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Abstract—Tissue characterization of a plaque is important
for a diagnosis of the acute coronary syndromes (ACS). An
intravascular ultrasound (IVUS) technique with a probe mounted
at the tip of a catheter is often used. As the conventional
tissue characterization methods using the IVUS technique, an
integrated backscatter (IB) analysis in the time domain and a
spectral analysis in the frequency domain have been proposed
so far. However, those conventional methods can not perform a
good classification. The IB values are substantially affected by
the intensity of the backscattered ultrasound, and the frequency
characteristics of some types of tissues are similar with others.

In this paper, we propose a novel tissue characterization
method by using an adaptive subspace self-organizing map
(ASSOM). ASSOM can extract various features from the IVUS
signal. Those features are suitable for the tissue characterization,
because the overlap of the distributions of the extracted features
is much smaller than the one, e.g., by the IB analysis or by a
traditional Fourier spectrum analysis. A tissue is characterized
by using the statistical information of the features extracted by
ASSOM. Through the application to the tissue characterization
of the real IVUS signal, the performance of the proposed method
has been verified by comparing it with the conventional methods.

Keywords—Self-organizing map (SOM), adaptive subspace
self-organizing map (ASSOM), discriminant analysis, acute coro-
nary syndrome (ACS), intravascular ultrasound (IVUS), tissue
characterization.

I. I NTRODUCTION

Rupture of vulnerable atherosclerotic plaque is a cause of
most acute coronary syndromes (ACS) [1], [2]. It has been
reported that the risk of plaque rupture depends on plaque type
(composition), i.e., stabilities of the atherosclerotic plaques are
considerably related to their histological compositions [3]. It
is thus important to investigate their compositions in order
for an early stage detection of the vulnerable atheroma before
rupture. That is, the precise characterization of the tissues of
atherosclerotic plaque is strongly required in clinical practice.
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A backscattered intravascular ultrasound (IVUS) method,
which is one of the popular imaging techniques, provides
tomographic visualization of coronary artery [4], [5]. The
IVUS method gives a real-time imaging of the plaque in vivo,
and has been employed for an analysis of ACS [6]-[11].

As the conventional tissue characterization methods with
the IVUS technique, an integrated backscatter (IB) analysis in
the time domain has been proposed so far [12], [13]. In this
analysis, a tissue is classified by an IB value, which is a locally
averaged power of a backscattered ultrasound. The IB analysis
is effective in a restricted case. It is not however always useful
for the characterization of the tissues, because IB values are
substantially affected by the intensity of the backscattered
ultrasound. The intensity of the ultrasound depends on the
distance between the plaque and the probe. It is thus not easy
to classify the tissues of the plaque only by the IB values.

The spectral analysis of the backscattered IVUS radiofre-
quency (RF) signal in the frequency domain seems to be one
approach for this problem [5], [14], [15]. In this analysis, the
pixel in the IVUS image is classified by the feature vector,
which is a Fourier spectrum of the local RF signal. However
the frequency characteristics of some tissues are also similar.

On the other hand, a k-nearest neighbor (kNN) method [16]
is a currently well-known classification method to classify the
unknown input feature vector by the training vectors. The kNN
is the most popular method for the supervised statistical classi-
fication problems, and is applied to various pattern recognition
and classification problems [17], [18]. It is an extension of
a nearest neighbor classification [19]-[22], which is one of
the popular nonparametric classification methods. The kNN is
a flexible and robust classification method without any pre-
processing of the training feature vectors. However, the kNN
can not perform a satisfactory classification in case where the
distribution of the feature vectors overlaps with each other.

In this paper, we propose a novel tissue characterization
method by using an adaptive subspace self-organizing map
(ASSOM) [23]. ASSOM has a modular neural network archi-
tecture, the modules of which learn to identify input patterns
subject to some simple transformations, e.g., shifted, rotated,
or scaled. The learning process is unsupervised and competi-
tive which is related to that of the traditional self-organizing
map (SOM) [24], [25]. ASSOM has been applied to various
pattern recognition and feature extraction problems so far [26]-
[30].

The proposed method involves two stages, which are a
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Fig. 1. An ultrasound probe mounted at the tip of a catheter.

feature extraction stage by ASSOM and a classification stage
for an ultrasound RF signal reflected from the tissue of plaque.
In the feature extraction stage, ASSOM produces various
linear subspaces for feature extraction from an ultrasound
RF signal reflected from the tissues. The feature vectors are
then extracted by ASSOM. The classification stage is followed
by the feature extraction stage. The present method uses the
statistical information of the extracted feature vectors, which
is a similarity measure among the distributions of feature
vectors obtained from the tissues. A Mahalanobis’ generalized
distance (MGD) is employed for this measure.

