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Abstract—Tissue characterization of a plague is important A backscattered intravascular ultrasound (IVUS) method,
for a diagnosis of the acute coronary syndromes (ACS). An which is one of the popular imaging techniques, provides
intravascular ultrasound (IVUS) technique with a probe mounted tomographic visualization of coronary artery [4], [5]. The

at the tip of a catheter is often used. As the conventional VUS thod ai I-ti . . f the pl S
tissue characterization methods using the IVUS technique, an method gives a real-ime iImaging of the plaque in vivo,

integrated backscatter (IB) analysis in the time domain and a and has been employed for an analysis of ACS [6]-[11].
spectral analysis in the frequency domain have been proposed As the conventional tissue characterization methods with
so far. However, those conventional methods can not perform a the IVUS technique, an integrated backscatter (IB) analysis in
good classification. The IB values are substantially affected by the time domain has been proposed so far [12], [13]. In this
the intensity of the backscattered ultrasound, and the frequency . . . o Do
characteristics of some types of tissues are similar with others. analysis, a tissue is classified by an IB value, which is a Ioca”y_
In this paper, we propose a novel tissue characterization averaged power of a backscattered ultrasound. The IB analysis
method by using an adaptive subspace self-organizing map is effective in a restricted case. It is not however always useful
(ASSOM). ASSOM can extract various features from the IVUS for the characterization of the tissues, because IB values are
signal. Those features are suitable for the tissue characterization, substantially affected by the intensity of the backscattered

because the overlap of the distributions of the extracted features . .
is much smaller than the one, e.g., by the IB analysis or by a ultrasound. The intensity of the ultrasound depends on the

traditional Fourier spectrum analysis. A tissue is characterized distance between the plaque and the probe. It is thus not easy
by using the statistical information of the features extracted by to classify the tissues of the plaque only by the IB values.
ASSOM. Through the application to the tissue characterization The spectral analysis of the backscattered IVUS radiofre-
of the real IVFJ.S signal, the perfqrmgnce of the prqposed method quency (RF) signal in the frequency domain seems to be one
has been verified by comparing it with the conventional methods. approach for this problem [5], [14], [15]. In this analysis, the
pixel in the IVUS image is classified by the feature vector,
Keywords—Self-organizing map (SOM), adaptive subspace \yhjch is a Fourier spectrum of the local RF signal. However
self-organizing map (ASSOM), discriminant analysis, acute oro- o fraqiency characteristics of some tissues are also similar.
nary syndrome (ACS), intravascular ultrasound (IVUS), tissue .
characterization. On the other hand, a k-nearest neighbor (kNN) method [16]
is a currently well-known classification method to classify the
unknown input feature vector by the training vectors. The kNN
|. INTRODUCTION is the most popular method for the supervised statistical classi-

fication problems, and is applied to various pattern recognition

Rupture of vulnerable atherosclerotic plaque is a cause £{( classification problems [17], [18]. It is an extension of
most acute coronary syndromes (ACS) [1], [2]. It has beg nearest neighbor classification [19]-[22], which is one of
reported that the risk of plaque rupture depends on plaque t¥ag popular nonparametric classification methods. The kNN is
(composition), i.e., stabilities of the atherosclerotic plaques agefiexible and robust classification method without any pre-
considerably related to their histological compositions [3]. Brocessing of the training feature vectors. However, the kNN
is thus important to investigate their compositions in orden not perform a satisfactory classification in case where the
for an early stage detection of the vulnerable atheroma befgjigtrihution of the feature vectors overlaps with each other.
rupture. That is, the precise characterization of the tissues ofy, this paper, we propose a novel tissue characterization

atherosclerotic plaque is strongly required in clinical practicgyethod by using an adaptive subspace self-organizing map
) ) ) (ASSOM) [23]. ASSOM has a modular neural network archi-
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Fig. 1. An ultrasound probe mounted at the tip of a catheter.

