
 

 

  

Abstract—Self-timed addition of multiple data operands is 

discussed in this paper. Though there are various works in the 

existing literature targeting dual-operand addition, multiple operand 

addition has not been exclusively dealt with. In this context, this 

paper throws light on two important concepts – i) presenting a bit-

partitioning scheme that divides input data into groups where 

additions within the individual groups are carried out in parallel, and 

ii) proposing novel and efficient (4:2) logic compressor realizations 

corresponding to weak-indication and robust early output timing 

regimes. An analysis of the efficiency of addition for a significant 

case study involving 8 input data, each of size 32-bits, is performed 

with carry save adders or logic compressors employed for the input 

field partitions. The simulation results show the proposed early 

propagative compressor design effectively optimizing the power-

delay-area design envelope.  

 

Keywords— Self-timed, Multi-input addition, Carry save adder, 

Logic compressor, Indication, Early propagation, Standard cells.  

I. INTRODUCTION 

ELIABILITY is labelled as one of the five crosscutting 

design challenges in the Semiconductor Industry 

Association’s 2008 international technology roadmap on 

design [1], which drives home the point that ‘robustness’ is 

becoming an increasing priority for digital logic design in ultra 

deep submicron technologies. In this scenario, self-timed 

design attracts attention on account of its inherent capability to 

tolerate supply voltage, process parameter and temperature 

variations [2]. Due to the absence of a global clock reference, 

self-timed circuits exhibit better noise and electro-magnetic 

compatibility properties compared to their synchronous 

counterparts [3]. In addition, they are modular permitting 

convenient design reuse [4], which is important since design 

reuse as a percentage of overall logic is expected to be 55% by 

2020 [1].  

This paper deals with self-timed addition of multiple input 

operands based on a bit-partitioning scheme that utilizes either 

carry save adders (CSAs) or logic compressors for the input 
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partitions. Nevertheless, the focus is on novel synthesis of 

asynchronous logic compressors pertaining to weak-indication 

and early output timing regimes. To the best of our knowledge, 

this article is the first work dealing exclusively with self-timed 

addition of multiple data operands. The remainder of this 

paper is organized as follows. Section 2 briefly summarizes the 

various timing models adopted, discusses the attributes of a 

function block and describes a widely used robust 

asynchronous signaling convention viz. the 4-phase 

handshaking. Various logic tree structures available for multi-

operand addition are discussed briefly in Section 3. Next, a 

bit-partitioning strategy that parallelizes the addition of 

multiple operands of arbitrary size is illustrated in Section 4 

that utilizes either CSAs or logic compressors for the input 

field partitions. In Section 5, an evaluation of self-timed 

addition involving multiple data operands is performed by 

considering a significant case study of addition of 8 input data, 

each of size 32-bits. The efficiency of CSAs and compressors 

for this multi-operand addition scenario is evaluated on the 

basis of power, delay and area. Finally, the concluding remarks 

are made in Section 6.  

II. FUNDAMENTALS OF INPUT/OUTPUT MODE CIRCUITS 

A. Timing Models 

The following circuit models adhere to input/output mode, 

with no timing assumptions imposed on when the environment 

should respond to the circuit – a) delay-insensitive (DI), b) 

quasi-delay-insensitive (QDI), and c) speed-independent (SI).  

A DI circuit guarantees correct normal operation 

irrespective of the delays of its gates and the delays 

encountered in the communicating signal wires, i.e. unbounded 

(arbitrary, but positive and finite) gate delay and wire delay 

models are considered. This is the most robust of all 

unbounded delay models and such circuits are guaranteed to 

be correct by construction. It was shown in [5] that C-elements 

and inverters are the only DI elements and so unfortunately, 

the class of pure DI circuits would be very limited when 

considering only these two logical operators.  

DI circuits with isochronic fork assumptions [5] are referred 

to as QDI circuits; it is not necessary that every fork should be 

an isochronic fork in a QDI circuit. The isochronic fork 

assumption has been defined in [5] as follows: “In an 

isochronic fork, when a transition on one output is 

acknowledged, and thus completed, the transitions on all 

outputs are acknowledged, and thus completed”. A recent 

work by Martin et al. [6] shows that the main building blocks 

of QDI logic, including realization of the isochronicity 

Self-Timed Multi-Operand Addition 

P. Balasubramanian, D. A. Edwards, and W. B. Toms 

R 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 1



 

 

assumption, can be successfully implemented even in nano-

CMOS technologies where stricter design rules and larger 

parametric variations could be anticipated. This is an 

encouraging pointer towards the feasibility of the QDI design 

paradigm in the nano-CMOS era. Similar to the DI circuit, the 

QDI circuit conforms to unbounded delay model for gates and 

wires but with the exclusion of isochronic forks.  

