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Abstract:- The root mean square deviation (RMSD) is nowadays 
universally used to assess the similarity or difference of different 
conformations of clusters, molecules, nanostructures and 
macromolecular assemblies.  However, surprisingly, after decades of 
use of this method there is no available implementation to compute 
the RMSD of sets of identical particles, which are not covalently 
bonded. Since the computational effort of enumerative techniques 
grows exponentially with the number of particles, straightforward 
generalizations of established alignment procedures cannot be applied 
to this problem. Here we developed a computational strategy that 
employs branch-and-bound algorithms for the solution of this 
problem and demonstrate the feasibility for clusters of up to 60 
particles. In test calculations our algorithm succeeds to find the global 
solution of the RMSD problem by sampling (on average) just 120 of  
1080 possible permutations.   
 
Key-Words:- molecular similarity, RMSD, branch-and-bound, 
cluster similarity  

 
I. INTRODUCTION 

Computation of the root mean square deviation, as a measure 
of geometrical similarity, is probably the most widely used 
and universally accepted criterion for nanostructures, 
including clusters, molecules (ranging from small organic 
compounds to large macromolecular assemblies). The root 
mean square deviation (RMSD) measures the average 
deviation between two sets of atoms, after they are aligned 
with one another as perfectly as possible. In a recent 
application of cluster comparisons for bio-macromolecules, 
we were confronted with the problem of computing the RMSD 
of sets of coordinates that are not covalently bonded. 
Obviously such sets of coordinates have no inherent order and 
an optimal alignment must sample the different permutations 
of the particles before constructing the optimal translation-
rotation for geometrical alignment. The number of such 
possible permutations of coordinates for identical particles 
grows exponentially with the number of particles, so that a 
straightforward generalization of existing methods for RMSD 
computation by enumerating all possible permutations is 
unfeasible for all but the smallest number of particles.  

Much to our surprise we found no published solution to this 
problem in the literature, in addition we learned that simple 
modifications of the enumerative scheme, such as a downhill 
search of pairwise exchanges of particles, do not --  in general 
-- converge to the correct solution.  
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We have therefore developed an algorithm, that combines the 
traditional geometrical alignment with a branch-and-bound 
search over permutations that permits the solution of the 
RMSD problem for identical particles for much larger system 
size. 

II. PROBLEM FORMULATION 

The RMSD (root mean square distance) measures distance of 
two sequences of 3D points. That is, the  RMSD for two 
sequences 1( )nX …= , ,x x  and 1( )nY …= , ,y y  is defined 
as  
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Meanwhile, when we want to measure geometric difference of 
X  and Y , the two point sets are aligned to each other as 

closely as possible before computing the RMSD. We call such 
RMSD as MRMSD . Assuming Xc  and Yc  are centers of 

mass for X  and Y , respectively, i.e.  
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we let i i X= −p x c  and i i Y= −q y c . If we let ( )R θ  be 

the rotation matrix of angle θ , then MRMSD  is defined as 
follows:  
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That is, MRMSD  measures the geometric distance of X  and 

Y  when they are translated so that their centers of mass 
coincide and are optimally rotated around the center of mass.  
 

MRMSD  assumes that ix  matches iy . That is, we have a 
prior knowledge of point-to-point correspondences between 
X  and Y . However, when X  and Y  represent sets of 

identical particles as in atom clusters, we need to consider 
every possible mapping between X  and Y  to compute 
geometric difference. Let F  be the set of all possible one-to-
one correspondences between X  and Y . Then, we define 

CRMSD  as follows:  
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III.   PROBLEM SOLUTION 

 
Computation of CRMSD  requires exploration of different 

one-to-one correspondences between X  and Y . Due to its 
combinatorial property, the problem is conveniently 
formulated as a search problem in the branch-and-bound 
(BnB) framework.  
 
A. Branch-and-bound 

There are two main ideas in branch-and-bound. First, it uses 
branching (or splitting) to tackle a large problem effectively. 
Instead of solving one huge problem, BnB solves many 
smaller subproblems. Second, it uses bounding. Unlike naive 
enumerative approaches that explores every feasible solution, 
BnB attempts to save computation by only (lower) bounding 
the optimal solution of a subproblem and compare the (lower) 
bound to a known feasible solution (upper bound) [2].  
 
1. Branching 

Branching is done by picking one unassigned point of X , 
then generating child subproblems, as many as the number of 
possible matches for the selected point, i.e. the number of 
unassigned points in Y . Therefore, the root node (depth = 1) 
will have N  children, nodes with depth 2 will have 1N −  
children, and so on.  

Current scheme of selecting the point to split is as follows: for 
each point in X , compute the maximum pairwise distance 
from every other point in X . Pick the point whose maximum 
distance is the largest among the unassigned points. The idea 
is that we first try to match the pair of points that are most far 
apart. If the there are only a small number of points that are far 
apart, the scheme will work as expected.  

2. Upper bounds 

In CRMSD  computation, an upper bound can be obtained 

from an arbitrary one-to-one correspondence of X  and Y . In 
our method, we generate a random permutation to match 
unassigned points of X  to unassigned points of Y , and 
compute MRMSD  for the resulting one-to-one 
correspondence. In each subproblem, we repeat this for a fixed 
number of time.  

