

Abstract—Self-timed addition of multiple data operands is

discussed in this paper. Though there are various works in the

existing literature targeting dual-operand addition, multiple operand

addition has not been exclusively dealt with. In this context, this

paper throws light on two important concepts – i) presenting a bit-

partitioning scheme that divides input data into groups where

additions within the individual groups are carried out in parallel, and

ii) proposing novel and efficient (4:2) logic compressor realizations

corresponding to weak-indication and robust early output timing

regimes. An analysis of the efficiency of addition for a significant

case study involving 8 input data, each of size 32-bits, is performed

with carry save adders or logic compressors employed for the input

field partitions. The simulation results show the proposed early

propagative compressor design effectively optimizing the power-

delay-area design envelope.

Keywords— Self-timed, Multi-input addition, Carry save adder,

Logic compressor, Indication, Early propagation, Standard cells.

I. INTRODUCTION

ELIABILITY is labelled as one of the five crosscutting

design challenges in the Semiconductor Industry

Association’s 2008 international technology roadmap on

design [1], which drives home the point that ‘robustness’ is

becoming an increasing priority for digital logic design in ultra

deep submicron technologies. In this scenario, self-timed

design attracts attention on account of its inherent capability to

tolerate supply voltage, process parameter and temperature

variations [2]. Due to the absence of a global clock reference,

self-timed circuits exhibit better noise and electro-magnetic

compatibility properties compared to their synchronous

counterparts [3]. In addition, they are modular permitting

convenient design reuse [4], which is important since design

reuse as a percentage of overall logic is expected to be 55% by

2020 [1].

This paper deals with self-timed addition of multiple input

operands based on a bit-partitioning scheme that utilizes either

carry save adders (CSAs) or logic compressors for the input

Manuscript received December 29, 2011: Revised version received. This

work was supported in part by the Engineering and Physical Sciences

Research Council, UK under Grant EP/D052238/1. The first author was

additionally supported by a bursary from the School of Computer Science of

the University of Manchester, UK.

P. Balasubramanian was with the University of Manchester, UK. He is

now with the Department of Electronics and Communication Engineering,

Vel Tech Dr. RR and Dr. SR Technical University, Avadi, Chennai 600 062,

Tamil Nadu, India (phone: +91-(0)44-2684 1601; fax: +91-(0)44-2684 0262;

e-mail: spbalan04@gmail.com).

D. A. Edwards and W. B. Toms are with the School of Computer Science,

University of Manchester, Oxford Road, Manchester M13 9PL, UK (e-mail:

doug@cs.man.ac.uk; tomsw@cs.man.ac.uk).

partitions. Nevertheless, the focus is on novel synthesis of

asynchronous logic compressors pertaining to weak-indication

and early output timing regimes. To the best of our knowledge,

this article is the first work dealing exclusively with self-timed

addition of multiple data operands. The remainder of this

paper is organized as follows. Section 2 briefly summarizes the

various timing models adopted, discusses the attributes of a

function block and describes a widely used robust

asynchronous signaling convention viz. the 4-phase

handshaking. Various logic tree structures available for multi-

operand addition are discussed briefly in Section 3. Next, a

bit-partitioning strategy that parallelizes the addition of

multiple operands of arbitrary size is illustrated in Section 4

that utilizes either CSAs or logic compressors for the input

field partitions. In Section 5, an evaluation of self-timed

addition involving multiple data operands is performed by

considering a significant case study of addition of 8 input data,

each of size 32-bits. The efficiency of CSAs and compressors

for this multi-operand addition scenario is evaluated on the

basis of power, delay and area. Finally, the concluding remarks

are made in Section 6.

II. FUNDAMENTALS OF INPUT/OUTPUT MODE CIRCUITS

A. Timing Models

The following circuit models adhere to input/output mode,

with no timing assumptions imposed on when the environment

should respond to the circuit – a) delay-insensitive (DI), b)

quasi-delay-insensitive (QDI), and c) speed-independent (SI).

A DI circuit guarantees correct normal operation

irrespective of the delays of its gates and the delays

encountered in the communicating signal wires, i.e. unbounded

(arbitrary, but positive and finite) gate delay and wire delay

models are considered. This is the most robust of all

unbounded delay models and such circuits are guaranteed to

be correct by construction. It was shown in [5] that C-elements

and inverters are the only DI elements and so unfortunately,

the class of pure DI circuits would be very limited when

considering only these two logical operators.

DI circuits with isochronic fork assumptions [5] are referred

to as QDI circuits; it is not necessary that every fork should be

an isochronic fork in a QDI circuit. The isochronic fork

assumption has been defined in [5] as follows: “In an

isochronic fork, when a transition on one output is

acknowledged, and thus completed, the transitions on all

outputs are acknowledged, and thus completed”. A recent

work by Martin et al. [6] shows that the main building blocks

of QDI logic, including realization of the isochronicity

Self-Timed Multi-Operand Addition

P. Balasubramanian, D. A. Edwards, and W. B. Toms

R

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 1

assumption, can be successfully implemented even in nano-

CMOS technologies where stricter design rules and larger

parametric variations could be anticipated. This is an

encouraging pointer towards the feasibility of the QDI design

paradigm in the nano-CMOS era. Similar to the DI circuit, the

QDI circuit conforms to unbounded delay model for gates and

wires but with the exclusion of isochronic forks.