A SI circuit operates correctly regardless of gate delays; 

wires are assumed to have no or negligible delay – hence, 

unbounded gate delay and bounded wire delay. Every fork is 

assumed to be an isochronic fork in a SI logic circuit. 

Technically, wire delays are typically accounted for in the 

components (gates) according to this timing model and 

consequently wires are assumed to be ideal (i.e. zero delay).  

Referring to the circuit fragment in figure 1(a), dg1, dg2 and 

dg3 represent the propagation delay of gates g1, g2 and g3 

respectively, while dw1, dw2 and dw3 signify the delay values of 

corresponding nets. For the DI delay model, dg1, dg2, dg3, dw1, 

dw2 and dw3 can be arbitrary, while in case of the QDI delay 

model; dw2 is assumed to be equal to dw3 with node f being 

labelled as an isochronic fork junction. According to the SI 

timing delay model, dw1 = dw2 = dw3 = 0, but the wire delays are 

accounted for in the delay of gate g1, whose output acts as an 

input for gates g2 and g3. Hence the delay of gate g1 is 

modeled as (dg1+dw1+dw2) or (dg1+dw1+dw3) as shown in figure 

1(b).  

 

 

Fig. 1 Illustration of DI, QDI and SI delay models 

B. Function Block 

Seitz classified the function block, which is the 

asynchronous equivalent of a synchronous combinational logic 

circuit into two robust categories based on their indicating 

(acknowledging) mechanism as strongly indicating or weakly 

indicating [7]. A strong-indication function block waits for all 

of its inputs (valid/spacer) to arrive before it starts to compute 

and produce any output (valid/spacer). On the other hand, a 

weak-indication function block starts to compute and produce 

outputs (valid/spacer) even with a subset of the inputs 

(valid/spacer). However, Seitz's weak timing specifications 

require that at least one output (valid/spacer) should not have 

been produced until after all inputs (valid/spacer) have arrived. 

Given these, when small indicating function blocks are 

interconnected to compose a larger indicating function block, 

such as cascading of full adder modules to construct an n-bit 

adder, weakly indicating realizations are preferred compared 

to strongly indicating ones. This is because the former’s 

performance is data-dependent while the latter’s performance 

is always bound by worst-case latency. The signaling scheme 

for strong and weak-indication timing regimes in terms of their 

input and output behavior is shown in figure 2.  

 

 

Fig. 2 Portraying strong and weak indication timing constraints 

 

Function blocks can also be non-indicating at the expense of 

being non-robust. The dual-rail combinational logic style [8] 

[9] of realizing function blocks belongs to this category. The 

dual-rail combinational logic (DRCL) style utilizes De-

Morgan's theorems of Boolean algebra to implement a 

combinational logic circuit in an asynchronous style by 

replacing each gate by its dual-rail equivalent (dual-rail pair). 

For example, given a logic function F = ab + cd, the dual-rail 

equivalent expressions are specified as: F1 = a1b1 + c1d1 and 

F0 = (a0 + b0) (c0 + d0). The gate level realization of the 

dual-rail combinational equivalent of F is shown below.  
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Fig. 3 Dual-rail combinational equivalent realization of F = ab + cd 

 

Let us consider two scenarios corresponding to the dual-rail 

combinational equivalent of a Boolean function, F, to clarify 

the necessity for ensuring proper indication of signal events at 

the primary inputs as well as at the intermediate output nodes, 

and to describe how wire and gate orphans could possibly 

arise. Assuming all data inputs to be currently spacers (zeroes), 

when a0 and c0 become defined (logic 1), intermediate signals 

x0 and y0 would become defined and eventually F0 would 

become defined. Assuming that b0 and d0 also become 

defined subsequently, these transitions would not be 

acknowledged by the intermediate signals (x0 and y0) or by 

the corresponding output in the present evaluation phase 

resulting in wire orphans.  Let us assume that a1 and b1 

become defined after a return-to-zero phase. This would lead 

to defining of the intermediate signal x1. Assuming that c1 and 

d1 also become defined subsequently during the current 

evaluation phase, F1 could have become defined as a result of 

x1 alone becoming defined, and hence a late transition on y1 

would not be acknowledged by the primary output giving rise 

to a gate orphan. From the preceding discussions, it should be 

clear that the DRCL realization is non-indicating and it 

conforms to eager evaluation owing to the fact that even with 

a subset of the function block inputs becoming 

defined/undefined all of the function block outputs could 

become defined/undefined regardless of the late arriving 

inputs. Hence the DRCL style is not strongly or weakly 

indicating but is early propagative, i.e. early set and/or reset 

could occur. Therefore, great care should be taken to 

circumvent the problem of orphans that could arise in an early 

output circuit. However, this can be tackled at both the 

technology-independent and technology-dependent logic 

optimization stages. Nevertheless, early output function blocks 

are generally faster than their input-complete counterparts.  