255
feature extraction stage by ASSOM and a classification stage

for an ultrasound RF signal reflected from the tissue of plaque.
In the feature extraction stage, ASSOM produces various
linear subspaces for feature extraction from an ultrasound
RF signal reflected from the tissues. The feature vectors are
then extracted by ASSOM. The classification stage is followed
by the feature extraction stage. The present method uses the 0 . 4 [mm]
statistical information of the extracted feature vectors, which Distance from Probe
is a similarity measure among the distributions of feature (b)
vectors obtained from the tissues. A Mahalanobis’ generalized
distance (MGD) is employed for this measure. [mm]

The validity and the effectiveness of the proposed method
are verified by applying it to the tissue characterization prob-
lem of the real IVUS signal.

Intensity

Il. CONVENTIONAL TISSUECHARACTERIZATION USING
INTRAVASCULAR ULTRASOUND METHOD

A. Intravascular Ultrasound (IVUS) Method

An IVUS method is very useful because it facilitates a
real-time imaging in vivo, and provides a 2-dimensional cross
sectional image called an IVUS “B-mode” image [5].

The IVUS image is made-up of a radiofrequency (RF)
signal reflected from the tissue. In the IVUS method, the
ultrasound probe mounted at the tip of the catheter is inserted
in the coronary artery as shown in Fig.1. The ultrasound
signal is transmitted from the probe, and the backscattered
RF signal from the tissue is also received by its probe. The

probe rotates in the arterial lumen iterating those operatior:f\%sz E}X?jmfl;%séof an FijRT:ignal aln?b)alBt-mO_(tie i_magle ??t?irze)dey tfée
. . method. (a) Receive signal; ntensity signal of (a); (c) B-mode
The transmitting frequency of ultrasound is 40 MHz, and ﬂ]ﬁ\age. Vertical axes of (a) and (b) correspond to the arrowed line in the image

backscattered RF signal is sampled at 400 MHz. (c). In each vertical axis, 4 [mm] corresponds to 2,048 pixels.

The sampled RF signal shown in Fig.2 (a) is first trans-
formed into an 8-bit intensity signal shown in Fig.2 (b)
by taking the absolute-, the envelope-, and the logarithmét) andzo(t) be an amplitude of the sampled backscattered
operations for the RF signal. The intensity signals in all radi&®F signal and the smallest signal which can be sensed by the
directions are then used to construct a tomographic cra@ebe at point, respectively. IB value at pointis given by:

sectional image of a coronary artery as shown in Fig.2 (c). 4T /2
The IVUS image of Fig.2 (c) is constructed with 2,048 pixels 1 Z (1)
in depth from the center, and 256 lines in radial direction. r+1 i—t—T/2

IBS(t) = 20log 1)

B. Conventional Tissue Characterization Methods t+T/2 , ’
As one of the IVUS-based conventional tissue characteri- T+1 Z wo(i)
i=t—T/2

zation methods, an integrated backscatter (IB) analysis is a
popular one [12], [13]. In this analysis, a tissue is classifiaghere T' is a constant to decide a window size for the
by using a one-dimensional feature, i.e., IB value, which isaalculation of IB value.

locally averaged power of a backscattered RF signal. Here lefThe IB analysis is not always accurate to classify the tissues
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Fig. 3. Distributions of the feature vectors employed in the conventional methods for tissue characterization. (a) An example of fibrous plaque; (b) Distribution
of the IB values for fibrous plaque of (a); (c) Distribution of the Fourier power spectra for fibrous plaque of (a) in 2D; (b) An example of lipid plaque; (e)
Distribution of the IB values for lipid plaque of (d); (f) Distribution of the Fourier power spectra for lipid plague of (b) in 2D.

of plaque, because some types of tissues have similar IB valgbaracterization by using the traditional pattern classification
with others. Further, it is not easy to classify the tissues onfgethods with those feature vectors is thus difficult.
by the IB value, because it is the locally averaged power of

RF signal and the power of RF signal is substantially affected]. PrRoPOSEDTISSUE CHARACTERIZATION METHOD BY
by the distance between the plague and the probe. That is, if ADAPTIVE SUBSPACESELF-ORGANIZING MAP

the probe i.S near the plague, the IB value becomes big, and itI'he method proposed in this paper consists of two stages.
thr? pmb.e_ IS fa:c frr?m thebplgqur?, the |B value becomes SmaI”hose are a feature extraction stage by using an adaptive
The position of the probe in the coronary artery can not l%%bspace self-organizing map (ASSOM) and a classification

controlled. . stage by considering a statistical information on distributions
On the other hand, a spectral analysis in the frequen8 the extracted feature vectors