A SI circuit operates correctly regardless of gate delays;

wires are assumed to have no or negligible delay – hence,

unbounded gate delay and bounded wire delay. Every fork is

assumed to be an isochronic fork in a SI logic circuit.

Technically, wire delays are typically accounted for in the

components (gates) according to this timing model and

consequently wires are assumed to be ideal (i.e. zero delay).

Referring to the circuit fragment in figure 1(a), dg1, dg2 and

dg3 represent the propagation delay of gates g1, g2 and g3

respectively, while dw1, dw2 and dw3 signify the delay values of

corresponding nets. For the DI delay model, dg1, dg2, dg3, dw1,

dw2 and dw3 can be arbitrary, while in case of the QDI delay

model; dw2 is assumed to be equal to dw3 with node f being

labelled as an isochronic fork junction. According to the SI

timing delay model, dw1 = dw2 = dw3 = 0, but the wire delays are

accounted for in the delay of gate g1, whose output acts as an

input for gates g2 and g3. Hence the delay of gate g1 is

modeled as (dg1+dw1+dw2) or (dg1+dw1+dw3) as shown in figure

1(b).

Fig. 1 Illustration of DI, QDI and SI delay models

B. Function Block

Seitz classified the function block, which is the

asynchronous equivalent of a synchronous combinational logic

circuit into two robust categories based on their indicating

(acknowledging) mechanism as strongly indicating or weakly

indicating [7]. A strong-indication function block waits for all

of its inputs (valid/spacer) to arrive before it starts to compute

and produce any output (valid/spacer). On the other hand, a

weak-indication function block starts to compute and produce

outputs (valid/spacer) even with a subset of the inputs

(valid/spacer). However, Seitz's weak timing specifications

require that at least one output (valid/spacer) should not have

been produced until after all inputs (valid/spacer) have arrived.

Given these, when small indicating function blocks are

interconnected to compose a larger indicating function block,

such as cascading of full adder modules to construct an n-bit

adder, weakly indicating realizations are preferred compared

to strongly indicating ones. This is because the former’s

performance is data-dependent while the latter’s performance

is always bound by worst-case latency. The signaling scheme

for strong and weak-indication timing regimes in terms of their

input and output behavior is shown in figure 2.

Fig. 2 Portraying strong and weak indication timing constraints

Function blocks can also be non-indicating at the expense of

being non-robust. The dual-rail combinational logic style [8]

[9] of realizing function blocks belongs to this category. The

dual-rail combinational logic (DRCL) style utilizes De-

Morgan's theorems of Boolean algebra to implement a

combinational logic circuit in an asynchronous style by

replacing each gate by its dual-rail equivalent (dual-rail pair).

For example, given a logic function F = ab + cd, the dual-rail

equivalent expressions are specified as: F1 = a1b1 + c1d1 and

F0 = (a0 + b0) (c0 + d0). The gate level realization of the

dual-rail combinational equivalent of F is shown below.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 2

Fig. 3 Dual-rail combinational equivalent realization of F = ab + cd

Let us consider two scenarios corresponding to the dual-rail

combinational equivalent of a Boolean function, F, to clarify

the necessity for ensuring proper indication of signal events at

the primary inputs as well as at the intermediate output nodes,

and to describe how wire and gate orphans could possibly

arise. Assuming all data inputs to be currently spacers (zeroes),

when a0 and c0 become defined (logic 1), intermediate signals

x0 and y0 would become defined and eventually F0 would

become defined. Assuming that b0 and d0 also become

defined subsequently, these transitions would not be

acknowledged by the intermediate signals (x0 and y0) or by

the corresponding output in the present evaluation phase

resulting in wire orphans. Let us assume that a1 and b1

become defined after a return-to-zero phase. This would lead

to defining of the intermediate signal x1. Assuming that c1 and

d1 also become defined subsequently during the current

evaluation phase, F1 could have become defined as a result of

x1 alone becoming defined, and hence a late transition on y1

would not be acknowledged by the primary output giving rise

to a gate orphan. From the preceding discussions, it should be

clear that the DRCL realization is non-indicating and it

conforms to eager evaluation owing to the fact that even with

a subset of the function block inputs becoming

defined/undefined all of the function block outputs could

become defined/undefined regardless of the late arriving

inputs. Hence the DRCL style is not strongly or weakly

indicating but is early propagative, i.e. early set and/or reset

could occur. Therefore, great care should be taken to

circumvent the problem of orphans that could arise in an early

output circuit. However, this can be tackled at both the

technology-independent and technology-dependent logic

optimization stages. Nevertheless, early output function blocks

are generally faster than their input-complete counterparts.

Robust function block designs adhere to a 4-phase

handshaking convention for simplicity of implementation and

can employ any DI data-encoding scheme, with the dual-rail

data-encoding scheme being widely preferred. In this scheme,

each data wire d is represented using two data wires, d
0
 and d

1
,

with the request signal embedded within the data wires. A low-

to-high transition on the d
0
 wire indicates that a zero has been

transmitted, while a low-to-high transition on the d
1
 wire

indicates that a one has been transmitted. Since the request is

embedded within the data wires, a transition on either d
0
 or d

1

informs the receiver about the validity of the data. The

condition of both d
0
 and d

1
 being a zero at the same time is

referred to as the spacer (empty state). Both d
0
 and d

1
 are not

allowed to transition simultaneously as it is illegal and invalid,

since the coding scheme is unordered, i.e. no code word is a

subset of another code word.

