
 

 

  

Abstract— In this paper the genetic algorithms is applied to 

automate and optimize the fuzzy controller design process. To do 

this, the normalization parameters, membership functions and 

decision table are converted into binary bit string. This optimization 

requires a predefined objective function. The task of such a design 

algorithm is the modification of the existing knowledge and at the 

same time, the investigation of new feasible structures. The proposed 

approach in this paper is employed for the speed control of an 

induction motor drive with indirect field oriented control. 

 

Keywords— Fuzzy logic controller, Genetic algorithms, Indirect 

field oriented, Induction motor. 

I. INTRODUCTION 

ector control theory, commonly known as control by flux 

orientation, was first established by Siemens’company : 

Blaschke (1972)[1]. It is to impose the offset angle between 

the vector of stator magnetomotive force and the rotor 

flux’one. The result of this is the separation between coupled 

flux (main) and electromagnetic torque. This leads to 

distinguish between the component of stator current that 

controls the coupled flux and the component that governs the 

electromagnetic torque [1], [2]. Thus, we recognize one of 

intrinsic characteristics of the DC motor, namely the torque 

linearity due to orthogonality of vectors and excitation flux 

armature current. 

Today, the new trends in this field now involve the 

application of modern non-linear control techniques to further 

enhance the performance of such controllers as well as 

optimizing drive operation based on a specific requirement [3], 

[4], [5]. 

The research underlying this paper involves the 

development of a novel synthesis methodology to automate 

and at the same time, to optimize the performance of fuzzy 

controllers based on a predefined objective function for any 
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particular application. It also aims, in particular, to design an 

optimal fuzzy controller for induction motor drives with 

indirect field oriented control. Two intelligent techniques were 

used in this paper namely fuzzy logic and genetic algorithms. 

It was in the mid 1960's that a new theory called fuzzy logic 

was proposed which gradually helped to supplement the expert 

systems as another branch of artificial intelligence. L.A. Zadeh 

[6], the originator of this theory, argued that most human 

thinking is fuzzy or imprecise in nature, and therefore, 

Boolean logic which involves distinct “0” and “1” cases 

cannot properly emulate the human thinking process [7]. In 

recent years, Fuzzy logic has emerged as an important artificial 

intelligence tool to characterize and control a system dose 

model is not known, or ill-defined. It has been widely applied 

in process control, estimation, identification, diagnostics, stock 

market prediction, agriculture, military science, etc.  

The fuzzy logic controller (FLC) to be investigated is the 

Mamdani’s type [8], although there exist other types, for 

example, the Sugeno's [9] and the Yamakawa's [10]. 

The genetic algorithm (Holland [11], 1975; Goldberg [12], 

1989) is inspired by nature. In nature, different individuals in a 

population are competing for various resources, including 

mates. The competition is based on the principle of natural 

selection and survival of the fittest, i.e., those individuals 

which are successful in the competition live longer and will 

have more offspring’s, and hence their genetic lines will last 

longer. Genetic Algorithms are basically computational 

method in which the competition and reproduction (evolution) 

which exist in nature are emulated. In these algorithms, 

potential solutions of the problem (phenotypes) are encoded 

into a chromosome like data structure (genotype). The set of 

these genotypes termed population is evolved using different 

genetic operators (e.g., selection, crossover, mutation ...). The 

evolutions of genotypes are such that individuals with higher 

fitness will substitute genotypes of lower fitness [11], [12]. 

This paper is organized as follows: The principle of indirect 

field oriented control is presented in the second part, the fuzzy 

logic speed controller in section three, the genetic algorithm 

optimization based auto-design of fuzzy speed controllers in 

the fourth section, the five part is devoted to illustrate the 

simulation performance of this control approach, a conclusion 

and reference list at the end. 
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II. MATHEMATICAL MODEL OF AN INDUCTION MOTOR WITH 

INDIRECT FIELD ORIENTED CONTROL 

 

The dynamic behavior of an induction motor in the 

synchronously rotating frame can be described by the 

following state equations: 
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The Fig. 1 illustrates the principle of indirect method using 

phase diagram. At any instant, d electrical axis is in angular 

position θe relative to α axis. The angle θe is the result of the 

sum of both rotor angular and slip angular positions, as 

follows: 
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where: 

ω  and θ  are the position and rotor angular velocity; 

slθ and slω are the position and sliding angular velocity. 
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Fig. 1 vector diagram for indirect field oriented control 

 

The rotor flux rΨ
⌢

, which includes a magnetizing flux and a 

rotor leakage flux, coincides with d-axis as shown in Fig. 1. 