3. Lower bounds 
 
For each non-root subproblem S , we can assume points 

1 m…, ,x x  ( )m N≤  are already matched to some m  points 

in Y  without loss of generality. Let F ′  be the set of one-to-
one correspondences that are compatible with such m  
matches of points. Then, the optimal value of the subproblem 
( ( )OPT S ) is  
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This can be lower-bounded as  
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of 
That is, the lower bound is obtained by finding the optimal 
rotation only for matched points.  
 
4. Subproblem selection 

In our recommended approach, the search tree is explored in a 
depth-first manner. In addition, for each branching, the child 
subproblems are ordered so that the subproblem with smallest 
lower bound is expanded first. This is similar to what best-first 
search does. In Section 4, we will show depth-first search is on 
average better than best-first search.  

To be able to select a child subproblem based on its lower 
bound, the lower bound computation for a child subproblem is 
performed before adding the subproblem to the search tree. 
Therefore, during expansion, only upper bounds are updated.  

B. Implementation  
 
The BnB method was implemented in the C++ programming 
language using two public libraries:  
 
• PICO BnB library [1]: C++ framework for implementing 

parallel BnB methods. It provides various skeleton 
procedures such as node creation/deletion, splitting, and 
bounding. In this work, BnB was implemented as a 
sequential method. Therefore, parallel functionalities were 
not used.  

• NEWRAN03: C++ library for generating sequences of 
pseudo-random numbers from a wide variety of 
distributions. The library was particularly used for 
generating random permutations as random feasible 
solutions, therefore providing upper-bounds.  

 

We implemented the generation of upper and lower bounds as 
discussed above. Each subproblem is expanded (roughly) by 
first computing the bounds and selecting the state of the node 
to be considered (bounded). We then compute a lower-bound 
for each candidate child subproblem and  sort the candidate 
child subproblems in the ascending order of their lower-
bounds. We keep only those candidates whose lower-bounds 
are less than the current global upper-bound, and report the 
number of such candidates as the number of children to be 
spawned from the current subproblem.  
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C. Numerical Experiments  

1. Generating test cases 

We wrote a python program to generate random test cases. for 
N particles by reading an arbitrary starting conformation, 
which is then subjected to an arbitrary permutation, after 
which the particles are displaced in each Cartesian direction 
by a random deviation drawn from an uniform random in the 
range of [-NOISE NOISE]. In principle this procedure 
generates an arbitrary new conformation. If NOISE is smaller 
than the distances between particles, the generated 
permutation is it the optimal permutation for the solution of 
the RMSD problem, however, this need not be the case for 
large values of the NOISE parameter. However even in the 
latter case, the geometric alignment based on the permutation 
used to generate the new conformation is an upper bound on 
the solution and can thus be used to evaluate the method.  

2. Numerical Tests  

According to our (still limited) computational experiments, 
rmsdCluster works extremely well when 0CRMSD ≈ . On a 
workstation with an AMD Opteron processor and 4 Gbytes of 
memory, and using a binary compiled with -O1 option by 
GNU C/C++ compiler, solving a test case with 300 points and 

0CRMSD =  took only 15 seconds. More results are 
summarized in Table 1. 

 

N Nperm Nbnb std 

10 106 15.8 3.0 

20 1017 36.5 7.1 

30 1031 56.8 12.7 

40 1046 79.7 18.2 

50 1063 97.5 14.2 

60 1080 120.4 22.1 

Table 1: Number of particles, total number of permutations, 
average number of nodes explored in the branch and bound 
method and standard deviation.  

The data demonstrates that the fraction of nodes explored by 
the branch-and-bound algorithm to determine the optimal 
solution is a completely insignificant fraction of the total 
number of permutations. Even for N=10 exact enumeration of 
all possible permutations strains the presently available 
computational power, for the larger numbers of N investigated 
here, exact enumeration is completely impossible.  

When large random noise was added to the moving 
coordinates, rmsdCluster often performed much worse. 
Particularly, when the number of points is 16, RADIUS = 50, 
and NOISE = 2, we obtained a case with 1 57CRMSD = . , 

and observed it took 324 seconds (exploring 114,944 nodes) to 
solve the case. We note good upper-bounds were not found 
effectively for such cases until almost the end of the run. After 
good upper-bounds were found, the BnB was completed very 
rapidly, i.e. pruning based on lower-bounds weas relatively 
efficient when a suboptimal upper-bound is available.  

IV. CONCLUSIONS 

We introduced and formulated the RMSD computation 
problem for cluster of identical points (particles) and 
suggested a BnB method to solve the problem exactly. The 
method was implemented as a C++ code (rmsdCluster) using 
the PICO branch-and-bound library and NEWRAN03 library.  
We have investigated the numerical performance of this 
implementation and found that only a minuscule fraction of 
the total number of permutations must be explored by the 
branch-end-bound method to find the optimal solution of the 
problem. To our knowledge this implementation represents the 
first exact solution of the RMSD problem for sets of identical 
particles.  

For very dissimilar structures we believe that the present 
algorithm is still not completely optimal. In addition to 
optimization of the code, future work will therefore focus on 
the formulation of better heuristic upper bounds to further 
reduce its computational time.  
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