Fig. 4 Dual-rail data encoding and 4-phase handshaking

 Referring to the figure 4, the 4-phase handshake protocol is

explained as follows
1
:

• The dual-rail data bus is initially in the spacer state.

The sender transmits the code word (valid data). This

results in 'low' to 'high' transitions on the bus wires,

which correspond to non-zero bits of the codeword

• After the receiver receives the codeword, it drives the

ackout (ackin) wire 'high' ('low')

• The sender waits for the ackin to go 'low' and then

resets the data bus (i.e. spacer state)

• After an unbounded, but finite (positive) amount of

time, the receiver drives the ackout (ackin) wire ‘low’

(‘high’). A single transaction is now said to be

complete and the system is ready to resume the next

transaction

III. TREE STRUCTURES – A REVIEW

Multiple inputs addition is an operation widely prevalent in

both multiplication and computation of vector inner products

[10] [11]. The carry save adder (CSA) is useful for handling

addition of many numbers and is therefore suitable for

building multipliers and digital filters where complicated

additions are required. Unlike the basic carry-propagate adder

(CPA), also known as the ripple carry adder (RCA), in a CSA,

the carry output signal of the current bit at a level is not

transferred to the next-bit adder of the same level as the carry

input signal; instead it is transferred to the next-bit adder in the

lower level as the carry input signal. A CSA tree can reduce n

binary numbers to two numbers in O(log n) levels [11]. A fast

logarithmic time dual-operand adder can then be used to add

the two resulting numbers. Hence, CSAs were predominantly

used in various tree structures for performing multi-input

addition.

The rudimentary tree structure, also called the iterative CSA

array [10], is a straightforward way to accumulate partial

products. Indeed, an n-operand array would consist of (2−n)

CSAs and a final CPA stage. As a result, the time complexity

of the fundamental array topology would be the summation of

propagation delay of the CSA tree governed by a height of

(2−n) and the propagation delay associated with the CPA

1 The explanation remains valid for data representation using any DI data-

encoding scheme.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 3

stage which is approximately linear. Wallace trees [12] are

known for their optimal computation time. In fact, they

represent the theoretically fastest adders when reducing

multiple operands to two outputs using CSA trees [13]. In

Wallace trees, the number of operands is reduced at the

earliest opportunity by employing
3

n full adders for all the m

columns, where ‘n’ specifies the number of single-rail data

operands and ‘m’ denotes the size of each operand. This

procedure tends to minimize the overall delay by making the

final CPA stage as compact as possible. Although the Wallace

tree guarantees the lowest overall delay, it requires the largest

number of wiring tracks (vertical feed-throughs between

adjacent bit-slices), thereby compounding their wiring

complexity [14]. The iterative CSA array and Wallace trees

represent two possible extremes in the spectrum of multi-

operand addition [11]. While the former features the simplest

and regular structure, it is also the slowest; the latter is the

fastest, but is also the most difficult structure to implement.

Other tree structures proposed for multi-operand addition lie

between these two extremes permitting tradeoffs between

regularity and speed [10]. While Wallace used a word-level

description of his trees, Dadda gave a refined presentation of

the same concept at the bit-level [15]. In Dadda trees, the

number of operands is reduced to the next lower number in

comparison with the Wallace tree using the fewest number of

full adders and half adders possible, i.e. combining of partial

product bits takes place as late as possible and this usually

leads to a simple CSA tree unlike Wallace’s method where

partial products are combined at the earliest opportunity. The

former strategy minimizes the number of full adders and half

adders at the expense of a wider CPA structure, while the latter

tends to make the width of the final CPA smaller. Wallace’s

and Dadda’s strategies for constructing CSA trees give rise to

Wallace and Dadda tree multipliers. An analysis of Dadda and

Wallace multiplier delays was performed for different

multiplier sizes [16], and it was found that the former showed

improvement in speed compared to the latter by 9%-14%;

however, this work assumed the presence of only discrete logic

gates (AND2, OR2 and INV cells). It has been clarified in [11]

that the above strategies which achieve logarithmic depth

reduction based on CSA trees tend to suffer from the drawback

of an irregular structure that subsequently complicates the

design and layout. Additionally, connections of varying

lengths and complex signal paths lead to logic hazards and

signal skew in synchronous designs that would have negative

implications for power and performance parameters.

Overturned-stairs (OS) tree structures [17] can be designed

systematically paving the way for a simple and regular

interconnection scheme in comparison with the Wallace tree

whilst achieving similar speed performance in certain cases.

The balanced delay tree [18], on the other hand, requires the

smallest number of wiring tracks but suffer from an increased

delay compared to the OS trees. Nevertheless, it has been

widely understood that iterated or recursive structures that

would feature a greater degree of structural regularity, less

hardware complexity and promise high-speed such as those

incorporating parallel counters or logic compressors are

preferable compared to CSA based tree structures [10] [11]

[13] [17] [19] [20]. It is to be noted in this context that tree

structures are also useful for evaluating the performance

potential of arithmetic building blocks [21].

IV. BIT-PARTITIONING SCHEME

In CSAs, row-wise parallel addition is performed where the

tree height grows with the increase in the number of input

operands by an approximate linear order. Here, a bit-

partitioning strategy is considered which involves splitting up

the entire group of operands horizontally into sub-groups as

desired, and the results of the sub-groups are then added to

produce the final sum. The bit-partitioning approach

parallelizes the multi-input addition operation and is illustrated

through figure 5, where addition of n binary operands with

each operand of size m bits is considered, while assuming n to

be even. A ‘dot’ represents a bit position in the figure below.

