
RMSD computation for clusters of identical particles

EUN-JONG HONG, KYU-HWAN LEE, WOLFGANG WENZEL

Abstract:- The root mean square deviation (RMSD) is nowadays
universally used to assess the similarity or difference of different
conformations of clusters, molecules, nanostructures and
macromolecular assemblies. However, surprisingly, after decades of
use of this method there is no available implementation to compute
the RMSD of sets of identical particles, which are not covalently
bonded. Since the computational effort of enumerative techniques
grows exponentially with the number of particles, straightforward
generalizations of established alignment procedures cannot be applied
to this problem. Here we developed a computational strategy that
employs branch-and-bound algorithms for the solution of this
problem and demonstrate the feasibility for clusters of up to 60
particles. In test calculations our algorithm succeeds to find the global
solution of the RMSD problem by sampling (on average) just 120 of
1080 possible permutations.

Key-Words:- molecular similarity, RMSD, branch-and-bound,
cluster similarity

I. INTRODUCTION

Computation of the root mean square deviation, as a measure
of geometrical similarity, is probably the most widely used
and universally accepted criterion for nanostructures,
including clusters, molecules (ranging from small organic
compounds to large macromolecular assemblies). The root
mean square deviation (RMSD) measures the average
deviation between two sets of atoms, after they are aligned
with one another as perfectly as possible. In a recent
application of cluster comparisons for bio-macromolecules,
we were confronted with the problem of computing the RMSD
of sets of coordinates that are not covalently bonded.
Obviously such sets of coordinates have no inherent order and
an optimal alignment must sample the different permutations
of the particles before constructing the optimal translation-
rotation for geometrical alignment. The number of such
possible permutations of coordinates for identical particles
grows exponentially with the number of particles, so that a
straightforward generalization of existing methods for RMSD
computation by enumerating all possible permutations is
unfeasible for all but the smallest number of particles.

Much to our surprise we found no published solution to this
problem in the literature, in addition we learned that simple
modifications of the enumerative scheme, such as a downhill
search of pairwise exchanges of particles, do not -- in general
-- converge to the correct solution.
Manuscript received May 9, 2007: Revised received September 4, 2007
Eun-Jong Hong is with the Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Kyu-Hwan Lee is with the Computational Science Center, Korean Institute of
Science and Technology, 39-1 Hawolgok-don, Seong-buk Gu, Seoul 136-791,
KOREA
Wolfgang Wenzel is with the Institute for Nanotechnology, Research Center
Karlsruhe, PO Box 3640, D-76021 Karlsruhe, GERMANY,
wolfgang.wenzel@int.fzk.de, http://www.fzk.de/biostruct

We have therefore developed an algorithm, that combines the
traditional geometrical alignment with a branch-and-bound
search over permutations that permits the solution of the
RMSD problem for identical particles for much larger system
size.

II. PROBLEM FORMULATION

The RMSD (root mean square distance) measures distance of
two sequences of 3D points. That is, the RMSD for two
sequences 1()nX …= , ,x x and 1()nY …= , ,y y is defined
as

2
1()

N
i iiRMSD X Y

N
=
|| − ||

, = .∑ x y
 (1)

Meanwhile, when we want to measure geometric difference of
X and Y , the two point sets are aligned to each other as

closely as possible before computing the RMSD. We call such
RMSD as MRMSD . Assuming Xc and Yc are centers of

mass for X and Y , respectively, i.e.

1

N

X i
i

N
=

= / ,∑c x (2)

and

1

N

Y i
i

N
=

= / ,∑c y (3)

we let i i X= −p x c and i i Y= −q y c . If we let ()R θ be

the rotation matrix of angle θ , then MRMSD is defined as
follows:

2
1

()
() min

N
i ii

M

R
RMSD X Y

Nθ

θ
=
|| − ||

, = .∑ p q

 (4)
That is, MRMSD measures the geometric distance of X and

Y when they are translated so that their centers of mass
coincide and are optimally rotated around the center of mass.