domain has been proposed so far [5]-[15]. In the spectral anal-

ysis, the tissue is classified by the logarithmic Fourier power ]

spectrum of the local RF signal. The Fourier power spectrufh Feature Extraction Stage by ASSOM

is calculated by the short-time fast Fourier transform (FFT)

of the RF signalz(t) in depth direction. The conventional In this stage, features of backscattered RF signal are ex-

tissue characterization methods based on the spectrum analyaisted by ASSOM. An ordinary self-organizing map (SOM)

use the components of various frequency bands. However, [BB] has been used in various feature extraction and pattern

frequency characteristics of some tissues are also similar helassification problems so far [27], [28]. However, in the
Figs.3 (b) and (e) show the distributions of the IB valuesrdinary SOM, the transformed patterns, such as shifted,

for fibrous and lipid plaques of Fig.3 (a) and (d), respectivelyotated, or scaled patterns, cannot be recognized to be the same

Figs.3 (c) and (f) show the distributions of the Fourier powgrattern. ASSOM was proposed to deal with this problem [23].

spectra for the plaques of Fig.3 (a) and (d) compressed inFig.4 shows a structure of an ordinary SOM. SOM has

2D by a multiple discriminant analysis (MDA) [16]. MDA is an input layer and a competitive layer. Those layers are

one of the data compression method which maximizes thenstructed by some units. In the ordinary SOM, each unit on

difference of data in each class. The details of MDA arle competitive layer is characterized by one weight vector.

described in Chapter 3. A similarity between the input vector and the weight vector
It is seen from Fig.3 that the distributions of the featurassigned to each unit is evaluated based on the Euclidean

vectors widely overlap with each other. A precise tissudistance or the inner product between them.
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Fig. 5. A projection& of an input vectore onto the linear subspace of the Fig. 7. An update of the linear subspace of thth module of ASSOM.
module of ASSOM.

whereH (t) is an ordinary gaussian-type neigborhood function
In ASSOM on the other hand, thieth module (correspond- given by:

ing to a unit on the competitive layer in the ordinary SOM) is H(t) = e — p;||? 5)
characterized by a linear subspace which consists bésis =P h(t)? ’
vectorsb;,,(m = 1,2,---, k). In order to evaluate the degree

. . ; . where and p, are the positions of the representative
to which the input vector lies on the linear subspace of the p- b P P

. : . X winner module and théth module on the competitive layer,
mod_ule (unit) of ASSOM, the Input vectar is prOJecte_d onto oq ectivelya(t) andh(t) are a learning ratio and a neighbor-
the linear subspace as shown in Fig.5. The degree is evaluate . . .

. . . INg” coefficient which monotonously decrease as the learning
by a norm||z|| (a projection ofx onto the linear subspace of . . .

proceeds is a unit matrix.

ASSOM module). ) . .
ASSOM | “episode” inout. Consider the si Because of the learning characteristics of ASSOM using
idal w vemzov)\//sn ?r? Fe}plzo feblnpgj ' on3|tie:l fetimusubspace and episode, the transformed patterns, e.g., shifted,

soidal wave sho 9.5 g € a section of the rotated, or scaled patterns, can then be identified and classified

sinusoidal wave, and let = {x;;j = 1,2,---, P} be a set

; . roperly to be the same patterns. Furthermore the input vectors
of temporal subsequent sequences, i.e., the episode. The ﬁ# y P P

matching module (the representative winner module), whi similar features are allocated in the neighboring modules.
ing moau ¥ . rative wi ) Ue), WhIShe linear subspace of ASSOM thus becomes spatially ordered
has the maximum value dfz;;||, is decided by:

on the competitive layer.
(2) In the feature extraction stage, various patterns of backscat-
tered RF signals of the fibrous and the lipid tissues are first

where z;; is a projection of thej-th input vectorz; in the %g;%el\j by learning on the linear subspaces (modules) of

episode onto the linear subspace spanned by the basis vectoxishe féature Vectors — (v1, v, - - - UM>T for classification
bim in the i-th module of ASSOMz;; is calculated by: of the fibrous and the lipid tissues are calculated by:

h
i'ij = Z (blewU) bim., (3) Uz:Z”ﬂE”H,(Z: 1’2""’M)' (6)