Σ

Fig. 5 Illustration of bit-partitioned multiple input addition strategy

The entire set of input operands (10 ,....,
−naa) is divided

into two equal-sized groups, namely X_field (that comprises

inputs, 2)1(0 ,...,
−naa) and Y_field (consisting of inputs,

12)1(,...,
−+ nn aa). Addition within the individual fields can be

performed using either CSAs or logic compressors. The sum

bits generated from these individual fields can be added

together using a two-operand adder. Herein, we use a RCA for

performing summation of the outputs of X and Y data fields.

In general, the combinatorial bit-partitioning procedure

might effect a slight improvement in delay when many

operands have to be added by way of performing parallel

column wise addition of row-wise partitions. For example,

considering the addition of 32 data operands, each of size 32-

bits, the critical path delay of the multi-operand adder equates

to 8 full adder delays (assuming the Wallace bound) and the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 4

delay of a 36-bit RCA stage. On the other hand, with eight

equal-sized input field partitions, the maximum path delay

could be reduced by 2 full adder delays. If say 16 operands are

to be added, they could be initially partitioned into 4 fields

(say, V, W, X and Y). The outputs of input fields V and W can

be combined into an intermediate output field; likewise with

input fields X and Y. The sum outputs corresponding to the

intermediate output fields can then be added to obtain the

desired final result. Alternatively, the outputs of the four input

fields can be added together using a single multi-operand

adder to produce the required result. It should be noted that

additions within the partitions would be carried out in parallel,

while the final adder stage comprising a simple CPA could

perform serial computation. Thus the bit-partitioning

procedure is scalable and may benefit in terms of latency

reduction as opposed to employing conventional combinatorial

tree type structures for problems of higher dimensions. Also, a

high regularity would be implicit within the overall

architecture as the gate level input partition hardware

structures are being duplicated. We shall now discuss about

self-timed CSAs and logic compressors in the following sub-

sections, as employed for the input field partitions.

A. CSA Based Multi-Operand Addition

Figure 6 shows the self-timed equivalent of a traditional

synchronous CSA structure used for the addition of four dual-

rail encoded binary numbers (a,b,c,d), each of size n bits, and

the (n+1) sum outputs produced are also in dual-rail format.

Inputs and outputs with subscript zero correspond to the least

significant bits and those with the maximum subscript notation

represent the most significant bits. As shown in figure 6, there

are three adders in three levels – two levels of CSAs and one

level of RCA to add four input operands. In each CSA, the

output carry signal of the current bit at a level is not

transferred to the next bit adder of the same level as the input

carry. Instead, the output carry is transferred to the next bit

adder in the lower level as the carry input signal. In the top-

level adder, three numbers (a,b,c) are added simultaneously,

i.e. the bits corresponding to any number could act as the input

carries for the full adders of the first level CSA. In the next

lower level, an extra number (d) is added. The adder in the

bottom level is a conventional carry-ripple adder that produces

the final sum. The propagation delay of the entire multi-

operand adder is equal to the sum of the delay of two full

adder cells in the first two levels and the delay associated with

the RCA at the final level.

Fig. 6 Self-timed version of n-bit CSA to add four data operands

B. Compressor Based Multi-Operand Addition

Rather than using CSAs for the partitions, logic compressors

can be employed for adding multiple input operands as shown

in figure 7. The (4:2) logic compressor [22] usually takes in

five inputs (four inputs in the absence of an input carry)

including a carry input from the preceding stage and produces

three outputs – two carry outputs, with one carry (ICarry)

propagating as a carry input to the compressor block of the

next column in the same row, while the sum (Sum) and carry

(Cout) outputs are fed as inputs to the final RCA stage. In

essence, it is a 5-bit column adder [11].

a0

2

b0 c0 d0

2 2 2

a1

2

b1 c1 d1

2 2 2

(4:2) logic

compressor

(4:2) logic

compressor

(4:2) logic

compressor

an-1

2 2 2 2

Sum0

2

Half

adder

Sum1

Full

adder

Full

adder

Sumn+1SumnSumn-1

2 2 2 2

2 2 2 2

2 2 2

2
2

2 2 2

2

bn-1 cn-1 dn-1

Sum Cout

ICarry

Fig. 7 Self-timed logic compressor based n-bit multi-input adder to

add 4 data operands

The efficient realization of a (4:2) compressor block is

important for multi-operand addition. It is usual practice to

realize compressors using full adder blocks [11] [19] that

constitutes a scalable approach rather than synthesizing them

as a single block – this is owing to the input space demand.

For a linear increase in the number of inputs by O(n), the input

state space expands by an exponential order of O(2
n
). A

typical (4:2) compressor design [23] using two full adder

modules is shown in figure 8. The self-timed version of a (4:2)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 5

compressor can be derived by replacement of the synchronous

full adder modules with equivalent self-timed blocks, as is the

case with Null Convention Logic (NCL) approaches [24] [25].

It may be noticeable that the compressor shown in figure 8

treats a full adder as a CSA and thus the compressor logic is

equivalent to that realized by the CSA tree (first two levels,

preceding the RCA stage) of figure 6. Alternatively, a (4:2)

compressor can be realized using discrete gates as shown in

figure 9 [27].