So, to control with decoupling, the current ids’s stator flux 

component coincides with d-axis and the current iqs‘s torque 

coincides with q-axis. For control with ideal decoupling, it’s 

need: 

  0, , 0
qr dr

qr dr r
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Using these two first conditions and induction motor 

equations, we have the main equations of indirect vector 

control [2], [21]: 
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III. FUZZY SPEED CONTROLLER 

A conventional PI controller can be described by: 

                  
*

0

( )

t

em p ik e k e t dtΓ = + ∫                              (8) 

where kp and ki are the proportional and the integral gain 

coefficients and e=ωr
*
- ωr is the speed error between the 

command speed ωr
* 

and the actual motor speed ωr. If the 

above integral equation is converted into a differential 
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equation by taking the derivative with respect to time, the 

equivalent equation will be: 

                             
* . .em p ik e k eΓ = +ɺ ɺ                                 (9) 

The PI controller (9) can be written in a fuzzy rule form as 

follows: 

If e(k) is LVe, and ∆e(k) is LVeɺ , then ∆Γ
*
em(k) is LV Γɺ    (10) 

with LV: linguistic variable 

The most significant variables entering the fuzzy logic 

speed controller have been selected as the speed error (e) and 

its change (eɺ ), the output this controller is 
*

emΓɺ [13], [14]. 

The equation input/output controller FLC written at time (k): 

                  
*( ) ( ) ( )r re k k kω ω= −                             (11) 

                 ( ) ( ) ( 1)e k e k e k= − −ɺ                              (12) 

            
* * *( ) ( 1) ( )em em emk k kΓ = Γ − + Γɺ                     (13) 

 

The principle of this strategy is shown in Fig. 2. 
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Fig. 2 basic structure of the fuzzy logic controller for indirect field oriented control. 

 

The fuzzy sets are characterized by standard designations: 

NB (negative big), NM (negative medium), NS (negative 

small), AZ (approximate zero), PS (positive small), PM 

(positive medium) and PB (positive big).  

Fuzzy distribution is symmetric, and non-equidistant in our 

choice. We have chosen also in our application the triangular-

shaped membership function. Fig. 3 shows the diagram of 

fuzzy. 
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Fig. 3 the shape of membership functions for fuzzy logic controller. 

 

In order to design a universal FLC, we can transform the 

values range in standard ranges. Therefore, the input and 

output gains are introduced: 
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From behavior study of the system closed-loop speed based 

on experience, we can establish the command rules which 

connect output with inputs [15], [7]. As we have seen, there 

are seven fuzzy sets, which imply forty-nine possible 

combinations of these inputs, in which forty-nine rules. The 

rules are like: 

    Rule 1: if e = NB and eɺ = NB then Γɺ  is NB              (15) 

Or 

        Rule 2: if e = NB and eɺ = NM then Γɺ  is NB             (16) 

 

Or … 

         Rule 49: if e = PB and eɺ = PB then Γɺ  is PB             (17) 

They can be presented in a matrix called matrix inference 

shown in the Table I.  

Fuzzy controller with two inputs is represented by its 

characteristic surface (Fig. 4). This latter expresses the real 

value variations of controller output based on input when the 

latter traverse the discourse universe. 

 

Table I: The fuzzy linguistic rule table. 