Robust function block designs adhere to a 4-phase 

handshaking convention for simplicity of implementation and 

can employ any DI data-encoding scheme, with the dual-rail 

data-encoding scheme being widely preferred. In this scheme, 

each data wire d is represented using two data wires, d
0
 and d

1
, 

with the request signal embedded within the data wires. A low-

to-high transition on the d
0
 wire indicates that a zero has been 

transmitted, while a low-to-high transition on the d
1
 wire 

indicates that a one has been transmitted. Since the request is 

embedded within the data wires, a transition on either d
0
 or d

1
 

informs the receiver about the validity of the data. The 

condition of both d
0
 and d

1
 being a zero at the same time is 

referred to as the spacer (empty state). Both d
0
 and d

1
 are not 

allowed to transition simultaneously as it is illegal and invalid, 

since the coding scheme is unordered, i.e. no code word is a 

subset of another code word.  

 

 
Fig. 4 Dual-rail data encoding and 4-phase handshaking 

 

    Referring to the figure 4, the 4-phase handshake protocol is 

explained as follows
1
:  

• The dual-rail data bus is initially in the spacer state. 

The sender transmits the code word (valid data). This 

results in 'low' to 'high' transitions on the bus wires, 

which correspond to non-zero bits of the codeword  

• After the receiver receives the codeword, it drives the 

ackout (ackin) wire 'high' ('low') 

• The sender waits for the ackin to go 'low' and then 

resets the data bus (i.e. spacer state)  

• After an unbounded, but finite (positive) amount of 

time, the receiver drives the ackout (ackin) wire ‘low’ 

(‘high’). A single transaction is now said to be 

complete and the system is ready to resume the next 

transaction 

III. TREE STRUCTURES – A REVIEW 

Multiple inputs addition is an operation widely prevalent in 

both multiplication and computation of vector inner products 

[10] [11]. The carry save adder (CSA) is useful for handling 

addition of many numbers and is therefore suitable for 

building multipliers and digital filters where complicated 

additions are required. Unlike the basic carry-propagate adder 

(CPA), also known as the ripple carry adder (RCA), in a CSA, 

the carry output signal of the current bit at a level is not 

transferred to the next-bit adder of the same level as the carry 

input signal; instead it is transferred to the next-bit adder in the 

lower level as the carry input signal. A CSA tree can reduce n 

binary numbers to two numbers in O(log n) levels [11]. A fast 

logarithmic time dual-operand adder can then be used to add 

the two resulting numbers. Hence, CSAs were predominantly 

used in various tree structures for performing multi-input 

addition.  

The rudimentary tree structure, also called the iterative CSA 

array [10], is a straightforward way to accumulate partial 

products. Indeed, an n-operand array would consist of ( 2−n ) 

CSAs and a final CPA stage. As a result, the time complexity 

of the fundamental array topology would be the summation of 

propagation delay of the CSA tree governed by a height of 

( 2−n ) and the propagation delay associated with the CPA 

 
1 The explanation remains valid for data representation using any DI data-

encoding scheme.  
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stage which is approximately linear. Wallace trees [12] are 

known for their optimal computation time. In fact, they 

represent the theoretically fastest adders when reducing 

multiple operands to two outputs using CSA trees [13]. In 

Wallace trees, the number of operands is reduced at the 

earliest opportunity by employing 
3

n  full adders for all the m 

columns, where ‘n’ specifies the number of single-rail data 

operands and ‘m’ denotes the size of each operand. This 

procedure tends to minimize the overall delay by making the 

final CPA stage as compact as possible. Although the Wallace 

tree guarantees the lowest overall delay, it requires the largest 

number of wiring tracks (vertical feed-throughs between 

adjacent bit-slices), thereby compounding their wiring 

complexity [14]. The iterative CSA array and Wallace trees 

represent two possible extremes in the spectrum of multi-

operand addition [11]. While the former features the simplest 

and regular structure, it is also the slowest; the latter is the 

fastest, but is also the most difficult structure to implement. 

