
 

 

  

Abstract—Wiener model consists of a linear dynamic block 

followed by a static nonlinear function. This paper presents a novel 

method for parameter identification of Wiener model using differential 

evolution algorithm. The linear dynamic block is represented by 

autoregressive moving average (ARMA) model and the structure of 

static nonlinear function is assumed to be known in advance. The 

parameter estimation of Wiener model is converted to a parameter 

optimization problem. Differential evolution (DE) algorithm is used to 

search the optimal parameters by minimizing the error between the 

output of the actual model and that of the identified model. For the 

convenience of determining the search range of parameters to be 

estimated, the zeros and poles of linear dynamic block are identified. A 

new solution representation scheme is proposed for DE algorithm 

such that it can deal with the case that the linear dynamic block 

has complex number zeros and poles. The effectiveness of the 

proposed method is verified through two numerical examples. 

 

Keywords—Wiener model, ARMA model, identification, 

differential evolution,  pole-zeros.  

I. INTRODUCTION 

HE Wiener model consists of a linear dynamic block 

followed by a nonlinear static function (see in Fig.1). It is 

one of the simplest nonlinear systems, which has been widely 

used to model physical systems encountered in engineering, 

biology and communication, etc. Fluid flow control [1], pH 

neutralisation process [2], power amplifier predistortion [3], 

visual cortex[4], EEG [5] and blind adaption in communication 

system [6] are successful application examples. Identification of 

Wiener model is an important issue, whose goal is to estimate 

both the characteristic of linear dynamic block and the static 

nonlinear function using observations of input and output. 

Available approaches in the literature for identifying Wiener 

model include correlation analysis method [7], two step method 

[8,9], prediction error method [1], nonparametric approach 

[10], subspace identification method [2,11], the blind method 

[12], frequency domain identification method [13], separable 

least-squares method [14], recursive identification method [15], 

relay feedback test method [16], etc.  
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Though many works have been done, the identification of 

Wiener model is still a difficult problem. One reason is that the 

nonlinearities in practical systems are versatile and it is not ease 

to find a good representation of the nonlinearity static function 

for identification purpose. Polynomials [12], cubic spline [17] , 

piecewise linear map [1] , neural network [9,18] , etc., are often 

used to characterize the nonlinearities in Wiener model. The 

other reason is that the intermediate variable is not measurable. 

To solve this problem, many methods assume that the nonlinear 

static function is invertible such that the intermediate variable 

can be recovered from the output data, which can make the 

identification more easy [2, 10, 12,17]. However, the invertible 

assumption may be restrictive and limit the applications of these 

methods. For example, saturations, dead-zones, hysteresis are 

not invertible, but they often exist in practice. On the other hand, 

the inversion of the nonlinearity can lead to severe amplification 

of possible measurement disturbance [1].  

Recently, evolutionary algorithms (EAs) were adopted by 

several authors to identify block-oriented model. EAs are global 

optimization technique imposing no restrictions, such as 

differentiability and continuity, on objective function, In [19] , 

Hatanaka et al. proposed to use genetic algorithm (GA) and 

evolution strategies (ES) to identify Wiener model, in which, 

the nonlinear static function is assumed to be invertible and 

approximated by a piecewise linear function. The parameters of 

piecewise linear function and interval partitions are computed 

using GA and ES respectively, while the parameters of linear 

dynamic block are estimated by the least squares method. 

Akramizadeh et al. [20] proposed an identification method for 

Hammerstein model based on GA and LMS algorithm. GA, 

with AIC criteria to be its fitness function, is responsible for 

finding the correct structure and parameters of nonlinear static 

function represented by hyperbolic function. LMS algorithm is 

used to estimate parameters of linear dynamic block. 

Identification of Wiener and Hammerstein model using genetic 

algorithm were considered in [21] under the assumption that the 

structure of the nonlinear static function is known with unknown 

parameters. The pole-zeros of linear dynamic block and 
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parameters of static nonlinear function were estimated 

simultaneously. The method in [21] implicitly assumed that the 

form of pole-zeros (i.e., it is real number or complex number) of 

linear dynamic block is known in advance. However, this 

information is not known in many practical cases.  

Differential evolution (DE), which was developed by Storn 

and Price in 1995 [22], is a stochastic search algorithm that is 

originally motivated by the mechanisms of natural selection. 

