV2 using HMM 
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PCR, higher implementations such as the viral classification 
model usage are vital to come across the virus properly. Here, 
we improved the accuracy of the SARS-CoV2 diagnosis to 
reach 100% using our HMM models. In conclusion, our results 
indicate that SARS-CoV2 sequences are susceptible to HMM 
models. Moreover, our geographic classification models of 
SARS-CoV2 showed a virus genome diversity associated with 
the geographical distribution across the world. However, our 
preliminary results showing a variable range of accuracies, 
sensitivity, and specificity. South America was the highest 
accurate model, followed by Asia, North America, Europe, 
Africa, and Australia models. The geographic classification 
models may be further improved and validated by adding more 
samples for more countries that have not been available in 
NCBI until the date of data retrieval. We concluded that profile 
HMMs could effectively detect and identify the diversity of 
SARS-CoV2 and the other six known coronaviruses. Moreover, 
this geographic analysis of the human COVID-19 shows 
possibly heterogeneous evolutional paths among strains from 
27 countries. This finding has vital implications for controlling 
COVID-19 and developing vaccines. 
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