Other tree structures proposed for multi-operand addition lie 

between these two extremes permitting tradeoffs between 

regularity and speed [10]. While Wallace used a word-level 

description of his trees, Dadda gave a refined presentation of 

the same concept at the bit-level [15]. In Dadda trees, the 

number of operands is reduced to the next lower number in 

comparison with the Wallace tree using the fewest number of 

full adders and half adders possible, i.e. combining of partial 

product bits takes place as late as possible and this usually 

leads to a simple CSA tree unlike Wallace’s method where 

partial products are combined at the earliest opportunity. The 

former strategy minimizes the number of full adders and half 

adders at the expense of a wider CPA structure, while the latter 

tends to make the width of the final CPA smaller. Wallace’s 

and Dadda’s strategies for constructing CSA trees give rise to 

Wallace and Dadda tree multipliers. An analysis of Dadda and 

Wallace multiplier delays was performed for different 

multiplier sizes [16], and it was found that the former showed 

improvement in speed compared to the latter by 9%-14%; 

however, this work assumed the presence of only discrete logic 

gates (AND2, OR2 and INV cells). It has been clarified in [11] 

that the above strategies which achieve logarithmic depth 

reduction based on CSA trees tend to suffer from the drawback 

of an irregular structure that subsequently complicates the 

design and layout. Additionally, connections of varying 

lengths and complex signal paths lead to logic hazards and 

signal skew in synchronous designs that would have negative 

implications for power and performance parameters. 

Overturned-stairs (OS) tree structures [17] can be designed 

systematically paving the way for a simple and regular 

interconnection scheme in comparison with the Wallace tree 

whilst achieving similar speed performance in certain cases. 

The balanced delay tree [18], on the other hand, requires the 

smallest number of wiring tracks but suffer from an increased 

delay compared to the OS trees. Nevertheless, it has been 

widely understood that iterated or recursive structures that 

would feature a greater degree of structural regularity, less 

hardware complexity and promise high-speed such as those 

incorporating parallel counters or logic compressors are 

preferable compared to CSA based tree structures [10] [11] 

[13] [17] [19] [20]. It is to be noted in this context that tree 

structures are also useful for evaluating the performance 

potential of arithmetic building blocks [21].  

IV. BIT-PARTITIONING SCHEME 

In CSAs, row-wise parallel addition is performed where the 

tree height grows with the increase in the number of input 

operands by an approximate linear order. Here, a bit-

partitioning strategy is considered which involves splitting up 

the entire group of operands horizontally into sub-groups as 

desired, and the results of the sub-groups are then added to 

produce the final sum. The bit-partitioning approach 

parallelizes the multi-input addition operation and is illustrated 

through figure 5, where addition of n binary operands with 

each operand of size m bits is considered, while assuming n to 

be even. A ‘dot’ represents a bit position in the figure below. 

 

Σ

 
Fig. 5 Illustration of bit-partitioned multiple input addition strategy 

 

The entire set of input operands ( 10 ,....,
−naa ) is divided 

into two equal-sized groups, namely X_field (that comprises 

inputs, 2)1(0 ,...,
−naa ) and Y_field (consisting of inputs, 

12)1( ,...,
−+ nn aa ). Addition within the individual fields can be 

performed using either CSAs or logic compressors. The sum 

bits generated from these individual fields can be added 

together using a two-operand adder. Herein, we use a RCA for 

performing summation of the outputs of X and Y data fields. 

In general, the combinatorial bit-partitioning procedure 

might effect a slight improvement in delay when many 

operands have to be added by way of performing parallel 

column wise addition of row-wise partitions. For example, 

considering the addition of 32 data operands, each of size 32-

bits, the critical path delay of the multi-operand adder equates 

to 8 full adder delays (assuming the Wallace bound) and the 
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delay of a 36-bit RCA stage. On the other hand, with eight 

equal-sized input field partitions, the maximum path delay 

could be reduced by 2 full adder delays. If say 16 operands are 

to be added, they could be initially partitioned into 4 fields 

(say, V, W, X and Y). The outputs of input fields V and W can 

be combined into an intermediate output field; likewise with 

input fields X and Y. The sum outputs corresponding to the 

intermediate output fields can then be added to obtain the 

desired final result. Alternatively, the outputs of the four input 

fields can be added together using a single multi-operand 

adder to produce the required result. It should be noted that 

additions within the partitions would be carried out in parallel, 

while the final adder stage comprising a simple CPA could 

perform serial computation. Thus the bit-partitioning 

procedure is scalable and may benefit in terms of latency 

reduction as opposed to employing conventional combinatorial 

tree type structures for problems of higher dimensions. Also, a 

high regularity would be implicit within the overall 

architecture as the gate level input partition hardware 

structures are being duplicated. We shall now discuss about 

self-timed CSAs and logic compressors in the following sub-

sections, as employed for the input field partitions.  