The validity and the effectiveness of the proposed method
are verified by applying it to the tissue characterization prob-
lem of the real IVUS signal.

II. CONVENTIONAL TISSUECHARACTERIZATION USING

INTRAVASCULAR ULTRASOUND METHOD

A. Intravascular Ultrasound (IVUS) Method

An IVUS method is very useful because it facilitates a
real-time imaging in vivo, and provides a 2-dimensional cross
sectional image called an IVUS “B-mode” image [5].

The IVUS image is made-up of a radiofrequency (RF)
signal reflected from the tissue. In the IVUS method, the
ultrasound probe mounted at the tip of the catheter is inserted
in the coronary artery as shown in Fig.1. The ultrasound
signal is transmitted from the probe, and the backscattered
RF signal from the tissue is also received by its probe. The
probe rotates in the arterial lumen iterating those operations.
The transmitting frequency of ultrasound is 40 MHz, and the
backscattered RF signal is sampled at 400 MHz.

The sampled RF signal shown in Fig.2 (a) is first trans-
formed into an 8-bit intensity signal shown in Fig.2 (b)
by taking the absolute-, the envelope-, and the logarithm-
operations for the RF signal. The intensity signals in all radial
directions are then used to construct a tomographic cross
sectional image of a coronary artery as shown in Fig.2 (c).
The IVUS image of Fig.2 (c) is constructed with 2,048 pixels
in depth from the center, and 256 lines in radial direction.

B. Conventional Tissue Characterization Methods

As one of the IVUS-based conventional tissue characteri-
zation methods, an integrated backscatter (IB) analysis is a
popular one [12], [13]. In this analysis, a tissue is classified
by using a one-dimensional feature, i.e., IB value, which is a
locally averaged power of a backscattered RF signal. Here let
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Fig. 2. Examplesof an RF signal and a B-mode image obtained by the
IVUS method. (a) Received RF signal; (b) Intensity signal of (a); (c) B-mode
image. Vertical axes of (a) and (b) correspond to the arrowed line in the image
(c). In each vertical axis, 4 [mm] corresponds to 2,048 pixels.

x(t) andx0(t) be an amplitude of the sampled backscattered
RF signal and the smallest signal which can be sensed by the
probe at pointt, respectively. IB value at pointt is given by:

IBS(t) = 20 log




1
T + 1

t+T/2∑

i=t−T/2

x(i)2

1
T + 1

t+T/2∑

i=t−T/2

x0(i)2




, (1)

where T is a constant to decide a window size for the
calculation of IB value.

The IB analysis is not always accurate to classify the tissues
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Fig. 3. Distributions of the feature vectors employed in the conventional methods for tissue characterization. (a) An example of fibrous plaque; (b) Distribution
of the IB values for fibrous plaque of (a); (c) Distribution of the Fourier power spectra for fibrous plaque of (a) in 2D; (b) An example of lipid plaque; (e)
Distribution of the IB values for lipid plaque of (d); (f) Distribution of the Fourier power spectra for lipid plaque of (b) in 2D.

of plaque, because some types of tissues have similar IB values
with others. Further, it is not easy to classify the tissues only
by the IB value, because it is the locally averaged power of
RF signal and the power of RF signal is substantially affected
by the distance between the plaque and the probe. That is, if
the probe is near the plaque, the IB value becomes big, and if
the probe is far from the plaque, the IB value becomes small.
The position of the probe in the coronary artery can not be
controlled.

On the other hand, a spectral analysis in the frequency
domain has been proposed so far [5]-[15]. In the spectral anal-
ysis, the tissue is classified by the logarithmic Fourier power
spectrum of the local RF signal. The Fourier power spectrum
is calculated by the short-time fast Fourier transform (FFT)
of the RF signalx(t) in depth direction. The conventional
tissue characterization methods based on the spectrum analysis
use the components of various frequency bands. However, the
frequency characteristics of some tissues are also similar here.

Figs.3 (b) and (e) show the distributions of the IB values
for fibrous and lipid plaques of Fig.3 (a) and (d), respectively.
Figs.3 (c) and (f) show the distributions of the Fourier power
spectra for the plaques of Fig.3 (a) and (d) compressed in
2D by a multiple discriminant analysis (MDA) [16]. MDA is
one of the data compression method which maximizes the
difference of data in each class. The details of MDA are
described in Chapter 3.