Like other EAs, DE is very effective for solving optimization 

problems with non-smooth objective functions since it does not 

require derivative information. DE utilizes simple differential 

operator to create new candidate solutions and one-to-one 

competition scheme to greedily select new candidate. The 

one-to-one competition will have a faster convergence speed 

than other EAs. Due to its simple concept, easy implementation 

and quick convergence, DE algorithm was successfully applied 

to many fields mainly for various discrete and continuous 

optimization problems [22,23,24].  

In many practical applications, the structure of nonlinear 

static function is known while the parameters are unknown. For 

example, in a control system, the actuators may include 

nonlinearity such as saturation, dead-zone, backlash and 

Coulomb friction and so on. Usually, the mathematical model 

structure is known, however, some or all model parameters may 

not be known. Observing this fact, we investigate the parameter 

identification of Wiener model, in which the structure of static 

nonlinear function is known. The parameters of linear dynamic 

block and the static nonlinear function are identified 

simultaneously by minimizing the error between the actual 

model output and the identified model output using DE 

algorithm. For the convenience of determining the parameter 

range, we identify the pole-zeros of linear dynamic block. A 

new solution representation scheme is proposed. The new 

solution representation scheme can deal with the case that 

the pole-zeros of linear dynamic block are complex number. 

The rest of this paper is organized as follows. First, a brief 

review of differential evolution is given in section DE. Section 

PF addresses the parameter identification of Wiener model 

using DE. Numerical examples and the conclusion remarks are 

present in section simulation and section conclusion 

respectively.  

II.  DIFFERENTIAL EVOLUTION ALGORITHM  

DE is a stochastic population based algorithm. For an 

optimization problem in  l-dimension search space, each 

individual, represented by a real-value vector   

],,,[ 21

K

il

K

i

K

i

K

i XXXX ⋯= , stands for a candidate solution for 

the problem. First, a population of  NP  individuals, 

NPiX K

i ,,2,1, ⋯=  

is randomly generated within user-defined bounds. After 

initialization, the individuals evolve through mutation, 

crossover and selection operator to generate new generation 

guided by their fitness. At each generation K, the mutation and 

crossover operators are first applied to the individuals, and a 

new generation arises. Then, selection operator takes place, and 

the corresponding individuals from both the populations 

compete to comprise the next generation. The process can be 

described in details as follows. 

For each target individual K

iX , a mutant vector is firstly built 

by adding the weighted difference between a defined number of 

individuals randomly selected from the previous population to 

another individual according to  
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 where  },,2,1{2,1 NPrr ⋯∈  are randomly chosen and 

mutually different and also different from the running index i.  F  

is a constant called scaling factor which controls amplification 

of the differential variation  )( 21

K

r
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After the mutation operation, the crossover operator is 

applied to increase the diversity of the population. In the 

crossover operation, a trial vector is generated as  
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where  )( jrand  is the  j-th independent random number 

uniformly distributed in the range of  [0,1] ,  )(irandn  is a 

randomly chosen index from {1,2,…,l}.  )1,0(CR ∈   is a 

constant called crossover parameter that control the diversity of 

the population. 

The selection operation selects, according to the fitness value 

of initial target individual K

iX  and its corresponding trial 

vector  1+K

iU  , which will survive to be a member of the next 

generation  K+1 . For a minimum optimization problem,  1+K

iU   

is compared to  K

iX   by the following one-to-one based greedy 

selection criterion,  
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where f  is the objective function under consideration.  1+K

iX  is 

the individual of the new generation. The mutation, crossover 

and selection are repeated for NP times to complete one 

iteration. 

The procedure described above is considered as the standard 

version of DE. However, several variants of DE have been 

proposed by Storn and Price. These variants are denoted as DE/ 

ϑβα // . DE stands for differential evolution, α represents s 

string denoting the vector to be mutated, `rand' denotes that the 

vector is a randomly selected vector and `best' the best vector in 

current generation. β is the number of difference vectors 

considered for mutation of  α  , it can be 1 or 2.  ϑ stands for 

the type of crossover being used. The crossover type can be 

exponential or binomial. Hence, the algorithm described above 

is denoted as DE/rand/1/bin. 

