
 

 

  
Abstract – Electromyography (EMG) signals are widely used for 

clinical and biomedical applications. One of the rapidly advancing 
fields of application of EMG is in the control of smart prosthetic 
devices for rehabilitation purposes. This paper presents the 
investigation of the use of System Identification (SI) for modeling 
sEMG-Finger force relation in the pursuit of improving the control of 
a smart prosthetic hand. Finger force and sEMG data are generated 
by having the subject perform a number of random motions of the 
ring finger to simulate various force levels. Post-processing of the 
sEMG signal is performed using spatial filtering. The linear and 
nonlinear spatial filters are compared based on the ‘kurtosis’ 
improvements and also based on the fit values of the models obtained 
using system identification, in particular the Hammerstein-Wiener 
models. The results of the modeling using linear spatial filters were 
found to be in the region of 30-45%, some of these linear spatial 
filter masks were selected randomly to investigate if there is any 
improvement in modeling the sEMG-force relation. The spatial filter 
masks are optimized using a Genetic Algorithm (GA) for two 
conditions; constrained and unconstrained. The model fit values of 
the identified models are used as the cost function in the GA 
optimization scheme. The results are compared to the reported filter 
mask values in the literature. The unconstrained GA based filter 
mask values and in some instances the constrained GA based mask 
values perform better than the filter masks reported in literature in 24 
out of the 26 cases tested.  
 

Keywords— Spatial Filtering, System Identification, Surface 
Electromyogram, Sensor Array, Genetic Algorithm, 
Hammerstein-Wiener Modeling. 

I. INTRODUCTION 
N the United States there are approximately 1.7 million 

people living with limb loss [1]. It is estimated that one out 
of every 200 people in the U.S. has had an amputation [2]. An 
ideal prosthetic hand has to be dexterous; easy to manufacture, 
must use little power and at the same time, must be of low 
cost. Building such a prosthetic hand, which can mimic the 
entire gamut of motions and have the functionality and 
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dexterity of a human hand exactly, has eluded researchers so 
far. Most of the hand grasping motions that a prosthetic device 
would need to perform have been classified by Feix [3]. One 
of the main strategies used in making a prosthetic hand “user 
friendly” is to use the electromyogram (EMG) signal to 
control a prosthetic device. An EMG signal is a small voltage 
signal (in mV) which is generated by skeletal muscles. EMG 
signals have a wide range of applications in the fields of 
medicine (orthopedic, surgery, functional neurology and gait 
and posture analysis), rehabilitation (post surgery/accident, 
neurological rehabilitation, physical therapy and active 
training therapy), ergonomics (risk prevention, ergonomic 
design, etc.) and sports science (biomechanics, movement 
analysis, athlete strength training and sports rehabilitation). 
EMG is measured using fine wire intramuscular electrodes, 
needle electrodes, or on the surface of the skin over the motor 
point using surface electrodes. Surface electrodes are quick 
and easy to apply, do not need medical supervision, cause 
minimal discomfort and are generally suited for superficial 
muscles. Needle electrodes on the other hand require trained 
medical professionals for appropriate placement within the 
muscle. The study of EMG signals, whether they are recorded 
using needle sensors or by placing electrodes on the surface of 
the skin, can provide a window into the fascinating world of 
how the motors of our body work seamlessly to meet the 
rigorous demands we place on them. The first investigator of 
EMG signals is considered to be H. Piper in 1912, [4]. Since 
then, there have been significant advances in the field of EMG 
signaling. Now, we have a much better understanding of what 
information can be derived from EMG signals and the various 
applications they could be used for. Needle EMG sensors are 
considered more accurate than surface EMG methods, as they 
can detect Motor Unit Action Potentials (MUAPs) in a very 
small volume, as small as a tip of a needle. Nonetheless, 
surface EMG signals also, are used in a large number of 
applications. One must be careful though, when drawing 
“conclusions” using surface EMG signals, [5].   

Surface EMG signals have a variety of clinical and 
engineering applications. Few of the clinical applications 
include a) kinesiologic analysis of movement disorders, b) 
differentiating types of tremors, myoclonus, and dystonia, c) 
for evaluating gait and posture disturbances, and for 
evaluating psychophysical measures of reaction and 
movement time, [6]. Engineering applications include a) 

Spatial filter masks optimization using 
genetic algorithm and modeling dynamic 

behavior of sEMG and finger force signals 
ANISH SEBASTIAN, PARMOD KUMAR, MARCO P. SCHOEN 

I

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 5, 2011 597



 

 

interpretation of neural control signals for research, [7], b) 
extraction of command signal for control of prosthetic or 
robotic devices, [8-10] to name a few.  

This paper deals with  surface electromyogram signals 
(sEMG). In the past, multiple methods have been investigated 
for extracting useful information from EMG signals. Some of 
these methods include employing low-pass or band-pass 
filtering; others have also used notch filtering to remove 
power line noise, [11]. Whitening filters can increase the 
quality of the amplitude estimates of the sEMG signals, [12]. 
Other methods include Markov models, [13] and fuzzy logic 
control, [14] – for classification of EMG, and wavelet 
processing, [15]. Currently, the accepted standardized method 
on how EMG signals must be recorded and analyzed is set by 
the International Society of Electromyography and 
Kinesiology (ISEK) [16].  