MRMSD assumes that ix matches iy . That is, we have a
prior knowledge of point-to-point correspondences between
X and Y . However, when X and Y represent sets of

identical particles as in atom clusters, we need to consider
every possible mapping between X and Y to compute
geometric difference. Let F be the set of all possible one-to-
one correspondences between X and Y . Then, we define

CRMSD as follows:

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 2, Vol. 1, 2007 46

2

1
() ()

() min min

N

i ii

C f F

R f
RMSD X Y

Nθ

θ
=

∈

|| − ||
, = .

∑ p p
 (5)

III. PROBLEM SOLUTION

Computation of CRMSD requires exploration of different

one-to-one correspondences between X and Y . Due to its
combinatorial property, the problem is conveniently
formulated as a search problem in the branch-and-bound
(BnB) framework.

A. Branch-and-bound

There are two main ideas in branch-and-bound. First, it uses
branching (or splitting) to tackle a large problem effectively.
Instead of solving one huge problem, BnB solves many
smaller subproblems. Second, it uses bounding. Unlike naive
enumerative approaches that explores every feasible solution,
BnB attempts to save computation by only (lower) bounding
the optimal solution of a subproblem and compare the (lower)
bound to a known feasible solution (upper bound) [2].

1. Branching

Branching is done by picking one unassigned point of X ,
then generating child subproblems, as many as the number of
possible matches for the selected point, i.e. the number of
unassigned points in Y . Therefore, the root node (depth = 1)
will have N children, nodes with depth 2 will have 1N −
children, and so on.

Current scheme of selecting the point to split is as follows: for
each point in X , compute the maximum pairwise distance
from every other point in X . Pick the point whose maximum
distance is the largest among the unassigned points. The idea
is that we first try to match the pair of points that are most far
apart. If the there are only a small number of points that are far
apart, the scheme will work as expected.

2. Upper bounds

In CRMSD computation, an upper bound can be obtained

from an arbitrary one-to-one correspondence of X and Y . In
our method, we generate a random permutation to match
unassigned points of X to unassigned points of Y , and
compute MRMSD for the resulting one-to-one
correspondence. In each subproblem, we repeat this for a fixed
number of time.

3. Lower bounds

For each non-root subproblem S , we can assume points

1 m…, ,x x ()m N≤ are already matched to some m points

in Y without loss of generality. Let F ′ be the set of one-to-
one correspondences that are compatible with such m
matches of points. Then, the optimal value of the subproblem
(()OPT S) is

2

1
() ()

() min min
N

i ii

f F

R f
OPT S

Nθ

θ
=

′∈

|| − ||
= .∑ p p

 (6)

This can be lower-bounded as

2

1

() min min () ()
m

i if F i

OPT S R f N
θ

θ
′∈

=

≥ || − || /∑ p p

2

1

min () ()
m

i i
i

R f N
θ

θ
=

= || − || / .∑ p p
 (7)

of
That is, the lower bound is obtained by finding the optimal
rotation only for matched points.

4. Subproblem selection

In our recommended approach, the search tree is explored in a
depth-first manner. In addition, for each branching, the child
subproblems are ordered so that the subproblem with smallest
lower bound is expanded first. This is similar to what best-first
search does. In Section 4, we will show depth-first search is on
average better than best-first search.

To be able to select a child subproblem based on its lower
bound, the lower bound computation for a child subproblem is
performed before adding the subproblem to the search tree.
Therefore, during expansion, only upper bounds are updated.

B. Implementation

The BnB method was implemented in the C++ programming
language using two public libraries:

• PICO BnB library [1]: C++ framework for implementing

parallel BnB methods. It provides various skeleton
procedures such as node creation/deletion, splitting, and
bounding. In this work, BnB was implemented as a
sequential method. Therefore, parallel functionalities were
not used.

• NEWRAN03: C++ library for generating sequences of
pseudo-random numbers from a wide variety of
distributions. The library was particularly used for
generating random permutations as random feasible
solutions, therefore providing upper-bounds.