JjEs

z = arg m?XZ (EZFIR
jEs

m=1
where “” means scalar product arffdis a transpose operation.i IS @ degree of response to the episode, from the linear

The basis vectors in each module are updated as followsS{pspace of thé-th module of ASSOM. The feature vector

as to rotate each linear subspace towards the input vector means a set of similarities for various patterns of input.
. Classification Stage Using Feature Vectors Extracted by

Fig.7): ASSOM
bim (t + 1):H I+a(t)H(t)wj7wﬂ bim(t), (4) The M-dimensional feature vectors extracted by ASSOM
jes [l | are first compressed into the 2-dimensional space by a multiple

Issue 2, Volume 2, 2008 82



INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

v, . 2 w. P};gjzctlon Matrix 3 Xy
% (PCA) g Points{p;;k =12, K}
(] 0 %
® 7o © E .
o o9 .Q g Point P of Concern
° 0" o° »
oo’ © =
" © o0 2
O
e ¢® o
0
V; g
W : Projection Matrix g
s (MDA) 2
£
Fig. 8. An example of a multiple discriminant analysis of 2D data with 5
2-class.o: Data belonging to class »; Data belonging to class 2; - Distribution of x

’
v

d_iscriminant anaIySiS (MDA) [16]- MDA is similar to a prin- Fig.9. A conceptual sketch of the proposed classification methiottaining
cipal component analysis (PCA). MDA and PCA are howevedature vectors belonging to classet;Training feature vectors belonging to

mathematically different in what they maximize. Fig.8 showdass 2;x: Feature vectors obtained at poigig on the IVUS image space.
an example of projection by MDA or PCA. PCA maximizes

the variance of all data. MDA, on the contrary, maximizes a L .
degree of separation of data in each class. _ In the proposed method, a §|m|Iar|ty between the (_j|§tr|bu—
tion of the K feature vectors iny and that of the training
In the 2-class MDA, letS; be a between-class SCgme?eature vectors i is calculated by using a Mahalanobis’
matrix defined by: e y 9

generalized distance (MGD) as follows:

2
Sp = Z No(py — ) (e — )7, @ D(x,xe) = (m' — py) "S5 (m — ), (10)
=1 wherem' and pj, are an average of the compressed feature
and Sy be a within-class scatter matrix defined by: vectors belonging to¢ or y¢, respectively.Xy, is a within-
) class scatter matrix calculated by:
_ _ _ T 1
SW - Z Z (v N‘Z) (U HZ) ) (8) EW - (’Ul _ /1'/) (,v/ _ u/)T
=1 VeExy K Vex
where Ny, pu, andy, are a number of the feature vectors, an 1 , N T
average and a set of the feature vectors in &l class. twN > W ) —py) . (11)
V'Exe

stands for an average of all the feature vectors in both classes. _ _ _
The evaluation function/(W), which is a degree of sepa- The featurevector obtained at poinp of concern is thus

ration of data in each class, is defined by: classified into the class as follows:
T ¢ =argmin D(, x¢)- (12)
J(W) = w ) ¢
(W™ SwW|

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to verify the validity and the practical effective-
ness of the proposed method (feature extraction by ASSOM
and MGD-based classification), it is first applied to the toy
classification problem, and then to the coronary tissue charac-

where W is a projection matrix from a high dimensional

space onto a low dimensional spad¥. is calculated so as to

maximize J(W'). The compressed feature vectgr= W*v

is used for classification, wheM * is an optimum projection

matrix. o
Fig.9 shows a conceptual sketch of the proposed class‘ﬁ—nzat'on problem of the real IVUS data [12]-[15].

cation method. The proposed method uses the distribution of o

the compressed feature vectors. ket(¢ = 1,2,---,L) be a A. Classification Results of Toy Problem

set of the training feature vectors in the¢h class. In case of As a general application example of the proposed MGD-

Fig.9, a number of classdsis 2 (fibrous and lipid classes). Tobased classification method, we first apply it to the ordinary

classify the feature vector obtained at poinbf concern on 3-dimensional 3-class pixel classification problem.

the IVUS image space, the proposed method considers a sefhe precise pixel classification is very important for a land-

of the new feature vectors obtained at the neighboring poirgsver classification problem [31]. In this problem, a land

aroundp as shown in Fig.9. Lety be a set of the feature coverage is classified by remote sensing images, e.g., the

vectors, which are compressed B *, obtained at the points LANDSAT images and the synthetic apeture radar (SAR)

{pp;k=1,2,---, K} images. However, it is difficult to obtain the precise feature
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(a) (b)

Fig. 10. A toy classification problem of 3-class with 3-dimensional feature vectors. (a) Original noiseless image; (b) Distribution of the obtained feature
vectors (RGB components)y, O and + are the data obtained from the white (red), gray (green) and black (blue) area, respectively.