Fig. 8 A synchronous logic compressor realized using full adders

Fig. 9 A synchronous (4:2) compressor based on discrete gates

The weak-indication synthesis of the (4:2) compressor (with

input carry), shown in figure 10, may be thought of as a

translation of the synchronous version depicted in figure 9.

However, this differs from all the NCL methods, which are

actually founded upon the DRCL style, where the encoded

outputs are duals of each other. In case of the proposed design,

however, the encoded outputs make use of disjunctive normal

expressions for implementing the outputs.

CC

a0a1b0 b1

CC

a0a1b1 b0

CC

c0c1d0 d1

CC

c0c1d1 d0

C

C

C

C

Cout1

C

C

Cout0

Sum1

cin1

cin0

a1

b1

a0

b0

w11w10 w21w20

w31

w30

d0

ICarry0

C

C

Sum0

cin0

d1

ICarry1

cin1

Fig. 10 Weakly indicating (4:2) logic compressor with carry input

Three steps are involved in the proposed compressor

synthesis – i) deriving the irredundant disjoint sum-of-products

form of the dual-rail logic compressor functionality [28], ii)

speed-independent decomposition of logic to facilitate

physical realization using standard cells [29], and iii)

performing logic optimizations to pave the way for latency

reduction. Comparison with NCL designs [24] – [26] is not

considered here since the technology mapping procedure

would require access to proprietary NCL macros [30] [31]. In

the figures, the Muller C-element
2
 is represented by the AND

gate symbol with the marking C on its periphery. The multi-

level expressions corresponding to the proposed dual-rail

encoded logic compressor design shown in figure 10 are given

below. Henceforth, this compressor realization shall be

referred to as the ‘Sync_ST_compressor’ in the following

discussions. Given these, the synthesis of a compressor module

without input carry would be rather straightforward and is

shown in figure 11.

2 The C-element governs the rendezvous of input signals. The C-gate outputs

a 1(0) if all its inputs are 1(0) respectively, otherwise it maintains its existing

steady state.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 6

Fig. 11 Weak-indication (4:2) logic compressor without carry input

Sum1 = w3
0
cin1 + w3

1
cin0 (1)

Sum0 = w3
0
cin0 + w3

1
cin1 (2)

ICarry1 = d1w3
0
 + cin1w3

1
 (3)

ICarry0 = d0w3
0
 + cin0w3

1
 (4)

Cout1 = a1w1
0
 + c1w1

1
 (5)

Cout0 = a0w1
0
 + c0w1

1
 (6)

From figures 10 and 11, it may be apparent that the self-

timed compressor realizations correspond to the weak-

indication timing discipline, with the sum outputs being

assigned the responsibility of indicating the arrival of all the

primary inputs and the intermediate outputs, while the carry

outputs are allowed to be set/reset in an eager or early output

fashion.

The logically equivalent early propagative synthesized

versions of the self-timed (4:2) logic compressor, shown in

figures 10 and 11, are portrayed by figures 12 and 13

respectively. These are derived by resorting to further

peephole logic optimizations of the weak-indication equivalent

as a post-processing step facilitating the usage of more

complex gates. For example, comparing figures 10 and 12, it is

evident that the logic corresponding to the intermediate

outputs (w1
0
, w1

1
) and (w2

0
, w2

1
) has been realized using

AO22 cells in the latter while C-gates and OR gates are

present in the former. Since early output logic modules tend to

be set/reset in an eager fashion, the indication of their inputs is

taken care of by their associated completion detection circuit –

this is discussed in the next section.

Fig. 12 Early output (4:2) logic compressor with carry input

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 7

Fig. 13 Early output (4:2) logic compressor without carry input

V. SIMULATION RESULTS

In order to analyze the efficacy of CSAs and compressors

forming part of the partitions in case of a multi-operand adder,

an example scenario of self-timed addition of 8 input data

operands, each of size 32 bits was considered. The inputs were

divided into two equal input fields containing 4 operands each

and the individual summation result of these two partitions

gives rise to 34 intermediate sum outputs. These were

subsequently added using a 34-bit RCA to generate the final

result that consists of 35 sum outputs. The delay, area and

power parameters of this bit-partitioned addition process,

assuming CSAs for the input field partitions are given in Table

1. The delay parameter refers to the maximum propagation

delay encountered in the data path, which approximately

equals the latency of the function block. The delay metric was

estimated using PrimeTime. To avoid the notion of a clock

source, the option of a virtual clock was used that only acts as

a remote reference to constrain the input and output ports of

the design. The area and power metrics correspond to the input

registers, completion detection logic and the function block.

The delay and power metrics consider estimated parasitics in

addition to the parameters associated with the actual

components. The area metric gives a combined account of the

area of all the logic cells and was estimated as part of the

PrimeTime tool suite. The total/average power dissipation is

the summation of dynamic and static power components,

where dynamic power is in turn the gross of switching and

internal power consumption figures. NC-Sim has been used for

functional simulation and also to obtain the switching activity

files corresponding to the gate level simulations of Verilog

descriptions. Input data were supplied to the function blocks at

specific intervals through test benches, which modeled the

environment. The switching activity files obtained were

subsequently used for power estimation using PrimeTime PX.