The key parameters in DE are NP (size of population), F 
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(scaling factor) and CR (crossover parameter). Proper 

configuration of the above parameters would achieve good 

tradeoff between the global exploration and the local 

exploitation so as to increase the convergence velocity and 

robustness of the search process. Some basic principles have 

been given for selecting appropriate parameters for DE. 

Depending on the problem and available computation resource, 

the population size NP is choosing from 2l to 10l. Generally, 

with a population size of 20d, F=0.8 appear to be reasonably 

good value to generate satisfactory results. CR lies in the range   

[0.1 1.0]. 

III. PARAMETER IDENTIFICATION OF WIENER MODEL USING DE  

A. Problem formulation  

Considering the following Wiener model  




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= −

,
)());(()(

)()()( 1

kekxfky
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ρ
                        (4) 

 where 1−q  is the unit delay operator, i.e.,  )1()(1 −=− kukuq ;  

u(k),  y(k) and  e(k)  are the system input, output and 

measurement noise, respectively.  x(k) is non-measurable 

intermediate variable,  which is both the output of the linear 

block and the input of the  nonlinear function.  ρ is a set of 

parameters describing the  nonlinear static function  )(⋅f .    

)( 1−qG is the transfer function  of ARMA model can is 

expressed as   
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In this paper, it is assumed that the order  d ,  m  and  n  are 

determined and the structure of nonlinear function  )(⋅f   is 

known in advance. Let ],,,,,,,,[ 1021 ρθ mn bbbaaa ⋯⋯= be 

the parameters of the system (4). The parameter vector  θ   is 

not unique due to the cascade structure of system (4). The gain 

may be distributed between the linear dynamic block and the 

nonlinear function. It means that, system  

)));((),(( 1 ρkxfqG −  and system  ));/)((),(( 1 ργγ kxfqG −   

possess the same input-output. Therefore, both systems can't be 

distinguished from each other on the basis of input-output 

observations. To avoid this problem, many literatures assumed 

that the coefficient of )( 1−qB  can be normalized to be 1. We 

transform  )( 1−qG   into pole-zeros form. Equation (6) and (7) 

are represented as  
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where ),,2,1( nip i ⋯=  and ),,2,1( mjz j ⋯=  are poles and 

zeros of  )( 1−qG , and they are in general complex numbers. 

Therefore, the parameters of Wiener model (4) are  

],,,,,,,,[ 1021 ρθ mn zzzppp ⋯⋯= . To identify the parameters 

of Wiener model (4), the following objective function is 

defined,  
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 where L is the number of data used for parameter estimation,  

)(ˆ ky   is the output of the identified Wiener model, which is 

shown as following,  
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 The best estimation  ∗θ̂   is such that  

).ˆ(minargˆ
ˆ

θθ
θ

J
Γ∈

∗ =                         (15) 

where Γ is the search domain admitted for θ̂ . Hence, the 

parameter estimation problem is transformed into an 

optimization problem. The principle of parameter estimation 

can be illustrated with Fig.2.  

 
The optimization problem (15) is multi-dimension. It is 

difficult to get the optimal solution of (15) using traditional 

gradient based optimization method because there are multiple 

local optima in the landscape of J.  In this paper, DE algorithm 

is used to solve the optimization problem (15).  

 

 
 

Fig. 2 The principle of parameter estimation 
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B. DE algorithm for parameter identification  

Since
ip   and  

jz   maybe complex numbers, DE algorithm can 

not be used to solve the optimization problem (15) directly for 

the reason that the individuals in DE are coded using real 

number. To solve this problem, a new code strategy is proposed. 

Without loss of generality, suppose 
1p and 

2p  are two different 

poles of )( 1−qG , i.e.,  
21 pp ≠ . Let 
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 where 2/1 SpR = , 4/)4( 2

1 TSp I −= , which are real 

numbers. If 01 >Ip , then  
1p   and  

2p  stand for two real 

numbers, otherwise, if  01 <Ip ,  
1p   and  

2p  stand for a pair 

of conjugative complex numbers. Finally, if 01 =Ip , then 
1p   

and 
2p are tow identical real numbers. It can be seen from (16) 

and (17) that, two poles of  )( 1−qG can be represented by two 

real numbers, no matter whether they are two different real 

numbers, conjugative complex numbers or tow identical real 

numbers. Owing to this fact,  
1p   and  

2p   can be coded as  

],[ 11 IR pp  in DE. For other poles and zeros, similar coding 

strategy can be adopted. It is shown that this representation is 

efficient for individual coding when DE is used to solve the 

optimization problem (15). 