(@) (b)

Fig. 11. Classification results for Fig.10 (a). (a) kNK£1); (b) kNN (k=9); (c) Mode filter 8 x 3) with kNN (k=1); (d) Proposed method3 & 3).

vectors from the observation data, because the actually obThe classification performance of the proposed method is
served data contain various noises and measuring errors. compared with the conventional pixel classification methods,

The data assigned to each pixel in the image are the ob<gfl an ordinary k-nearest neighbor (kKNN) method and a mode

vation data acquired by the sensors with different frequenﬂ}eer [32]. The number of nearest neighbors in kNN method is

bands. Data observed at each pixel are classified into 3 cladées 1a7d9). The mode filter employed here is with 9 pixels
shown in Fig.10 (a) (256 256 pixels). The component data(3*3 window), which corresponds to the ordinary kNN=A)

of each pixel are shown in Fig.10 (b). In the ordinary coloiith mode filtering §x3). The number of the training featL_Jre
remote sensing images, they are RGB components of efpectors of each class for kNN and the proposed method is 50,

image. Red, green, and blue are replaced with white, gri%, thg qumber of all training fea.ture vectorslE) (3x50).
black in this experiment, respectively, for black and whit&"€ training fgature vectors are picked up from'some areas of
printing sake. The resolution is 8 bit/pixel for each RGAhe observed image whose classes are known in advance. The

component which is scaled in full contrast. In this test problerindow size of the proposed method:s< 3.
the RGB components are to be the same when observed frorfi9-11 shows the classification results by the kNN=(#,
the pixel in the same area. However, in general, they ate the mode filter with kNN (k= 1), and the proposed

disturbed by noise and then distributed as shown in Fig.fegthod. It is seen that many pixels are misclassified by
(b). the conventional methods as shown in Figs.11 (a)-(c) (the

desirable classification result is Fig.10 (a)). On the contrary,
proposed method gives a good classification result with
Re precision as shown in Fig.11 (d). In addition, the proposed

\ethod can classify accurately even the very narrow rectangle

cation of the proposed method. The distribution of the featug?ea in the observation space. Further, it can grasp well the
vectors of each class, i.e., the distribution of RGB c:omponergage of the area ’

n Flg:10 (b) is given in this example by normal distribution. For the quantitative evaluation of the results, we define the
That is, the averages of R, G and B components Agr classification ratef? by:

(O and + are (170,85, 85), (85,170,85) and (85, 85,170), '
respectively. Variances are 60, 80 and 100 for R, G and B Neorrect

components, respectively. E= "Ny (13)
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TABLE |
AVERAGES AND STANDARD DEVIATIONS OF THE CLASSIFICATION RATEE FOR EACH METHOD IN THE3-DIMENSIONAL 3-CLASS CLASSIFICATION

PROBLEM.

Method Average Standard Deviation

kNN (k=1) 0.553 0.195

kNN (k=9) 0.632 0.203

Mode Filter (3 x 3) 0.769 0.441

Proposedvethod (3 x 3) 0.858 0.074

Fig. 12. Extractedbasis vectors of each module of ASSOM after learning. The solid and dashed wave patterns in each graph are the basijs aectors
b;o of the i-th module, respectively. 2D latice of the graphs shows the positions of the modules on the competitive layer of ASSOM.