The simulations targeted a PVT corner of the 130nm bulk

CMOS standard cell library with a supply voltage of 1.32V

and a junction temperature of -40°C. All the circuit inputs

were configured to possess the driving strength of the

minimum sized inverter of the cell library, while the outputs

were associated with fanout-of-4 drive strength. Suitable

buffering for the acknowledge input was provided where

necessary to eliminate timing violations. Since identical

registers and a similar completion detection circuit were used

for all the adder realizations, the area and power metrics can

be correlated with that of the function block, thus paving the

way for a legitimate comparison between different self-timed

logic realization methods. Random input data sequences were

used for the adder simulations and they were supplied at time

intervals of 25ns to the function blocks. Weak-indication

adders corresponding to various self-timed design methods

were constructed and were also subsequently optimized for

minimum latency taking into account the library constraints
3
.

The optimal values of design metrics achieved by a specific

self-timed design method are highlighted in bold-face in the

Tables. From Table 1, it is clear that with respect to delay and

area SSSC_CSA is optimal. However, in terms of total power

Toms_CSA betters the SSSC_CSA by reducing power to the

tune of 12.5%. Nevertheless, the latter minimizes critical path

delay and area occupancy by 36.2% and 7.3% respectively.

Moreover, the SSSC_CSA being a weak-indication adder

reduces the cycle time for passage of data-spacer wave fronts

while Toms_CSA being a strongly indicating adder encounters

maximum latency for both valid data and spacers.

Table 1. Delay, area and power parameters corresponding to bit-

partitioned CSA based self-timed addition of 8 inputs (size 32 bits)

Multi-input adder

realization style

Delay

(ns)

Area

(µm2)

Power

(µW)

Seitz_CSA [7] 9.2 45805 3068.3

DIMS_CSA [32] 16.6 66303 3245.0

Petrify_CSA [33] 9.7 42701 2943.5

Toms_CSA [34] [35] 14.1 44866 2397.3

SSSC_CSA [36] 9.0 41586 2740.6

Compressor designs based on a number of self-timed logic

realization methods were found to exacerbate the area

requirement and this eventually has an adverse impact on delay

3 A 130nm bulk CMOS standard cell library was used. The fan-in of AND

gates and OR gates in the library is 4 and 3 respectively. The C-element has a

granularity of up to 4 inputs.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 8

and power metrics due to an increase in the number of logic

levels and requirement of more library cells. This is because

the (4:2) compressor logic would quadruple the input space

consideration in comparison with a full adder block. Figure 14

gives a graphical sketch of the area expenditure of various

self-timed compressor realizations. The values on the y-axis

signify the area occupancy in micrometer square, while the

different compressor realization styles are mentioned in the x-

axis. The values specified above the vertical bars of the bar

chart signify the area figures for a cell-based implementation.

Indeed, the area figures correspond to optimized designs.

Fig. 14 Area comparison of (4:2) asynchronous compressors

The design metrics corresponding to bit-partitioned multi-

operand addition that considers logic compressors for the input

partitions are given in Table 2. (4:2) logic compressors based

on Seitz, DIMS and Toms approaches were constructed in a

semi-custom design style with delay-oriented logic

optimizations resorted to where feasible. The DIMS weak-

indication compressor design involved only speed-independent

logic decomposition, while Seitz’s weak-indication

compressor entailed speed-independent logic decomposition of

higher fan-in AND gates and replacement of second-level

AND gates by C-gates to ensure gate orphan freedom.

Moreover, Seitz’s and Petrify design methods incorporate

timing assumptions in inputs completion detection.

Table 2. Delay, area and power metrics corresponding to bit-

partitioned compressor based self-timed addition of 8 data inputs,

each of size 32 bits

Multi-operand adder

(compressor based)

Delay

(ns)

Area

(µm2)

Power

(µW)

Seitz_compressor

[7]

9.7

(12.8%)

77611

(2.18×)

3605.3

(53.9%)

DIMS_compressor

[32]

17.3

(101.2%)

111757

(3.14×)

3974.4

(69.7%)

Toms_compressor

[34] [35]

22.5

(161.6%)

51950

(1.46×)

2418.5

(3.3%)

Sync_ST_compressor

(weak-indication)

8.8

(2.3%)

40608

(1.14×)

2588.6

(10.5%)

Sync_ST_compressor

(robust early)

8.6 35568 2341.6

The common point between the Sync_ST_compressor

(weak-indication) and Sync_ST_compressor (robust early)

realizations is that both these guarantee gate-orphan freedom.

The problem of wire orphans is nullified by the isochronic fork

assumptions. However, the primary point of distinction

between the Sync_ST_compressor (weakly indicating) and the

Sync_ST_compressor (robust early) design is that the former

leads to a locally indicating self-timed system architecture,

where the function block individually acknowledges the arrival

of the primary inputs, while the latter facilitates a self-timed

system configuration which is globally indicating with respect

to acknowledging the arrival of the primary inputs [37]. This is

because, in case of the latter, the function block computes in

an eager fashion and therefore the completion detection logic

preceding it becomes responsible for indicating the arrival of

primary inputs into the function block, as portrayed by the

system architecture in figure 15. Given this, isochronicity is

assumed with regard to the primary inputs that are fed into the

early output function block and the completion detection

circuit associated with a stage.

Fig. 15 A typical self-timed system architecture

The operation of the above self-timed system configuration

is explained as follows. Let us consider that all the registers

are initially in the spacer (empty) state and therefore the

acknowledge signals ackout_ns and ackin_cs would assume

logic ‘low’ and logic ‘high’ states respectively. Thus the

current stage register would be active and ready to accept a

new set of valid data. When the inputs become defined, valid

data would be passed through the current stage register onto

the function block for processing and the function block

outputs would reach the next stage register in the pipeline. The

completion detection logic [38] performs the

validity/neutrality tests of the input codeword during the set

and reset phases respectively [39]. With respect to dual-rail

encoding, the completion detector would have an OR gate

assigned for each dual-rail input and the outputs of all such OR

gates would be synchronized by means of a C-element tree.