It is seen from Fig.3 that the distributions of the feature
vectors widely overlap with each other. A precise tissue

characterization by using the traditional pattern classification
methods with those feature vectors is thus difficult.

III. PROPOSEDTISSUECHARACTERIZATION METHOD BY

ADAPTIVE SUBSPACESELF-ORGANIZING MAP

The method proposed in this paper consists of two stages.
Those are a feature extraction stage by using an adaptive
subspace self-organizing map (ASSOM) and a classification
stage by considering a statistical information on distributions
of the extracted feature vectors.

A. Feature Extraction Stage by ASSOM

In this stage, features of backscattered RF signal are ex-
tracted by ASSOM. An ordinary self-organizing map (SOM)
[25] has been used in various feature extraction and pattern
classification problems so far [27], [28]. However, in the
ordinary SOM, the transformed patterns, such as shifted,
rotated, or scaled patterns, cannot be recognized to be the same
pattern. ASSOM was proposed to deal with this problem [23].

Fig.4 shows a structure of an ordinary SOM. SOM has
an input layer and a competitive layer. Those layers are
constructed by some units. In the ordinary SOM, each unit on
the competitive layer is characterized by one weight vector.
A similarity between the input vector and the weight vector
assigned to each unit is evaluated based on the Euclidean
distance or the inner product between them.
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Fig. 4. A structure of an ordinary SOM.
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Fig. 5. A projectionx̂ of an input vectorx onto the linear subspace of the
module of ASSOM.

In ASSOM on the other hand, thei-th module (correspond-
ing to a unit on the competitive layer in the ordinary SOM) is
characterized by a linear subspace which consists ofh basis
vectorsbim(m = 1, 2, · · · , h). In order to evaluate the degree
to which the input vector lies on the linear subspace of the
module (unit) of ASSOM, the input vectorx is projected onto
the linear subspace as shown in Fig.5. The degree is evaluated
by a norm‖x̂‖ (a projection ofx onto the linear subspace of
ASSOM module).

ASSOM employs an “episode” input. Consider the sinu-
soidal wave shown in Fig.6. Letxj be a section of the
sinusoidal wave, and lets = {xj ; j = 1, 2, · · · , P} be a set
of temporal subsequent sequences, i.e., the episode. The best
matching module (the representative winner module), which
has the maximum value of‖x̂ij‖, is decided by:

z = arg max
i

∑

j∈s

‖x̂ij‖, (2)

where x̂ij is a projection of thej-th input vectorxj in the
episode onto the linear subspace spanned by the basis vectors
bim in the i-th module of ASSOM.̂xij is calculated by:

x̂ij =
h∑

m=1

(
bT

im · xij

)
bim, (3)

where “·” means scalar product andT is a transpose operation.
The basis vectors in each module are updated as follows so

as to rotate each linear subspace towards the input vector (see
Fig.7):

bim(t + 1)=
∏

j∈s

[
I+α(t)H(t)

xj · xT
j

‖x̂ji‖‖xj‖

]
bim(t), (4)

Px
3x

1x 2x
t

Fig. 6. An example of an episode.

x
)1( +tihb )(tihb )1(1 +tib )(1 tib

Fig. 7. An update of the linear subspace of thei-th module of ASSOM.

whereH(t) is an ordinary gaussian-type neigborhood function
given by:

H(t) = exp
(
−‖pz − pi‖2

h(t)2

)
, (5)

where pz and pi are the positions of the representative
winner module and thei-th module on the competitive layer,
respectively.α(t) andh(t) are a learning ratio and a neighbor-
ing coefficient which monotonously decrease as the learning
proceeds.I is a unit matrix.

Because of the learning characteristics of ASSOM using
subspace and episode, the transformed patterns, e.g., shifted,
rotated, or scaled patterns, can then be identified and classified
properly to be the same patterns. Furthermore the input vectors
with similar features are allocated in the neighboring modules.
The linear subspace of ASSOM thus becomes spatially ordered
on the competitive layer.

In the feature extraction stage, various patterns of backscat-
tered RF signals of the fibrous and the lipid tissues are first
grasped by learning on the linear subspaces (modules) of
ASSOM.