where N.orreet @and Ny represent the number of the data module is 2; the number of elements in each vector is 64; the
correctly classified and the number of all data to be classifigditial value of the learning rate is 0.01; the initial value of the
respectively. In order to verify statistically the effectiveness afeighboring coefficient is 8; the number of learning iteration
the proposed method, the averages and the standard deviationgs is2 x 10°.
of E are calculated for 100 trials. Different feature vectors (dlf- F|g]_2 shows the extracted basis vectors assigned to each
ferent RGB components) are generated and then given to eaftule of ASSOM after learning. Figs.13 (a) and (b) show the
pixel for each trial, although their statistical characteristics aggstributions of the 2-dimensional feature vectors obtained by
the same for all the trials. ASSOM are which compressed by MDA. It is observed from
Table I shows the averages and the standard deviatioAs ofhose results that the overlap of the distributions of the feature
for the conventional and the proposed methods. It can be sgétttors is smaller for ASSOM than for the conventional IB

that the proposed method gives the most effective and stagues or for the Fourier spectrum analysis shown in Figs.3
classification result compared with the other conventiong) and (e), (c) and (f).

methods. In order to confirm the feature extraction ability of ASSOM,
the overlap of the distributions is evaluated quantitatively by

B. Feature Extraction and Tissue Characterization Result§e sum of the contributing ratios up to the second components

Applied to Intravascular Ultrasound Signal of MDA. The ratio of the between-class to the within-class

. . : . variance of each distribution of Figs.13 (a) and (b) is also
The proposed method is applied to a tissue charactenzatt%'culated It is defined as follows:

problem of a real IVUS signal. The backscattered ultrasoun
RF signals reflected from the tissues in each region of interest

2
(ROI) shown in Figs.3 (a) and (d), are applied as the input an (m), — m/)T (m), —m/)
signals to ASSOM. k=1
The parameters of ASSOM for the learning are: the number Jo =73 ’ (14)
of modules on the competitive layer is 64x8); the number S ' -mp)" (v —mp)
of vectors in the episode is 16; the number of basis vectors in k=1v'ex,
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TABLE IIl
g 4.0 - TISSUE CHARACTERIZATION PERFORMANCE BY EACH METHOD
X Fibrous _ _
Z ix Fibrous  Lipid
2 90 S B Method 0.27 0.47
g - kNN Method 055  0.60
=) " Fourier Spectrum Analysis Method 0.89 0.18
= Proposedviethod 091 0.76
§ 00
O
e]
& 20 . The classification performanceof the proposed method
-40 00 40 80 120 using ASSOM is compared to that of the IB method, the kNN
1st Component (x 10+) method, and the classification method based on the normal
(a) Fourier spectrum analysis. The window size of the proposed
40 method is3 x 3. The IB value, which is an averaged power
g Lipid of the local RF signal, is calculated at each point of a cross
x section of a coronary artery by shifting the window of a size of
*8‘ 2.0 64 points in depth direction along a radial line. The parameter
S of the ordinary kNN ist =9.
g— % Figs.15 and 16 show the classification results for Figs.14 (a)
5 00 and (c). The white and gray areas in Figs.15 and 16 correspond
% to the fibrous and the lipid tissues, respectively. Many pixels
§ -20 S, are misclassified by the conventional methods. In contrast, the
-4.0 0.0 4.0 80 120

classification results by the proposed method are in a good

coincidence with the pre-diagnosed results shown in Figs.14
(b) (b) and (d).

Fig. 13. Distribution of the obtained feature vectors by ASSOM. (a) Feature For the quantitative evalu.athn of these.reSU|ts’ Table il

vectors for fibrous tissue of Fig.3 (a) compressed in 2D; (b) Feature vecttdOWS the correct characterization rate defined by Eq.(13). It

for lipid tissue of Fig.3 (b) compressed in 2D. is seen that the proposed method gives a fine characterization

for both the fibrous and the lipid tissues.

1st Component (x 104

TABLE Il With those experiments, the superiority of the proposed
EVALUATION OF THE OVERLAP OF THE FEATURE VECTORS OF EACH . .
METHOD. method over the conventional ones has been confirmed.

