
 

 

 
Abstract— We investigated the dispersion relations of 

the triple-chambered cochlea separated by the basilar 

membrane and the Reissner's membrane. The slow waves 

can propagate on the basilar membrane (basilar membrane 

mode), and also on the Reissner’s membrane (Reisnner’s 

membrane mode). Most of the previous studies have 

focused on the mechanics of vibration of the basilar 

membrane and there are only a few studies on the wave 

propagation on Reissner’s membrane. In this study, we 

focused particularly on the Reissner's membrane mode 

among the many propagation modes and evanescent modes 

that the structure supports. We analyzed the dispersion of 

the Reissner’s membrane mode and the basilar membrane 

mode, and studied their dependency on the position along 

the cochlea. We also studied how the distance between the 

Reissner's membrane and the basilar membrane affects the 

dispersion relations. 
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I. INTRODUCTION 
HE cochlea is a fluid-filled duct that has three regions: 

the scala vestibuli, scala media, and scala tympani. They 
are separated by the Reissner's membrane (RM) and the basilar 
membrane (BM). Many analytical and numerical models have 
been developed to study wave propagation in the cochlea [1]. 
Most of the previous studies have treated the cochlea as two 
fluid chambers and focused on the mechanics of vibration of 
BM [2-9]. The slow wave that propagates on BM is called the 
BM mode [10, 11]. On the other hand, there are only a few 
studies on the wave propagation on RM (RM mode). Fuhrmann 
et al. have studied the effects of RM on the wave propagation in 
the cochlea [12]. They assumed that RM had neither mass nor 
stiffness and treated it as a rigid boundary with no-slip 
condition.  Rwichenbach et al. have shown that the RM mode 
plays an important role in transmitting the signals of 
otoacoustic emissions [13]. While BM includes radial fibers 
that impose a high stiffness, RM exhibits a comparatively low 
impedance. It has been shown that the RM mode does not 
evoke a significant displacement of BM, but, in contrast, a 
 

 

disturbance moving in the BM mode propagates on both 
membranes [13]. It has also been shown that in the basal region 
of the cochlea, and for frequencies above 1 kHz, RM sustains 
waves with wavelengths 

 
Figure 1. Cross-section of cochlea. 

 
smaller than the height of the scalae and that do not penetrate 
into the membrane's surrounding fluids [13]. The dispersion 
relations of the RM mode, however, have not been studied so 
far. Given the dispersion relations, the phase velocity and group 
velocity can be obtained. Thereby, it is possible to understand 
the basic characteristics of the waves, such as fast wave and 
slow wave, and we can also discuss the possibility of the 
coupling between two modes. 

In a previous study, we treated the cochlea as two fluid 
chambers and studied the dispersion diagrams of the fast-wave  
and slow-wave modes and the structural dependence of the 
angular wavenumber and coupling efficiency of the slow-wave 
mode [14]. We also investigated the dispersion characteristics 
of the propagation modes that progress on the tectorial 
membrane [15]. In this study, we considered the cochlea 
structure as three regions separated by RM and BM, and 
investigated the dispersion characteristics of the RM mode as 
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well as the BM mode. We used COMSOL Multiphysics to 
analyze the effect of the elastic-wave mode. 

II. MODEL 
The human cochlea is a fluid-filled structure about 35 mm in 

length and coiled in a spiral of 2 1/2 to 2 3/4 turns. We modeled 
it as an uncoiled, triple-chambered fluid-filled duct, which is 
composed of the scala vestibuli, scala media, and scala 
tympani.  

Figure 1 shows the analysis model. To simplify the problem, 
we assumed that RM and BM are located parallel to each other. 
Here, we also assumed that the cochlea duct was enclosed by 
rigid boundaries. The sizes of the three chambers; namely, the 
scala vestibuli, scala media, and scala tympani, vary along the 
cochlea duct. It has been shown in particular that the width of 
RM is slightly dependent on the location along the cochlea and 
has a length ranging from around 0.6 to 0.8 mm [16]. We 
assumed here that the width of RM is constant at 0.7 mm. The 
size of the chambers is uniform along the waveguide, and the 
heights and widths of the scala vestibuli and the scala tympani 
are equal at 0.7 mm, which is the same length as the width of 
RM. We used the width w, height h, and Young's modulus E of 
BM as parameters [17]. 

w = 0.1 [mm]+
0.4 [mm]
35 [mm]

×z,   (1) 

h = 7.5 [μm]-
5[μm]

35 [mm]
×z,   (2) 

E = 50 [MPa]-
47 [MPa]
35 [mm]

×z,   (3) 

where z is the length along the cochlea duct. Here, the structural 
parameters of RM were assumed to be independent from the 
location along the cochlea. The length d between RM and BM 
was used as a parameter, and we studied the influence of d on 
the dispersion relations of the cochlea. The density and bulk 
modulus of the ideal fluid were respectively 1.034×103 kg/m3 
[18] and 2.2×109 Pa [1]; the density and Poisson's ratio of RM 
and BM were respectively 1.2×103 kg/m3 [18] and 0.49 [18]; 
and Young's modulus of RM was 15 MPa [19]. We used 
COMSOL Multiphysics with 662 nodes and 8838 elements. In 
the analysis, the acoustic and elastic wave equations were 
solved by using the finite element method. 