The feature vectorsv = (v1, v2, · · · , vM )T for classification
of the fibrous and the lipid tissues are calculated by:

vi =
∑

j∈s

‖x̂ij‖, (i = 1, 2, · · · ,M). (6)

vi is a degree of response to the episode, from the linear
subspace of thei-th module of ASSOM. The feature vector
thus means a set of similarities for various patterns of input.
B. Classification Stage Using Feature Vectors Extracted by
ASSOM

The M -dimensional feature vectors extracted by ASSOM
are first compressed into the 2-dimensional space by a multiple
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Fig. 8. An example of a multiple discriminant analysis of 2D data with
2-class.◦: Data belonging to class 1;•: Data belonging to class 2;

discriminant analysis (MDA) [16]. MDA is similar to a prin-
cipal component analysis (PCA). MDA and PCA are however
mathematically different in what they maximize. Fig.8 shows
an example of projection by MDA or PCA. PCA maximizes
the variance of all data. MDA, on the contrary, maximizes a
degree of separation of data in each class.

In the 2-class MDA, letSB be a between-class scatter
matrix defined by:

SB =
2∑

`=1

N`(µ` − µ)(µ` − µ)T , (7)

andSW be a within-class scatter matrix defined by:

SW =
2∑

`=1

∑
v∈χ`

(v − µ`) (v − µ`)
T

, (8)

whereN`, µ` andχ` are a number of the feature vectors, an
average and a set of the feature vectors in the`-th class.µ
stands for an average of all the feature vectors in both classes.

The evaluation functionJ(W ), which is a degree of sepa-
ration of data in each class, is defined by:

J(W ) =
|W T SBW |
|W T SW W | , (9)

where W is a projection matrix from a high dimensional
space onto a low dimensional space.W is calculated so as to
maximizeJ(W ). The compressed feature vectorv′ = W ∗v
is used for classification, whereW ∗ is an optimum projection
matrix.

Fig.9 shows a conceptual sketch of the proposed classifi-
cation method. The proposed method uses the distribution of
the compressed feature vectors. Letχ` (` = 1, 2, · · · , L) be a
set of the training feature vectors in the`-th class. In case of
Fig.9, a number of classesL is 2 (fibrous and lipid classes). To
classify the feature vector obtained at pointp of concern on
the IVUS image space, the proposed method considers a set
of the new feature vectors obtained at the neighboring points
aroundp as shown in Fig.9. Letχ be a set of the feature
vectors, which are compressed byW ∗, obtained at the points
{pk; k = 1, 2, · · · ,K}.
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Fig. 9. A conceptual sketch of the proposed classification method.◦: Training
feature vectors belonging to class 1;•: Training feature vectors belonging to
class 2;×: Feature vectors obtained at pointspk on the IVUS image space.

In the proposed method, a similarity between the distribu-
tion of the K feature vectors inχ and that of the training
feature vectors inχ` is calculated by using a Mahalanobis’
generalized distance (MGD) as follows:

D(χ, χ`) = (m′ − µ′`)
T Σ−1

W (m′ − µ′`), (10)

wherem′ and µ′` are an average of the compressed feature
vectors belonging toχ or χ`, respectively.ΣW is a within-
class scatter matrix calculated by:

ΣW =
1
K

∑

v′∈χ

(v′ − µ′) (v′ − µ′)T

+
1

N`

∑

v′∈χ`

(v′ − µ′`) (v′ − µ′`)
T

. (11)

The featurevector obtained at pointp of concern is thus
classified into the classc as follows:

c = arg min
`

D(χ, χ`). (12)

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to verify the validity and the practical effective-
ness of the proposed method (feature extraction by ASSOM
and MGD-based classification), it is first applied to the toy
classification problem, and then to the coronary tissue charac-
terization problem of the real IVUS data [12]-[15].

A. Classification Results of Toy Problem

As a general application example of the proposed MGD-
based classification method, we first apply it to the ordinary
3-dimensional 3-class pixel classification problem.

The precise pixel classification is very important for a land-
cover classification problem [31]. In this problem, a land
coverage is classified by remote sensing images, e.g., the
LANDSAT images and the synthetic apeture radar (SAR)
images. However, it is difficult to obtain the precise feature
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Fig. 10. A toy classification problem of 3-class with 3-dimensional feature vectors. (a) Original noiseless image; (b) Distribution of the obtained feature
vectors (RGB components);4, © and+ are the data obtained from the white (red), gray (green) and black (blue) area, respectively.
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Fig. 11. Classification results for Fig.10 (a). (a) kNN (k=1); (b) kNN (k=9); (c) Mode filter (3×3) with kNN (k=1); (d) Proposed method (3×3).

vectors from the observation data, because the actually ob-
served data contain various noises and measuring errors.