Sumof the contributing ratios Jo V.. CONCLUSION
up to the 2nd components . . .
Fourier SpectrumAnalysis 0.4553 0.4461 In this paper, we have proposed a novel tissue characteriza-
Proposedviethod 0.6835 0.6177 tion method. The present method first extracts various shift-

invariant feature vectors from the RF signal by an adaptive
subspace self-organizing map (ASSOM). A tissue is then
where v’ is a projectionof v onto the 2D space by MDA. classified with considering statistical similarities among the
m;, andy; are an average and a set of the projected featuftributions of the feature vectors. The present method can
vectorsv’ in the k-th class, respectivelyn’ stands for an performs effective feature extraction, and also characterize the
average of all projected feature vectors in both clasggs. tissues of plaque precisely.
is positive J, > 0, and it becomes bigger according as the Future work is an application of the present method to many
distributions of two classes become apart with each other. types of classification problems.
Table Il shows the sum of the contributing ratios up to the
second components of MDA. The ratio of the between-class ACKNOWLEDGMENT
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Fig. 14. Test IVUS images. (a) IVUS image with fibrous tissue; (b) Microscope image of (a); (c) IVUS image with lipid tissue; (d) Microscope image of
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Fig. 15. Tissue characterization results for the fibrous tissue. (a) IB method; (b) kNN method; (c) Fourier spectrum analysis method; (d) Proposed method
(ASSOM).
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Fig. 16. Tissue characterization results for the lipid tissue. (a) IB method; (b) kNN method; (c) Fourier spectrum analysis method; (d) Proposed method
(ASSOM).

[5] B. N. Potkin, A. L. Bartorelli, J. M. Gessert, R. F. Neville, Y. Almagor, images: A knowledge-based approadEEE Trans. on Medical Imaging
W. C. Roberts, M. B. Leon, “Coronary artery imaging with intravascular  vol.14, pp.719-732, 1995.
high-frequency ultrasoundCirculation, vol.81, pp.1575-1585, 1990.  [10] J. D. Klingensmith, D. G. Vince, B. D. Kuban, R. Shekhar, E. M. Tuzcu,
[6] J. M. Tobis, J. Mallery, D. Mahon, K. Lehmann, P. Zalesky, J. Griffith, S. E. Nissen, J. F. Cornhill, “Assessment of coronary compensatory en-
J. Gessert, M. Moriuchi, M. McRae, M. L. Dwyer, “Intravascular ultra-  largement by three-dimensional intravascular ultrasouimd,”J. Cardiac
sound imaging of human coronary arteries in vivo: Analysis of tissue Imaging vol.16, pp.87-98, 2000.
characterizations with comparison to in vitro histological specimengii] S. J. Nicholls, E. M. Tuzcu, I. Sipahi, P. Schoenhagen, S. E. Nissen, “In-
Circulation, vol.83, pp.913-926, 1991. travascular ultrasound in cardiovascular medicit@irtulation, vol.114,
[7] S. E. Nissen, J. C. Gurley, C. L. Grines, D. C. Booth, R. McClure, pp.54-59, 2006.
M. Berk, C. Fischer, A. N. DeMaria, “Intravascular ultrasound assessmenp] M. Kawasaki, H. Takatsu, T. Noda, K. Sano, Y. Ito, K. Hayakawa,
of lumen size and wall morphology in normal subjects and patients with K. Tsuchiya, M. Arai, K. Nishigaki, G. Takemura, S. Minatoguchi,
coronary artery diseaseCirculation, vol.84, pp.1087-1099, 1991. T. Fujiwara, H. Fujiwara, “In vivo quantitative tissue characterization of
[8] D. T. Linker, A. Klevan, A. Grgnningseether, P. G. Yock, Bj. A. J. An- human coronary arterial plagues by use of integrated backscatter intravas-
gelsen, “Tissue characterization with intra-arterial ultrasound: Special cular ultrasound and comparison with angioscopic findinGg€ulation,
promise and problemslht. J. Cardiac Imagingvol.6, pp.255-263, 1991. vol.105, pp.2487-2492, 2002.
[9] M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. DeJond13] K. Sano, M. Kawasaki, M. Okubo, H. Yokoyama, Y. Ito, I. Murata,
S. M. Collins, C. R. McKay, “Segmentation of intravascular ultrasound T. Kawai, K. Tsuchiya, K. Nishigaki, G. Takemura, S. Minatoguchi,

Issue 2, Volume 2, 2008 87



INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

X. Zhou, H. Fujita, H. Fujiwara, “In vivo quantitative tissue characteriza-
tion of angiographically normal coronary lesions and the relation with risk
factors: A study using integrated backscatter intravascular ultrasound,”
Circulation J, vol.69, pp.543-549, 2005.