III. MODE ANALYSIS 
Figure 2 shows the dispersion relation of the RM mode and 

the BM mode when z = 10, 20, and 30 mm, where the horizontal 
axis is the acoustic-wave frequency f and the vertical axis is the 
angular wavenumber k. Here, the length d between RM and BM 
is 0.7 mm and the three chambers have the same square shape. 
As shown in this figure, the dispersion curves of the RM mode 
are almost the same regardless of z. On the other hand, those of 
the BM mode largely vary depending on z. When z = 10 and 20 
mm, the RM mode has bigger angular wavenumbers compared 
with the BM mode over the whole frequency range, while they 
are smaller than those of the BM mode over the whole range 
when z = 30 mm. 

Figure 3 shows the x-direction displacement of the 

membrane of (a) RM mode and (b) BM mode when f = 1000 
Hz, and (c) RM mode and (d) BM mode when f = 10000 Hz, 
where z = 10 mm. In these figures, the solid and dashed lines 
show the displacement of RM and BM, respectively. The 
vertical axis is normalized by the maximum value. As shown in 
Fig. 3(a), the RM mode vibrates only RM, while as in 3(b), the 

Figure 2. Dispersion diagram. 
 

  
                       (a)                                        (b) 
 

  
                      (c)                                        (d) 
 

 Figure 3. Displacement of membranes: (a) RM mode (f = 1000 
Hz), (b) BM mode (f = 1000 Hz), (c) RM mode (f = 10000 Hz), 

(d) BM mode (f = 10000 Hz). 
 
BM mode vibrates both BM and RM when f = 1000 Hz. On the 
other hand, Fig. 3(c) and 3(d) show that each mode vibrates 
only its membrane when f = 10000 Hz. 

Figure 4 shows the angular wavenumber k of the RM mode 
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and the BM mode versus z, when f = 1000, 3000, and 10000 Hz. 
This figure shows that the wavenumber of RM mode is constant 
from the base to the apex of the cochlea regardless of the 
acoustic frequency. On the other hand, the wavenumbers of the 
BM mode start to increase rapidly at a certain point along z. For  
example, when f = 10000 Hz, the wavenumber has a small 
value 

 
Figure 4. Angular wavenumber versus z. 

 

 
Figure 5. Angular wavenumber versus d when f = 1000 Hz. 

 
until z is less than about 5 mm, and it starts to increase at that 
point. This is due to the variation along z of the width, height, 
and Young's modulus of BM. We assumed that the Young's 
modulus of BM varies according to equation (3). Therefore, it 
is equal to that of RM when z = 26 mm. We can see that the 
angular numbers of the two modes are equal when the Young's 
modulus of BM is slightly larger than that of RM.  

Next, we investigated the influence of the height of the scala 
media d on the angular wavenumber, wherein the heights of the 
other two chambers and the width of the three chambers are 

unchanged at 0.7 mm. Fig. 5 shows the angular wavenumber k 
of the RM mode and the BM mode versus d when  f = 1000 Hz. 
It shows that d hardly affects the angular wavenumbers of both 
modes when d is more than 0.2 mm. The differences of the 
angular wavenumbers between the two modes increase when d 
is smaller than 0.2 mm. The variation tendency, however, is not 
dependent on the mode type. For example, the angular 

 

 
(a) 

 
(b) 

Figure 6. Angular wavenumber versus z when (a) f = 1000 
Hz and (b) f = 10000 Hz. 

 
wavenumber of the RM mode increases as d decreases when z 
= 25 mm, but it decreases when z = 27 mm. 

Figures 6(a) and 6(b) show the angular wavenumber k of the 
RM mode and the BM mode versus z, when the height of the 
scala media d is 0.05 or 0.7 mm. Here, f = (a) 1000 and (b) 
10000 Hz, respectively. As shown in Fig. 6(a), when f = 1000 
Hz, the angular wavenumber k of the RM mode increases as d is 
reduced from 0.7 to 0.05 mm. The angular wavenumber 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2021.15.47 T. Kitamura

Volume 15, 2021 414 Ε-ISSN: 1998-4510



 

 

difference is about 1000 rad/m from z = 0 to 25 mm, and the 
difference becomes very small when z is more than 30 mm. On 
the other hand, d has little influence on the angular 
wavenumber of the BM mode. From Fig. 6(b), we can see that 
both modes have little dependence on d over the whole range of 
z when f = 10000 Hz. 

IV. CONCLUSION 
We investigated the cochlea, which has three regions 

separated by RM and BM, by using modal analysis. The 
dispersion diagrams of the RM mode and the BM mode showed 
that the wavenumber of the RM mode is constant from the base 
to the apex of the cochlea regardless of the acoustic frequency, 
while the wavenumber of the BM mode largely changes 
depending on the position along the cochlea. The analytical 
results of the displacement of the membranes demonstrated that 
when f = 1000 Hz, the RM mode vibrates only RM, while the 
BM mode vibrates both BM and RM, and that when f = 10000 
Hz, each mode vibrates only its membrane. We also studied 
how the distance between BM and RM affects the dispersion 
relations of the RM mode and the BM mode. The results 
showed that when f = 1000 Hz, the angular wavenumber of the 
RM mode increases as the distance is reduced, whereas when f 
= 10000 Hz, both modes have little dependence on the distance 
over the whole range of the length along the cochlea duct. It 
was shown that the distance hardly affects the angular 
wavenumbers of both modes when it is more than 0.2 mm. 
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