The completion detector associated with the current stage

register would check the validity of the data at its inputs and

subsequently asserts the ackout_cs signal to logic ‘high’ if the

check is true. This signal disables the previous register and

prepares it for storing the spacer data wave front. Thus it paves

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 9

the way for flushing the function block by permitting spacer

data through the current stage register. The collision between

two data wave fronts is avoided by means of alternating set

and reset phases (i.e. through the valid data-spacer-valid data

sequence) according to the 4-phase handshaking convention.

The increase in data path delay, total power dissipation and

relative increase in area occupancy of all the multi-input

adders in comparison with the Sync_ST_compressor (robust

early) based multi-input adder is highlighted in Table 2 within

brackets for a quick comparison. Comparing Tables 1 and 2, it

can be inferred that the bit-partitioned multi-input adder

employing CSAs rather than logic compressors for the

partitions are preferable with respect to power, delay and area

in the case of Seitz, DIMS and Toms approaches. This is

owing to the greater input space consideration for a direct

compressor realization as opposed to a full adder based

realization. The Sync_ST_compressor (robust early) based

multi-input adder features less latency and area occupancy in

comparison with the SSSC_CSA based multi-input adder by

4.4% and 14.5% respectively. Even in terms of total power

dissipation, the Sync_ST_compressor (robust early) based

multi-input adder is preferable compared to Toms_CSA based

multi-input adder owing to a reduced power consumption of

2.3%. Therefore, the Sync_ST_compressor (robust early)

based multi-operand adder is found to be an efficient design

with respect to simultaneous optimization of the power-delay-

area envelope.

It has also been observed from the simulations that usage of

a hybrid input encoding scheme for self-timed multi-input

adders, by way of employing a mixture of DI data encoding

(say, dual-rail and 1-of-4 codes), results in increase of delay,

area and power over pure dual-rail encoded counterparts. This

is most likely due to the reason that only the primary inputs of

the multi-operand adder can be grouped together and encoded

using the hybrid input encoding mechanism, while all the

intermediate and primary outputs necessitate maintaining of

the dual-rail convention. The reductions in power dissipation

and area metrics gained by the hybrid input encoded

compressor logic tends to be nullified by the extra power

dissipation and area occupancy of its associated encoding

circuitry. Hence, encoding of the primary inputs in a

heterogeneous fashion does not appear to have a beneficial

impact on the resultant multi-input adder implementations.

This effect is likely even in case of bit-partitioned multi-input

adder that employs CSAs for the input field partitions. Hence

it is opined that dual-rail encoding might be an optimum DI

data encoding mechanism for effectively implementing self-

timed multi-operand addition as opposed to any other

heterogeneous DI data encoding scheme.

VI. CONCLUSION

Self-timed addition of multiple data operands based on a

bit-partitioning strategy was discussed in this paper. The

impact of CSAs and compressors on the parallel input field

partitions was analyzed for the case study of a sizeable

addition operation involving 8 data operands, each of width 32

bits. It is inferred that the robust Sync_ST_compressor

realization corresponding to early output logic exhibits a

superior performance with respect to simultaneous

optimization of delay, area and power metrics as regards this

case study, and the Sync_ST_compressor (robust early) could

serve as an efficient building block from the design viewpoint.

Hence, it can be potentially used to build optimal higher order

self-timed multi-operand adders.

REFERENCES

1) Semiconductor Industry Association’s International Technology

Roadmap for Semiconductors (ITRS) 2008 design report, Available:

http://www.itrs.net

2) A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic and P.J. Hazewindus,

“The first asynchronous microprocessor: the test results,” ACM

SIGARCH Computer Architecture News, vol. 17, no. 4, pp. 95-98, June

1989.

3) G.F. Bouesse, G. Sicard, A. Baixas and M. Renaudin, “Quasi delay

insensitive asynchronous circuits for low EMI,” Proc. 4th International

Workshop on Electro-Magnetic Compatibility of Integrated Circuits,

pp. 27-31, 2004.

4) C.H. van Berkel, M.B. Josephs and S.M. Nowick, “Scanning the

technology: applications of asynchronous circuits,” Proc. of the IEEE,

vol. 87, no. 2, pp. 223-233, February 1999.

5) A.J. Martin, “The limitation to delay-insensitivity in asynchronous

circuits,” Proc. 6th Conference on Advanced Research on VLSI, MIT

Press, pp. 263-278, 1990.

6) A.J. Martin and P. Prakash, “Asynchronous nanoelectronics:

preliminary investigation,” Proc. 14th IEEE International Symposium

on Asynchronous Circuits, pp. 58-68, 2008.

7) C.L. Seitz, “System Timing” in Introduction to VLSI Systems, C. Mead

and L. Conway (Eds.), Addison-Wesley, MA, USA, pp. 218-262, 1980.

8) V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent Processes:

The Design of Aperiodic Logical Circuits in Computers and Discrete

systems, Chapter 4: Aperiodic Circuits, pp. 77-85, (Translated from the

Russian by Alexandre V. Yakovlev), Kluwer Academic Publishers,

1990.