[14] M. P. Moore, T. Spencer, D. M. Salter, P. P. Kearney, T. R. D. Shaw,
I. R. Starkey, P. J. Fitzgerald, R. Erbel, A. Lange, N. W. McDicken,
G. R. Sutherland, K. A. A. Foxa, “Characterisation of coronary atheroscle-
rotic morphology by spectral analysis of radiofrequency signal: in vitro
intravascular ultrasound study with histological and radiological valida-
tion,” Heart, vol.79, pp.459-467, 1998.

[15] A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen,
D. G. Vince, “Coronary plaque classification with intravascular ultrasound
radiofrequency data analysiirculation, vol.106, pp.2200-2206, 2002.

[16] R. O. Duda, P. E. Hart, D. G. StorRattern Classification2nd ed. John
Wiley & Sons, 2001.

[17] B.Huang, A. Ahuja, H. L. Huang, T. J. Schmit, R. W. Heymann, “Mean-
removed nearest neighbor reordering based lossless compression of 3D
hyperspectral sounder dataf/SEAS Trans. on Circuits and Systems
vol.3, pp.858-866, 2004.

[18] F. Kovacs, R. lvancsy, “A novel cluster validity index: Variance of the
nearest neighbor distanc&YSEAS Trans. on Computeml.5, pp.477-
483, 2006.

[19] T. M. Cover, P. E. Hart, “Nearest neighbor classificatidEEE Trans.
on Information Theoryvol.IT-13, pp.21-27, 1967.

[20] K. Fukunaga, “Bias of nearest neighbor error estimatidBEE Trans.
on Pattern Analysis and Machine Intelligena®!.9, pp.103-112, 1987.

[21] P. E. Hart, “The condensed nearest neighbor rulEEE Trans. on
Information Theoryvol.IT-14, pp.515-516, 1968.

[22] G. W. Gates, “The reduced nearest neighbor rulEEE Trans. on
Information Theoryvol.IT-18, pp.431-433, 1972.

[23] T. Kohonen, “Emergence of invariant feature detectors in the adaptive-
subspace self-organizing maggiol. Cybern, vol.75, pp.281-291, 1996.
[24] T. Kohonen, “Self-organized formation of topological correct feature

maps,”Biol. Cybern, vol.43, pp.59-69, 1982.

[25] T. Kohonen,Self-Organizing MapsSpringer-Verlag, Berlin, 1995.

[26] T. Kohonen, S. Kaski, H. Lappalainen, “Self-organized formation of
various invariant-feature filters in the adaptive-subspace S\dfiral
Computation vol.9, pp.1321-1344, 1997.

[27] S. Kaski, J. Kangas, T. Kohonen, “Bibliography of self-organizing map
(SOM) papers: 1981-1997Neural Computing Surveysol.1, pp.102-
350, 1998.

[28] J. L. Giraudel, V. D. Boishebert, M. Montury, “Application of self-
organizing map algorithm combined with structuring index to characterize
strawberry variety aroma by SPME/GC/MSVSEAS Trans. on Systems
vol.3, pp.461-466, 2004.

[29] A. Hyvarinen, P. Hoyer, “Emergence of phase- and shift-invariant
features by decomposition of natural images into independent feature
subspaces,Neural Computationvol.12, pp.1705-1720, 2000.

[30] Z. Q. Liu, “Adaptive subspace self-organizing maps and its applications
in face recognition,’Int. J. of Image and Graphi¢svol.2, pp.519-540,
2002.

[31] R.A. Schowengerdt, Remote Sensing. Models and Methods for Image
Processing, 2nd ed. Academic Press, New York, 1997.

[32] J. C. Russ;The Image Processing Handbgodith ed. Academic Press,
New York, 2006.

Issue 2, Volume 2, 2008 88



	bio-20
	I. INTRODUCTION
	II. Different Species Classifier
	A. Neural Network
	B. Euclidean Distance

	III. Protein Classification 
	IV. Protein 3D Structure Prediction
	A. Neural Network
	B. Hidden Markov Model
	 

	V. Protein Secondary Structure Prediction
	 
	 
	VI. Conclusion

	bio-21
	bio-22
	bio-23