A. CSA Based Multi-Operand Addition  

Figure 6 shows the self-timed equivalent of a traditional 

synchronous CSA structure used for the addition of four dual-

rail encoded binary numbers (a,b,c,d), each of size n bits, and 

the (n+1) sum outputs produced are also in dual-rail format. 

Inputs and outputs with subscript zero correspond to the least 

significant bits and those with the maximum subscript notation 

represent the most significant bits. As shown in figure 6, there 

are three adders in three levels – two levels of CSAs and one 

level of RCA to add four input operands. In each CSA, the 

output carry signal of the current bit at a level is not 

transferred to the next bit adder of the same level as the input 

carry. Instead, the output carry is transferred to the next bit 

adder in the lower level as the carry input signal. In the top-

level adder, three numbers (a,b,c) are added simultaneously, 

i.e. the bits corresponding to any number could act as the input 

carries for the full adders of the first level CSA. In the next 

lower level, an extra number (d) is added. The adder in the 

bottom level is a conventional carry-ripple adder that produces 

the final sum. The propagation delay of the entire multi-

operand adder is equal to the sum of the delay of two full 

adder cells in the first two levels and the delay associated with 

the RCA at the final level.  

 

 
Fig. 6 Self-timed version of n-bit CSA to add four data operands 

   

B. Compressor Based Multi-Operand Addition 

Rather than using CSAs for the partitions, logic compressors 

can be employed for adding multiple input operands as shown 

in figure 7. The (4:2) logic compressor [22] usually takes in 

five inputs (four inputs in the absence of an input carry) 

including a carry input from the preceding stage and produces 

three outputs – two carry outputs, with one carry (ICarry) 

propagating as a carry input to the compressor block of the 

next column in the same row, while the sum (Sum) and carry 

(Cout) outputs are fed as inputs to the final RCA stage. In 

essence, it is a 5-bit column adder [11]. 

 

a0

2

b0 c0 d0

2 2 2

a1

2

b1 c1 d1

2 2 2

(4:2) logic 

compressor

(4:2) logic 

compressor

(4:2) logic 

compressor
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2 2 2 2

Sum0

2

Half 

adder

Sum1

Full 

adder

Full 
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Sumn+1SumnSumn-1

2 2 2 2

2 2 2 2

2 2 2

2
2

2 2 2

2

bn-1 cn-1 dn-1

Sum Cout

ICarry

 
Fig. 7 Self-timed logic compressor based n-bit multi-input adder to 

add 4 data operands 

 

The efficient realization of a (4:2) compressor block is 

important for multi-operand addition. It is usual practice to 

realize compressors using full adder blocks [11] [19] that 

constitutes a scalable approach rather than synthesizing them 

as a single block – this is owing to the input space demand. 

For a linear increase in the number of inputs by O(n), the input 

state space expands by an exponential order of O(2
n
). A 

typical (4:2) compressor design [23] using two full adder 

modules is shown in figure 8. The self-timed version of a (4:2) 
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compressor can be derived by replacement of the synchronous 

full adder modules with equivalent self-timed blocks, as is the 

case with Null Convention Logic (NCL) approaches [24] [25]. 

It may be noticeable that the compressor shown in figure 8 

treats a full adder as a CSA and thus the compressor logic is 

equivalent to that realized by the CSA tree (first two levels, 

preceding the RCA stage) of figure 6. Alternatively, a (4:2) 

compressor can be realized using discrete gates as shown in 

figure 9 [27].  

 

 
Fig. 8 A synchronous logic compressor realized using full adders 

 

 
Fig. 9 A synchronous (4:2) compressor based on discrete gates 

 

The weak-indication synthesis of the (4:2) compressor (with 

input carry), shown in figure 10, may be thought of as a 

translation of the synchronous version depicted in figure 9. 

However, this differs from all the NCL methods, which are 

actually founded upon the DRCL style, where the encoded 

outputs are duals of each other. In case of the proposed design, 

however, the encoded outputs make use of disjunctive normal 

expressions for implementing the outputs.  

 

CC

a0a1b0 b1
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a0a1b1 b0

CC

c0c1d0 d1
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Fig. 10 Weakly indicating (4:2) logic compressor with carry input 

 

Three steps are involved in the proposed compressor 

synthesis – i) deriving the irredundant disjoint sum-of-products 

form of the dual-rail logic compressor functionality [28], ii) 

speed-independent decomposition of logic to facilitate 

physical realization using standard cells [29], and iii) 

performing logic optimizations to pave the way for latency 

reduction. Comparison with NCL designs [24] – [26] is not 

considered here since the technology mapping procedure 

would require access to proprietary NCL macros [30] [31]. In 

the figures, the Muller C-element
2
 is represented by the AND 

gate symbol with the marking C on its periphery. The multi-

level expressions corresponding to the proposed dual-rail 

encoded logic compressor design shown in figure 10 are given 

below. Henceforth, this compressor realization shall be 

referred to as the ‘Sync_ST_compressor’ in the following 

discussions. Given these, the synthesis of a compressor module 

without input carry would be rather straightforward and is 

shown in figure 11. 