The process of parameter identification of Wiener model 

using DE is summarized as follows. 

Step 1: Generate L input-output pairs ),( kk yu  using random 

input signal according to the actual model.  

Step 2: Set the value of NP,  F and  CR .  

Sep 3: Initialize NP individuals. Each individual is a l 

-dimension real vector representing the parameter of 

Wiener model. The vector is represented using the method 

described above.  

Step 4: For each individual, generate the estimated output  
kŷ   

and calculate its fitness according to (10).  

Step 5: For each individual, perform mutation operation to 

obtain mutation vector  
iZ  .  

Step 6: For each individual, perform crossover operation to 

obtain crossover trial vector 
iU .  

Step 7: Calculate the fitness of each crossover trial vector 
iU as 

in Step 4.  

Step 8: Perform selection operation according to (3).  

Step 9: Repeat Step4-Step 8 until a termination condition is 

reached.  

Step 10: Output the final solution with minimum fitness. 

IV. SIMULATION STUDY  

In this section, two examples are given to illustrate the 

effectiveness of the proposed method. All the algorithms in this 

paper are programmed using MATLAB 7.0 language and 

executed on Pentium-IV 2.66GHz with 256MB random 

memory. The identification results of DE algorithm are 

compared to those of GA and particle swarm optimization 

(PSO). The implementation code of GA is taken from the 

GAOT toolbox at http://www.ise.ncsu.edu/mirage/GAToolBox 

/gaot/. PSO is implemented according to [25]. To make a fair 

comparison, the same computation effort, i.e., the maximum 

generation number, population size and search range, is  

adopted in GA, PSO and DE. The other parameters of GA, PSO 

and DE are set as follows: 

GA: The chromosome is code using real number, the selection 

method is "normGeomSelect" with parameter option 0.08, 

the crossover method is "heuristicXover" with pa-rameter 

option [2 3] and the mutation method is 

"multiNonUnifMutation" with pa-rameter option [6 

genMax 3].  

PSO: c1=c2=2, the inertia weight varies in a linearly decreasing 

manner suggested in [25] and 9.0max =w  ,  4.0min =w  .  

DE: mutation factor F=0.5, crossover rate CR=0.6 and the 

mutation strategy generating new trial vector is 

DE/rand-to-best/exp. 

In experiments, the input signal u(k) is random number 

uniformly distributed in [-2,2]. Measurement noise e(k) with 

SNR=20dB is added. Each algorithm is executed 20 times and 

the mean value is used as the final parameter identification 

result. To evaluate the performance of the proposed method, the 

following error index is used, 
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where θ̂  denotes the estimation of  θ , ⋅  represents 2-norm of 

a vector. 

Example 1 Considering a Wiener model with linear dynamic 

block as  
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with  0.11 =m ,  5.02 =m , 4.0=D   and  3.0=b . The nonlinear 

static function is discontinuous as shown in Fig.3.  

 

The pole-zero form of (19) is written as  
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 with  5.01 −=z  ,  ip 5831.01.01 +=  ,  ip 5831.01.02 −= . 
1p   

and  
2p   can be expressed as  

.34.01.0,34.01.0 21 −−=−+= pp  

 The true parameter value describing system (19) and (20) is  

].3.0,4.0,5.0,0.1,34.0,1.0,5.0[ −−=θ  

The identified results are listed in Table1. It can be seen from 

Table1 that the identified parameters values using DE algorithm 

are almost the same as the true values. Meanwhile, theδ of DE 

is the smallest compared to those of GA and PSO. The evolution 

process of fitness of each algorithm is shown in Fig.4. The true 

and estimation nonlinearity are shown in Fig.5. The estimated 

nonlinearity is identical to the real nonlinearity.  

After the model parameters are identified, a sine testing 

signal )25/sin()( kku π= is used to verify their performance, 

where the evaluation index is the mean square error (MSE). 

Fig.6 depicts the output error between the actual model and the 

identified models using GA, PSO and DE. It can be seen that the 

output error and MSE of DE is the smallest, which verifies that 

the identification of DE is more accurate.  