The data assigned to each pixel in the image are the obser-
vation data acquired by the sensors with different frequency
bands. Data observed at each pixel are classified into 3 classes
shown in Fig.10 (a) (256× 256 pixels). The component data
of each pixel are shown in Fig.10 (b). In the ordinary color
remote sensing images, they are RGB components of the
image. Red, green, and blue are replaced with white, gray,
black in this experiment, respectively, for black and white
printing sake. The resolution is 8 bit/pixel for each RGB
component which is scaled in full contrast. In this test problem,
the RGB components are to be the same when observed from
the pixel in the same area. However, in general, they are
disturbed by noise and then distributed as shown in Fig.10
(b).

The proposed classification method is applied to this test
classification problem. The reason why the geometric pattern
of Fig.10 (a) is employed is to evaluate the fineness of classifi-
cation of the proposed method. The distribution of the feature
vectors of each class, i.e., the distribution of RGB components
in Fig.10 (b) is given in this example by normal distribution.
That is, the averages of R, G and B components for4,
© and + are (170, 85, 85), (85, 170, 85) and (85, 85, 170),
respectively. Variances are 60, 80 and 100 for R, G and B
components, respectively.

The classification performance of the proposed method is
compared with the conventional pixel classification methods,
e.g., an ordinary k-nearest neighbor (kNN) method and a mode
filter [32]. The number of nearest neighbors in kNN method is
(k =1and9). The mode filter employed here is with 9 pixels
(3×3 window), which corresponds to the ordinary kNN (k=1)
with mode filtering (3×3). The number of the training feature
vectors of each class for kNN and the proposed method is 50,
i.e., the number of all training feature vectors is150 (3×50).
The training feature vectors are picked up from some areas of
the observed image whose classes are known in advance. The
window size of the proposed method is3× 3.

Fig.11 shows the classification results by the kNN (k= 1,
9), the mode filter with kNN (k= 1), and the proposed
method. It is seen that many pixels are misclassified by
the conventional methods as shown in Figs.11 (a)-(c) (the
desirable classification result is Fig.10 (a)). On the contrary,
the proposed method gives a good classification result with
fine precision as shown in Fig.11 (d). In addition, the proposed
method can classify accurately even the very narrow rectangle
area in the observation space. Further, it can grasp well the
edge of the area.

For the quantitative evaluation of the results, we define the
classification rateE by:

E =
Ncorrect

Nall
, (13)
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TABLE I
AVERAGES AND STANDARD DEVIATIONS OF THE CLASSIFICATION RATEE FOR EACH METHOD IN THE3-DIMENSIONAL 3-CLASS CLASSIFICATION

PROBLEM.

Method Average Standard Deviation
kNN (k=1) 0.553 0.195
kNN (k=9) 0.632 0.203
Mode Filter (3×3) 0.769 0.441
ProposedMethod(3×3) 0.858 0.074

Fig. 12. Extractedbasis vectors of each module of ASSOM after learning. The solid and dashed wave patterns in each graph are the basis vectorsbi1 and
bi2 of the i-th module, respectively. 2D latice of the graphs shows the positions of the modules on the competitive layer of ASSOM.

where Ncorrect and Nall represent the number of the data
correctly classified and the number of all data to be classified,
respectively. In order to verify statistically the effectiveness of
the proposed method, the averages and the standard deviations
of E are calculated for 100 trials. Different feature vectors (dif-
ferent RGB components) are generated and then given to each
pixel for each trial, although their statistical characteristics are
the same for all the trials.

Table I shows the averages and the standard deviations ofE
for the conventional and the proposed methods. It can be said
that the proposed method gives the most effective and stable
classification result compared with the other conventional
methods.

B. Feature Extraction and Tissue Characterization Results
Applied to Intravascular Ultrasound Signal

The proposed method is applied to a tissue characterization
problem of a real IVUS signal. The backscattered ultrasound
RF signals reflected from the tissues in each region of interest
(ROI) shown in Figs.3 (a) and (d), are applied as the input
signals to ASSOM.

The parameters of ASSOM for the learning are: the number
of modules on the competitive layer is 64 (8×8); the number
of vectors in the episode is 16; the number of basis vectors in

a module is 2; the number of elements in each vector is 64; the
initial value of the learning rate is 0.01; the initial value of the
neighboring coefficient is 8; the number of learning iteration
times is2×105.