Γɺ  

e  

NB NM NS ZE PS PM PB 

 

 

 

eɺ  

NB NB NB NB NB NM NS AZ 

NM NB NB NB NM NS AZ PS 

NS NB NB NM NS AZ PS PM 

AZ NB NM NS AZ PS PM PB 

PS NM NS AZ PS PM PB PB 

PM NS AZ PS PM PB PB PB 

PB AZ PS PM PB PB PB PB 

 

 
Fig. 4 control surface for the conventional fuzzy controller. 
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We choose min-max inference method, for each rule, we 

obtain the partial membership function by relation (18) [16], 

[17]: 

   ( )( ) min , ( )
i C ii

R G O Gµ µ µΓ = Γɺ ɺ     i=1,2,…,m       (18) 

where µCi is a membership factor assigned to each rule Ri; 

µOi( ΓG
ɺ ) is the membership function related in operation 

imposed by rule Ri. 

The resulting membership function is then given by [16], 

[17]: 

        ( )
1 2

( ) max ( ), ( ),..., ( )
mG R G R G R Gµ µ µ µΓ = Γ Γ Γɺ ɺ ɺ ɺ      (19) 

The defuzzification process employs the center of gravity 

method. As a result, the control increment is obtained by the 

following formula [16], [7]: 
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IV. GENETIC ALGORITHMS BASED FUZZY LOGIC CONTROLLER 

The genetic algorithm is applied to automate and optimize 

the fuzzy controller design process. This optimization requires 

a predefined objective function. Moreover, the normalization 

parameters, membership functions and decision table are 

converted into binary bit string constructed by cascading.   

An individual bit length is 597 bit and composed of three 

gene block: 

Gene block 1 (Normalization factors): Determine the proper 

domain of the control surface, which represents 10 bit 

normalization factors for speed error, 10 bit normalization for 

speed error derivative, 10 bit denormalization factor for 

control output. 

Gene block 2 (Membership functions): To have complete 

freedom in partitioning the state space, asymmetrical 

membership functions should be chosen that consequently 

suggest three different design parameters, i.e. M1, .M2, and, M3 

for each membership functions (Fig. 5). Let us consider seven 

membership functions for each variable for a controller with 

two inputs, 42 parameters are required to define the entire set 

of membership functions, where every parameter is encoded 

with 10-bit resolution. 

1M

2M

3M

µ

 
Fig. 5 membership function parameters. 

 

Gene block 3 (Decision table): Every consequent part of a 

fuzzy rule should be encoded in a binary form. Since every 

consequent can take on only one of seven different values 

based on Table 1, every consequent can be represented by only 

three bits i.e. 3×49 parameters = 147 bits will represent the 

entire decision table (Fig. 6). 

 

eG ɺeG GΓɺ 1M
2M 3M 42M 1R 2R 3R 49R

 
 

Fig. 6 bit-string representation of entire controller. 

 

Each individual represents a possible solution to the 

problem; a particular fitness function is required for the 

evaluation of the individuals [12], [18]. In this way, for every 

particular chromosome (i.e. each solution), the fitness function 

returns a single numerical value, which indicates the quality of 

that solution. In the context of optimization it is the 

performance index of the closed loop system that becomes the 

fitness function. Our goal is to have a response speed with a 

short rise time, small overshoot, and near-zero steady state 

error. In this respect, a multiple objective function is required: 
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with:  

(1)  Measure of a fast dynamic response; 

(2) The penalty on the multiple overshoot of the response, 

where δ(dz/dt) detects the instances that overshoots (or 

undershoots) occur: 
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and |z
*
-z(t)| determines the response deviation from the 

desired value; 

(3) Measure the steady state error. 

 

The genetic algorithm with the free parameters shown in 

Table II was able to find the near-optimum solution (Table III) 

with a population of 44 individuals, in almost 358 generations 

Fig. 8. This is due to the large number of design parameters 

involved in concurrent optimization. 

The principle of genetic algorithms based fuzzy logic 

controller is shown in Fig. 7. 
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Fig. 7 basic structure of the genetic algorithms based fuzzy logic controller for indirect field oriented control. 

 

 
Fig. 8 speed of convergence. 

 

The optimization algorithm and the motor drive response 

are then verified under loading and unloading conditions. A 

speed command of 50 rd/s at 0.02 s is given to the drive 

system, the full load is applied at 0.2 s; then load is completely 

removed at 0.4 s. and then accelerated further to 100 rd/s, full 

load is applied at 0.8 s; then load is completely removed at 1 s. 