 

 
2 The C-element governs the rendezvous of input signals. The C-gate outputs 

a 1(0) if all its inputs are 1(0) respectively, otherwise it maintains its existing 

steady state.  
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Fig. 11 Weak-indication (4:2) logic compressor without carry input 

 

Sum1 = w3
0
cin1 + w3

1
cin0                                              (1) 

Sum0 = w3
0
cin0 + w3

1
cin1                                              (2) 

ICarry1 = d1w3
0
 + cin1w3

1
                                              (3) 

ICarry0 = d0w3
0
 + cin0w3

1
                                              (4) 

Cout1 = a1w1
0
 + c1w1

1
                                                   (5) 

Cout0 = a0w1
0
 + c0w1

1
                                                   (6) 

From figures 10 and 11, it may be apparent that the self-

timed compressor realizations correspond to the weak-

indication timing discipline, with the sum outputs being 

assigned the responsibility of indicating the arrival of all the 

primary inputs and the intermediate outputs, while the carry 

outputs are allowed to be set/reset in an eager or early output 

fashion.  

The logically equivalent early propagative synthesized 

versions of the self-timed (4:2) logic compressor, shown in 

figures 10 and 11, are portrayed by figures 12 and 13 

respectively. These are derived by resorting to further 

peephole logic optimizations of the weak-indication equivalent 

as a post-processing step facilitating the usage of more 

complex gates. For example, comparing figures 10 and 12, it is 

evident that the logic corresponding to the intermediate 

outputs (w1
0
, w1

1
) and (w2

0
, w2

1
) has been realized using 

AO22 cells in the latter while C-gates and OR gates are 

present in the former. Since early output logic modules tend to 

be set/reset in an eager fashion, the indication of their inputs is 

taken care of by their associated completion detection circuit – 

this is discussed in the next section.   

 

 
Fig. 12 Early output (4:2) logic compressor with carry input 
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Fig. 13 Early output (4:2) logic compressor without carry input 

V. SIMULATION RESULTS 

In order to analyze the efficacy of CSAs and compressors 

forming part of the partitions in case of a multi-operand adder, 

an example scenario of self-timed addition of 8 input data 

operands, each of size 32 bits was considered. The inputs were 

divided into two equal input fields containing 4 operands each 

and the individual summation result of these two partitions 

gives rise to 34 intermediate sum outputs. These were 

subsequently added using a 34-bit RCA to generate the final 

result that consists of 35 sum outputs. The delay, area and 

power parameters of this bit-partitioned addition process, 

assuming CSAs for the input field partitions are given in Table 

1. The delay parameter refers to the maximum propagation 

delay encountered in the data path, which approximately 

equals the latency of the function block. The delay metric was 

estimated using PrimeTime. To avoid the notion of a clock 

source, the option of a virtual clock was used that only acts as 

a remote reference to constrain the input and output ports of 

the design. The area and power metrics correspond to the input 

registers, completion detection logic and the function block. 

The delay and power metrics consider estimated parasitics in 

addition to the parameters associated with the actual 

components. The area metric gives a combined account of the 

area of all the logic cells and was estimated as part of the 

PrimeTime tool suite. The total/average power dissipation is 

the summation of dynamic and static power components, 

where dynamic power is in turn the gross of switching and 

internal power consumption figures. NC-Sim has been used for 

functional simulation and also to obtain the switching activity 

files corresponding to the gate level simulations of Verilog 

descriptions. Input data were supplied to the function blocks at 

specific intervals through test benches, which modeled the 

environment. The switching activity files obtained were 

subsequently used for power estimation using PrimeTime PX. 

The simulations targeted a PVT corner of the 130nm bulk 

CMOS standard cell library with a supply voltage of 1.32V 

and a junction temperature of -40°C. All the circuit inputs 

were configured to possess the driving strength of the 

minimum sized inverter of the cell library, while the outputs 

were associated with fanout-of-4 drive strength. Suitable 

buffering for the acknowledge input was provided where 

necessary to eliminate timing violations. Since identical 

registers and a similar completion detection circuit were used 

for all the adder realizations, the area and power metrics can 

be correlated with that of the function block, thus paving the 

way for a legitimate comparison between different self-timed 

logic realization methods. Random input data sequences were 

used for the adder simulations and they were supplied at time 

intervals of 25ns to the function blocks. Weak-indication 

adders corresponding to various self-timed design methods 

were constructed and were also subsequently optimized for 

minimum latency taking into account the library constraints
3
.  