 

 

 

 

 

 

 

Fig.4 Evolution curve of GA, PSO and DE of Example 1 

 
Fig. 5 The actual and estimated nonlinearities of Example 1 

 

Table 1 Parameter identification results of Example 1 using GA, PSO and DE 

 

Algorithm z1 1Rp  
1Ip  m1 m2 D b δ (%) 

GA -0.5061 0.0985 -0.3379 0.9956 0.5098 0.3533 0.2545 4.85 

PSO -0.4990 0.1001 -0.3413 0.9983 0.5125 0.3492 0.2531 5.41 

DE -0.4999 0.1001 -0.3399 1.0005 0.4990 0.3983 0.2998 0.21 

True value -0.5000 0.1000 -0.3400 1.0000 0.5000 0.4000 0.3000 - 

 

 

 

 
Fig. 3 Discontinuous nonlinear characteristic 
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Example 2 Considering a Wiener model with linear dynamic 

block as  

)2(0883.0)1(1044.0)2(6065.0)1(4138.1)( −+−+−−−= kukukxkxkx

           (22) 

 the nonlinear function is 

)(9.01.0

)(3163.0
)]([)(

2 kx

kx
kxfky

+
==               (23) 

The above model is the fluid-flow control model [8], where u(k) 

is the pneumatic control signal, x(k) is the stem position, and the 

resulting flow through the valve is given by the nonlinear 

function f[x(k)] of the stem position.  

The linear dynamic block has one zero z1= -0.8458, two poles 

p1=0.7069+0.3268i, p2=0.7069-0.3268i. Using the code 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.6. Test results of Example 1. (a) input signal (b) output of actual model (c) output error of GA (MSE= MSE=8.5163e-005) (d) 

output error of PSO (MSE=7.8916e-005) (e) output error of DE  (MSE=1.1299e-006)  
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scheme, p1 and p2 can be expressed as 

1068.07069.0
1

−+=p , 1068.07069.0
2

−−=p . The true 

parameter value describing model (22) and (23) is  

]9.0,1.0,3163.0,3268.0,7069.0,8458.0[],,,,,[
111

−−== cbaPPz
IR

θ . 

Table 2 lists the identification results of each parameter of 

model (22) and (23). It can bee seen from Table 2 that the 

identified parameter value of DE algorithm is more close to the 

true parameter value. Meanwhile, the δ of DE is the smallest 

compared to those of GA and PSO.  The evolution process of 

fitness of each algorithm is shown in Fig.7. The true and 

estimation nonlinearity are shown in Fig.8. The estimated 

nonlinearity is identical to the real nonlinearity. 

After the model parameters are identified, a sine testing 

signal )25/sin()( kku π= is used to verify their performance, 

where the evaluation index is the mean square error (MSE). 

Fig.9 depicts the output error between the actual model and the 

identified models using GA, PSO and DE. It can be seen that the 

output error and MSE of DE is the smallest, which verifies that 

the identification of DE is more accurate. 

 

 

V. CONCLUSION 

A new approach to the parameter identification of Wiener 

model has been presented. Under the assumption that the 

structure of the nonlinear function is known, the parameters of 

the linear dynamic block and the nonlinear function are 

estimated by minimizing an objective function. DE algorithm is 

used to optimize the objective function. The advantage of the 

proposed method is that the parameters of the linear dynamic 

block and the nonlinear function can be identified 

simultaneously without any information about the intermediate 

signals. Numerical results show that the accurate and consistent 

estimation results can be obtained using the proposed method. 
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Table 2 Parameter identification results of Example 2 using GA, PSO and DE 

 

Algorithm z1 PR1 PI1 
a b c δ  

GA -0.8642 0.7076 -0.1071 0.2933 0.1052 0.7811 8.36 

PSO -0.8622 0.7065 -0.1068 0.3024 0.1011 0.8194 5.69 

DE -0.8438 0.7069 -0.1070 0.3169 0.1000 0.9114 0.79 

True value -0.8458 0.7069 -0.1068 0.3163 0.1 0.9 - 

 

x

y

 
Fig. 8 The actual and estimated nonlinearities of Example 2 

 
Fig. 7 Evolution process of estimated parameters of Example 2 
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