Fig.12 shows the extracted basis vectors assigned to each
module of ASSOM after learning. Figs.13 (a) and (b) show the
distributions of the 2-dimensional feature vectors obtained by
ASSOM are which compressed by MDA. It is observed from
those results that the overlap of the distributions of the feature
vectors is smaller for ASSOM than for the conventional IB
values or for the Fourier spectrum analysis shown in Figs.3
(b) and (e), (c) and (f).

In order to confirm the feature extraction ability of ASSOM,
the overlap of the distributions is evaluated quantitatively by
the sum of the contributing ratios up to the second components
of MDA. The ratio of the between-class to the within-class
variance of each distribution of Figs.13 (a) and (b) is also
calculated. It is defined as follows:

Jσ =

2∑

k=1

nk (m′
k −m′)T (m′

k −m′)

2∑

k=1

∑

v′∈χ′
k

(v′ −m′
k)T (v′ −m′

k)

, (14)
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Fig. 13. Distribution of the obtained feature vectors by ASSOM. (a) Feature
vectors for fibrous tissue of Fig.3 (a) compressed in 2D; (b) Feature vectors
for lipid tissue of Fig.3 (b) compressed in 2D.

TABLE II
EVALUATION OF THE OVERLAP OF THE FEATURE VECTORS OF EACH

METHOD.

Sumof the contributing ratios
Jσup to the 2nd components

Fourier SpectrumAnalysis 0.4553 0.4461
ProposedMethod 0.6835 0.6177

where v′ is a projection of v onto the 2D space by MDA.
m′

k andχ′k are an average and a set of the projected feature
vectorsv′ in the k-th class, respectively.m′ stands for an
average of all projected feature vectors in both classes.Jσ

is positiveJσ ≥ 0, and it becomes bigger according as the
distributions of two classes become apart with each other.

Table II shows the sum of the contributing ratios up to the
second components of MDA. The ratio of the between-class
to the within-class variance is also shown. The results show
that the feature vectors of the fibrous and the lipid tissues
obtained by ASSOM are better spread out than those obtained
by the Fourier spectrum analysis. Furthermore, the overlap of
the distributions of those feature vectors is smaller for the
proposed method than for the Fourier spectrum analysis.

In the classification stage, the feature vectors obtained from
each ROI of Figs.3 (a) and (d) are used as the training feature
vectors for classification. The classification is executed for
each ROI shown in Figs.14 (a) and (c). In this classification,
the tissues of plaque are classified into fibrous and lipid tissues.
Figs.14 (b) and (d) are the microscope images of the stained
tissue of each ROI, which are diagnosed to be fibrous and lipid
tissues, respectively.

TABLE III
TISSUE CHARACTERIZATION PERFORMANCE BY EACH METHOD.

Fibrous Lipid
IB Method 0.27 0.47
kNN Method 0.55 0.60
Fourier Spectrum Analysis Method 0.89 0.18
ProposedMethod 0.91 0.76

The classification performanceof the proposed method
using ASSOM is compared to that of the IB method, the kNN
method, and the classification method based on the normal
Fourier spectrum analysis. The window size of the proposed
method is3×3. The IB value, which is an averaged power
of the local RF signal, is calculated at each point of a cross
section of a coronary artery by shifting the window of a size of
64 points in depth direction along a radial line. The parameter
of the ordinary kNN isk =9.

Figs.15 and 16 show the classification results for Figs.14 (a)
and (c). The white and gray areas in Figs.15 and 16 correspond
to the fibrous and the lipid tissues, respectively. Many pixels
are misclassified by the conventional methods. In contrast, the
classification results by the proposed method are in a good
coincidence with the pre-diagnosed results shown in Figs.14
(b) and (d).

For the quantitative evaluation of these results, Table III
shows the correct characterization rate defined by Eq.(13). It
is seen that the proposed method gives a fine characterization
for both the fibrous and the lipid tissues.

With those experiments, the superiority of the proposed
method over the conventional ones has been confirmed.

V. CONCLUSION

In this paper, we have proposed a novel tissue characteriza-
tion method. The present method first extracts various shift-
invariant feature vectors from the RF signal by an adaptive
subspace self-organizing map (ASSOM). A tissue is then
classified with considering statistical similarities among the
distributions of the feature vectors. The present method can
performs effective feature extraction, and also characterize the
tissues of plaque precisely.

Future work is an application of the present method to many
types of classification problems.
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