The optimal values of design metrics achieved by a specific 

self-timed design method are highlighted in bold-face in the 

Tables. From Table 1, it is clear that with respect to delay and 

area SSSC_CSA is optimal. However, in terms of total power 

Toms_CSA betters the SSSC_CSA by reducing power to the 

tune of 12.5%. Nevertheless, the latter minimizes critical path 

delay and area occupancy by 36.2% and 7.3% respectively. 

Moreover, the SSSC_CSA being a weak-indication adder 

reduces the cycle time for passage of data-spacer wave fronts 

while Toms_CSA being a strongly indicating adder encounters 

maximum latency for both valid data and spacers.     

 

Table 1. Delay, area and power parameters corresponding to bit-

partitioned CSA based self-timed addition of 8 inputs (size 32 bits) 

Multi-input adder  

realization style 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Seitz_CSA [7] 9.2 45805 3068.3 

DIMS_CSA [32] 16.6 66303 3245.0 

Petrify_CSA [33] 9.7 42701 2943.5 

Toms_CSA [34] [35] 14.1 44866 2397.3 

SSSC_CSA [36] 9.0 41586 2740.6 

 

Compressor designs based on a number of self-timed logic 

realization methods were found to exacerbate the area 

requirement and this eventually has an adverse impact on delay 

 
3 A 130nm bulk CMOS standard cell library was used. The fan-in of AND 

gates and OR gates in the library is 4 and 3 respectively. The C-element has a 

granularity of up to 4 inputs.  
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and power metrics due to an increase in the number of logic 

levels and requirement of more library cells. This is because 

the (4:2) compressor logic would quadruple the input space 

consideration in comparison with a full adder block. Figure 14 

gives a graphical sketch of the area expenditure of various 

self-timed compressor realizations. The values on the y-axis 

signify the area occupancy in micrometer square, while the 

different compressor realization styles are mentioned in the x-

axis. The values specified above the vertical bars of the bar 

chart signify the area figures for a cell-based implementation. 

Indeed, the area figures correspond to optimized designs. 

 

 
Fig. 14 Area comparison of (4:2) asynchronous compressors 

 

The design metrics corresponding to bit-partitioned multi-

operand addition that considers logic compressors for the input 

partitions are given in Table 2. (4:2) logic compressors based 

on Seitz, DIMS and Toms approaches were constructed in a 

semi-custom design style with delay-oriented logic 

optimizations resorted to where feasible. The DIMS weak-

indication compressor design involved only speed-independent 

logic decomposition, while Seitz’s weak-indication 

compressor entailed speed-independent logic decomposition of 

higher fan-in AND gates and replacement of second-level 

AND gates by C-gates to ensure gate orphan freedom. 

Moreover, Seitz’s and Petrify design methods incorporate 

timing assumptions in inputs completion detection.  

 

Table 2. Delay, area and power metrics corresponding to bit-

partitioned compressor based self-timed addition of 8 data inputs, 

each of size 32 bits 

Multi-operand adder 

(compressor based) 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Seitz_compressor  

[7] 

9.7  

(12.8%) 

77611  

(2.18×) 

3605.3 

(53.9%) 

DIMS_compressor  

[32] 

17.3 

(101.2%) 

111757 

(3.14×) 

3974.4 

(69.7%) 

Toms_compressor  

[34] [35] 

22.5 

(161.6%) 

51950  

(1.46×)  

2418.5  

(3.3%) 

Sync_ST_compressor  

(weak-indication)  

8.8  

(2.3%) 

40608  

(1.14×) 

2588.6 

(10.5%) 

Sync_ST_compressor 

(robust early)  

8.6 35568 2341.6 

 

The common point between the Sync_ST_compressor 

(weak-indication) and Sync_ST_compressor (robust early) 

realizations is that both these guarantee gate-orphan freedom. 

The problem of wire orphans is nullified by the isochronic fork 

assumptions. However, the primary point of distinction 

between the Sync_ST_compressor (weakly indicating) and the 

Sync_ST_compressor (robust early) design is that the former 

leads to a locally indicating self-timed system architecture, 

where the function block individually acknowledges the arrival 

of the primary inputs, while the latter facilitates a self-timed 

system configuration which is globally indicating with respect 

to acknowledging the arrival of the primary inputs [37]. This is 

because, in case of the latter, the function block computes in 

an eager fashion and therefore the completion detection logic 

preceding it becomes responsible for indicating the arrival of 

primary inputs into the function block, as portrayed by the 

system architecture in figure 15. Given this, isochronicity is 

assumed with regard to the primary inputs that are fed into the 

early output function block and the completion detection 

circuit associated with a stage.  