Later, after speed reversal of -50 rd/s at 1.2 s, full load is 

applied at 1.4 s and the load is fully removed at 1.6 s. Fig. 9 

shows the speed optimization result and response of the drive 

system. 

The FLC-GA speed response (Fig. 9) shows that the drive 

can follow the low command speed very quickly and smoothly 

without overshoot, no steady-state error and -Rapid rejection 

of disturbances, with a low dropout speed (Fig. 10 and Table 

IV). The current responses are sinusoidal and balanced, well as 

the decoupling between the flux and torque is verified (Fig. 11 

and 12). 

 

Table III Normalization factors found by genetic algorithms. 

 
eG  eG ɺ  GΓɺ  

FLC 7.58 4.01 5.34 

FLC-GA 3.22 0.11 8.61 

 

Table II Genetic algorithm parameters. 

GA property Value GA property Value/Method 

Number of generations 358 Selection method Roulette wheel 

No of chromosomes in each generation 44 Crossover method Double-point 

No of genes in each chromosome 3 Crossover probability 0.8 

Chromosome length 597 Mutation rate 0.05 

 

 
(a) 

 
(a’) 

 

Fig. 9 rotor speed acceleration and reversal: (a) FLC and FLC-GA (a’) speed error. 
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(b) 

 
(b’) 

 

Fig. 10 zoom speed: (b) starting transient performance and overshoot (b’) response due to load and unload change. 

 

 
(c) 

 
(c’) 

 

Fig. 11 three phase stator current: (c) FLC  (c’) FLC-GA. 

 

 
(d) 

 
(d’) 

 

Fig. 12 electromagnetic torque response: (d) FLC (d’) FLC-GA. 

 

 

Table IV Summary of results. 

 Rise time (s) Overshoot (%) Settling time (%) Steady state error (%) 

FLC 0.03 2.9 0.08 0.7 

FLC-GA 0.02 0.05 0.001 0.4 
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V. CONCLUSION 

This work uses the Genetic algorithm based auto-design of 

fuzzy logic controller as the speed controller of the indirect 

field oriented controlled induction motor drives. By 

comparison with FLC controller, it testifies that this method is 

not only robust, but also can improve dynamic performance of 

the system. The GA-FLC proposed approach achieves: 

-Good pursuit of reference speed; 

-Starting without overshoot; 

-Rapid rejection of disturbances, with a low dropout speed; 

-Good support for changes in engine parameters. 

APPENDIX 

Rated power = 7.5Kw, Rated voltage = 220V, Rated 

frequency = 60Hz, Rr = 0.17Ω, Rs = 0.15Ω, Lr = 0.035H,         

Ls  = 0.035H, Lm = 0.0338H, J = 0.14Kg.m
2
. 

LIST OF SYMBOLS AND ABBREVIATIONS 

FLC Fuzzy Logic Controller 

GA Genetic Algorithms 

IM Induction Motor 
2

1 m

s r

L

L L
σ = −  

 

Leakage coefficient 

dr m ds r drL i L iΨ = +  d-axis rotor flux [Wb] 

qr m qs r qrL i L iΨ = +  q-axis rotor flux [Wb] 

sR , rR  Stator and rotor resistance [Ω] 

mL , rL , sL  Magnetizing, rotor and stator 

inductance [H] 
p  Number of poles 

eω  Electrical angular speed [rd/s] 

rω  Rotor speed [rd/s] 

dsv , 
qsv  dq-axis stator voltage [V] 

dsi , 
qsi  dq-axis stator current [A] 

dri , 
qri  dq-axis rotor current [A] 

J Inertia moment [Kg.m
2
] 

emΓ  Electromagnetic torque [N.m] 

eG , eG ɺ , GΓɺ  Normalized and denermalized 

factors 

Ge , 
Geɺ , 

GΓɺ  Normalized and denermalized error 

vectors 

Aµ  Membership functions for labels A 

* Reference symbol 
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