We implemented the generation of upper and lower bounds as
discussed above. Each subproblem is expanded (roughly) by
first computing the bounds and selecting the state of the node
to be considered (bounded). We then compute a lower-bound
for each candidate child subproblem and sort the candidate
child subproblems in the ascending order of their lower-
bounds. We keep only those candidates whose lower-bounds
are less than the current global upper-bound, and report the
number of such candidates as the number of children to be
spawned from the current subproblem.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 2, Vol. 1, 2007 47

C. Numerical Experiments

1. Generating test cases

We wrote a python program to generate random test cases. for
N particles by reading an arbitrary starting conformation,
which is then subjected to an arbitrary permutation, after
which the particles are displaced in each Cartesian direction
by a random deviation drawn from an uniform random in the
range of [-NOISE NOISE]. In principle this procedure
generates an arbitrary new conformation. If NOISE is smaller
than the distances between particles, the generated
permutation is it the optimal permutation for the solution of
the RMSD problem, however, this need not be the case for
large values of the NOISE parameter. However even in the
latter case, the geometric alignment based on the permutation
used to generate the new conformation is an upper bound on
the solution and can thus be used to evaluate the method.

2. Numerical Tests

According to our (still limited) computational experiments,
rmsdCluster works extremely well when 0CRMSD ≈ . On a
workstation with an AMD Opteron processor and 4 Gbytes of
memory, and using a binary compiled with -O1 option by
GNU C/C++ compiler, solving a test case with 300 points and

0CRMSD = took only 15 seconds. More results are
summarized in Table 1.

N Nperm Nbnb std

10 106 15.8 3.0

20 1017 36.5 7.1

30 1031 56.8 12.7

40 1046 79.7 18.2

50 1063 97.5 14.2

60 1080 120.4 22.1

Table 1: Number of particles, total number of permutations,
average number of nodes explored in the branch and bound
method and standard deviation.

The data demonstrates that the fraction of nodes explored by
the branch-and-bound algorithm to determine the optimal
solution is a completely insignificant fraction of the total
number of permutations. Even for N=10 exact enumeration of
all possible permutations strains the presently available
computational power, for the larger numbers of N investigated
here, exact enumeration is completely impossible.

When large random noise was added to the moving
coordinates, rmsdCluster often performed much worse.
Particularly, when the number of points is 16, RADIUS = 50,
and NOISE = 2, we obtained a case with 1 57CRMSD = . ,

and observed it took 324 seconds (exploring 114,944 nodes) to
solve the case. We note good upper-bounds were not found
effectively for such cases until almost the end of the run. After
good upper-bounds were found, the BnB was completed very
rapidly, i.e. pruning based on lower-bounds weas relatively
efficient when a suboptimal upper-bound is available.

IV. CONCLUSIONS

We introduced and formulated the RMSD computation
problem for cluster of identical points (particles) and
suggested a BnB method to solve the problem exactly. The
method was implemented as a C++ code (rmsdCluster) using
the PICO branch-and-bound library and NEWRAN03 library.
We have investigated the numerical performance of this
implementation and found that only a minuscule fraction of
the total number of permutations must be explored by the
branch-end-bound method to find the optimal solution of the
problem. To our knowledge this implementation represents the
first exact solution of the RMSD problem for sets of identical
particles.

For very dissimilar structures we believe that the present
algorithm is still not completely optimal. In addition to
optimization of the code, future work will therefore focus on
the formulation of better heuristic upper bounds to further
reduce its computational time.

REFERENCES

[1] J. Eckstein, C. A. Phillips, and W. E. Hart. Pico: an object
oriented framework form parallel branch and bound. Technical
report, RUTCOR, 2001. download available:
http://www.cs.sandia.gov/ web1400
[2] G. L. Nemhauser and L. A. Wolsey. Integer anOn the
otherd Combinatorial Optimization. Wiley, N. Y., 1988.
download: http://www.robertnz.net/nr03doc.htm

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 2, Vol. 1, 2007 48