 

 
Fig. 15 A typical self-timed system architecture 

 

The operation of the above self-timed system configuration 

is explained as follows. Let us consider that all the registers 

are initially in the spacer (empty) state and therefore the 

acknowledge signals ackout_ns and ackin_cs would assume 

logic ‘low’ and logic ‘high’ states respectively. Thus the 

current stage register would be active and ready to accept a 

new set of valid data. When the inputs become defined, valid 

data would be passed through the current stage register onto 

the function block for processing and the function block 

outputs would reach the next stage register in the pipeline. The 

completion detection logic [38] performs the 

validity/neutrality tests of the input codeword during the set 

and reset phases respectively [39]. With respect to dual-rail 

encoding, the completion detector would have an OR gate 

assigned for each dual-rail input and the outputs of all such OR 

gates would be synchronized by means of a C-element tree. 

The completion detector associated with the current stage 

register would check the validity of the data at its inputs and 

subsequently asserts the ackout_cs signal to logic ‘high’ if the 

check is true. This signal disables the previous register and 

prepares it for storing the spacer data wave front. Thus it paves 
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the way for flushing the function block by permitting spacer 

data through the current stage register. The collision between 

two data wave fronts is avoided by means of alternating set 

and reset phases (i.e. through the valid data-spacer-valid data 

sequence) according to the 4-phase handshaking convention.  

The increase in data path delay, total power dissipation and 

relative increase in area occupancy of all the multi-input 

adders in comparison with the Sync_ST_compressor (robust 

early) based multi-input adder is highlighted in Table 2 within 

brackets for a quick comparison. Comparing Tables 1 and 2, it 

can be inferred that the bit-partitioned multi-input adder 

employing CSAs rather than logic compressors for the 

partitions are preferable with respect to power, delay and area 

in the case of Seitz, DIMS and Toms approaches. This is 

owing to the greater input space consideration for a direct 

compressor realization as opposed to a full adder based 

realization. The Sync_ST_compressor (robust early) based 

multi-input adder features less latency and area occupancy in 

comparison with the SSSC_CSA based multi-input adder by 

4.4% and 14.5% respectively. Even in terms of total power 

dissipation, the Sync_ST_compressor (robust early) based 

multi-input adder is preferable compared to Toms_CSA based 

multi-input adder owing to a reduced power consumption of 

2.3%. Therefore, the Sync_ST_compressor (robust early) 

based multi-operand adder is found to be an efficient design 

with respect to simultaneous optimization of the power-delay-

area envelope.  

It has also been observed from the simulations that usage of 

a hybrid input encoding scheme for self-timed multi-input 

adders, by way of employing a mixture of DI data encoding 

(say, dual-rail and 1-of-4 codes), results in increase of delay, 

area and power over pure dual-rail encoded counterparts. This 

is most likely due to the reason that only the primary inputs of 

the multi-operand adder can be grouped together and encoded 

using the hybrid input encoding mechanism, while all the 

intermediate and primary outputs necessitate maintaining of 

the dual-rail convention. The reductions in power dissipation 

and area metrics gained by the hybrid input encoded 

compressor logic tends to be nullified by the extra power 

dissipation and area occupancy of its associated encoding 

circuitry. Hence, encoding of the primary inputs in a 

heterogeneous fashion does not appear to have a beneficial 

impact on the resultant multi-input adder implementations. 

This effect is likely even in case of bit-partitioned multi-input 

adder that employs CSAs for the input field partitions. Hence 

it is opined that dual-rail encoding might be an optimum DI 

data encoding mechanism for effectively implementing self-

timed multi-operand addition as opposed to any other 

heterogeneous DI data encoding scheme.  

VI. CONCLUSION 

Self-timed addition of multiple data operands based on a 

bit-partitioning strategy was discussed in this paper. The 

impact of CSAs and compressors on the parallel input field 

partitions was analyzed for the case study of a sizeable 

addition operation involving 8 data operands, each of width 32 

bits. It is inferred that the robust Sync_ST_compressor 

realization corresponding to early output logic exhibits a 

superior performance with respect to simultaneous 

optimization of delay, area and power metrics as regards this 

case study, and the Sync_ST_compressor (robust early) could 

serve as an efficient building block from the design viewpoint. 

Hence, it can be potentially used to build optimal higher order 

self-timed multi-operand adders.  
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