9) J. Cortadella, A. Kondratyev, L. Lavagno and C. Sotiriou, “Coping with

the variability of combinational logic delays,” Proc. IEEE International

Conference on Computer Design, pp. 505-508, 2004.

10) K. Hwang, Computer Arithmetic: Principles, Architecture and Design,

John Wiley and Sons Inc, New York, 1979.

11) B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,

Oxford University Press, New York, 2000.

12) C.S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. on

Electronic Computers, vol. EC-13, no. 1, pp. 14-17, February 1964.

13) W. Waser and M.J. Flynn, Introduction to Arithmetic for Digital

Systems Designers, Oxford University Press, New York, 1985.

14) P. Reusens, W.H. Ku and Y.H. Mao, “Fixed-point high-speed parallel

multipliers in VLSI,” in VLSI Systems and Computations, H.T. Kung et

al. (Eds.), pp. 301-310, Springer-Verlag, New York, 1981.

15) L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol.

34, no. 5, pp. 349-356, March 1965.

16) W.J. Townsend, E.E. Swartzlander Jr. and J.A. Abraham, “A

comparison of Dadda and Wallace multiplier delays,” Proc. SPIE

Advanced Signal Processing Algorithms, Architectures and

Implementations XIII, Franklin T. Luk (Ed.), vol. 5205, pp. 552-560,

2003.

17) Z.-J. Mou and F. Jutand, “Overturned-stairs adder trees and multiplier

design,” IEEE Trans. on Computers, vol. C-41, no. 8, pp. 940-948,

August 1992.

18) D. Zuras and W.H. McAllister, “Balanced delay trees and combinational

division in VLSI,” IEEE Journal of Solid-State Circuits, vol. SC-21, no.

5, pp. 814-819, October 1986.

19) Mi Lu, Arithmetic and Logic in Computer Systems, John Wiley and

Sons Inc, NJ, 2004.

20) A.R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture

and Implementations, Prentice Hall International (UK) Ltd, 1994.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 10

21) C.-H. Chang, J. Gu and M. Zhang, “A review of 0.18µm full adder

performances for tree structured arithmetic circuits,” IEEE Trans. on

VLSI Systems, vol. 13, no. 6, pp. 686-695, June 2005.

22) A. Weinberger, “4:2 carry-save adder module,” IBM Technical

Disclosure Bulletin, vol. 23, January 1981.

23) I. Koren, Computer Arithmetic Algorithms, Prentice-Hall International

(UK), 1993.

24) M. Ligthart, K. Fant, R. Smith, A. Taubin and A. Kondratyev,

“Asynchronous design using commercial HDL synthesis tools,” Proc.

6th International Symposium on Advanced Research in Asynchronous

Circuits and Systems, pp. 114-125, 2000.

25) A. Kondratyev and K. Lwin, “Design of asynchronous circuits by

synchronous CAD tools,” IEEE Design and Test of Computers, vol. 19,

no. 4, pp. 107-117, July-August 2002.

26) S.C. Smith, R.F. DeMara, J.S. Yuan, D. Ferguson and D. Lamb,

“Optimization of null convention self-timed circuits,” Integration, the

VLSI Journal, vol. 37, no. 3, pp. 135-165, August 2004.

27) P. Prasad and K.K. Parhi, “Low-power 4-2 and 5-2 compressors,” Proc.

35th Asilomar Conference on Signals, Systems and Computers, vol. 1,

2001, pp. 129-133.

28) P. Balasubramanian and D.A. Edwards, “Self-timed realization of

combinational logic,” Proc. 19th International Workshop on Logic and

Synthesis, pp. 55-62, 2010.

29) P. Balasubramanian and D.A. Edwards, “A new design technique for

weakly indicating function blocks,” Proc. 11th IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems, pp. 116-

121, 2008.

30) K.M. Fant and G.E. Sobelman, “Null convention threshold gate,” US

Patent 5664211, February 1997.

31) K.M. Fant and S.A. Brandt, “Null convention logic system,” US Patent

5828228, October 1998.

32) J. Sparso and J. Staunstrup, “Delay-insensitive multi-ring structures,”

Integration, the VLSI Journal, vol. 15, pp. 313-340, 1993.

33) J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A.

Yakovlev, “Petrify: a tool for manipulating concurrent specifications

and synthesis of asynchronous controllers,” IEICE Trans. on

Information and Systems, vol. E80-D, no. 3, pp. 315-325, 1997.

34) W.B. Toms, D.A. Edwards, “Efficient synthesis of speed-independent

combinational logic circuits,” Proc. 10th Asia and South Pacific Design

Automation Conference, pp. 1022-1026, 2005.

35) W.B. Toms, “Synthesis of quasi-delay-insensitive datapath circuits,”

PhD Thesis, University of Manchester, 2006.

36) P. Balasubramanian and D.A. Edwards, “A delay efficient robust self-

timed full adder,” Proc. 3rd IEEE International Design and Test

Workshop, pp. 129-134, 2008.

37) P. Balasubramanian, N.E. Mastorakis, “Analyzing the impact of local

and global indication on a self-timed system,” Proc. 5th European

Computing Conference, pp. 85-91, 2011.

38) J. Sparso and S.B. Furber (Eds.), Principles of Asynchronous Circuit

Design: A Systems Perspective, Kluwer Academic Publishers, 2001.

39) A.J. Martin and M. Nystrom, “Asynchronous techniques for system-on-

chip design,” Proc. of the IEEE, vol. 94, no. 6, pp. 1089-1120, June

2006.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 11