The EMG signal is a complicated signal, which is 
controlled by the nervous system and is dependent on the 
anatomical and physiological properties of muscles. EMG 
signal acquires noise while traveling through different tissues. 
Moreover, the EMG detector, particularly surface electrodes 
collects signals from different motor units simultaneously 
which may have been generated through the interaction of 

different motor unit signals. sEMG signals are influenced by 
multiple factors, some of which are; a) shape of the volume 
conductor, b) the thickness of the subcutaneous tissue layers, 
c) tissue inhomogeneities, d) distribution of the motor unit 
territories in the muscle, e) size of the motor unit territories, f) 
distribution and the number of fibers in the motor unit 
territory, g) length of the fibers, h) spread of the endplates and 
tendon junctions within the motor units, and i) spread of the 
innervations zones and tendon regions among motor units. 
The type of detection system used also plays an important part 
in influencing the sEMG measurements. Some of the factors 
which need to be taken into account, with the detection 
systems, are a) skin electrode contact (impedance, noise), b) 
spatial filtering for signal detection, c) inter-electrode 
distance, d) electrode size and shape, and e) inclination of the 
detection system relative to the muscle fiber orientation, [17]. 
Some of the processing methods implemented for EMG 
processing have been mentioned in [18-22]. Fig. 1 shows the 
locations where surface EMG electrodes might be placed in 
the vicinity of a muscle and the underlying anatomy of a 
muscle.  
 

 
 

Fig. 1 Muscle anatomy & surface electrodes placement [23] 

II. PROBLEM FORMULATION 
 
Measurement of a surface EMG signal, along with an actual 

recorded sEMG signal is shown in Fig. 2 (a). This EMG 
signal was obtained from a healthy male subject. The subject 
had performed squeezing of a stress ball with a force sensitive 
resistor (FSR) mounted on it. The change in the resistance of 
the FSR is correlated to the various force level that the subject 

could generate. Fig. 2 (b) shows the sEMG plot and the 
corresponding change in force for one of the experiments 
performed. As can be seen the sEMG signal is very noisy, it 
must have been affected by any of the factors that are 
mentioned in the previous section. Another important factor 
that influences sEMG signals is cross-talk from the 
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neighboring motor units of the muscle. All these factors 
modify the underlying signal for a given contraction and 
relaxation of the subject’s muscle. Many previous works make 
different assumptions while modeling the sEMG-force 
relation; like for example, in the simplest form assuming a 
linear relation between sEMG & force, developing transfer 
functions of the hand without including the different factors 
influencing the sEMG signal or using the root-mean-squared 
(RMS) value of the sEMG signal in order to formulate 
simplified models.  

In reality it is impossible to account for all the factors 
influencing the sEMG signal. However, by making some of 
the assumptions mentioned earlier, one might end up with a 

deficient model relating the sEMG-force data. The underlying 
dynamics of the sEMG signal may be lost in the process of 
oversimplification. In order to avoid some of these pitfalls our 
approach is to assume a black-box model to deduce a suitable 
relation or model structure for the two signals. Here, the 
modeling of the sEMG-finger force relation is not based on 
root-mean-square, or average values of the sEMG signal, 
hence, we facilitate the capture of the dynamical changes in 
the force levels. Our approach of using Hammerstein-Wiener 
models has been found to be of merit in our previous studies 
[24, 25] and have yielded satisfactory fits. 
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Fig. 2 (a) Measurement of sEMG & actual sEMG from test subject, (b) Force and corresponding sEMG 
 

III. PROBLEM SOLUTION 
The data collected is from a nine (3x3) sensor array and 

rather than analyzing the data only at the motor unit, we 
considered using spatial filters. Spatial filtering is a very 
attractive choice as it can be used to either amplify the signal 
at the motor unit or extract useful information from the entire 
grid. "Spatial filtering" is broadly defined as a method which 
computes spatial density estimates for events that have been 
observed at individual locations. These filters are used when 
there is no a priori curve to fit to a data series. Instead, it relies 
on nearby or adjacent, values to estimate the value at a given  

 
 

point. The most common spatial filters are the low-pass and 
high-pass spatial filters. These are focal functions whose 
operation is determined by a kernel or neighborhood of NxN 
cells around each pixel or grid position [26]. Grid cells 
“covered” by a kernel are multiplied by the matching kernel 
entry and then the weighted average is calculated and assigned 
as the value for the central cell, G. For example, an 
asymmetric 3x3 kernel may look like the one shown in 
Equation (1), or any combination of the weights. Typically a, 
b are positive integers. If a=b=1, then the kernel provides a 
simple smoothing or averaging operation. Filters of this type 
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are sometimes referred to as low-pass filters.  
 

.Symmetric Kernel =
a a a
a b a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The filtered grid value ‘G’ of an m=NxN kernel matrix, 

with Ci set of coefficients and Pi - set of source grid values, is 
calculated as; 
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where, B is often set to 0. B is a bias term to increase or 
decrease the resulting value of ‘G’. This kernel is also 
sometimes referred to as the ‘filter mask’. The linear spatial 
filters tested in this paper are; 1) Longitudinal Single 
Differential (LSD), 2) Transverse Single Differential (TSD), 
3) Longitudinal Double Differential (LDD), 4) Transverse 
Double Differential (TDD), 5) Normal Double Differential 
(NDD), 6) Inverse Binomial (IB2) and 7) Inverse Rectangular 
(IR) Filter. The mask of these filters and the corresponding 
resultant equations on application of the mask to the grid data 
obtained from the sEMG array arrangement are given below. 
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LSD Equation = sEMG1-sEMG2; TSD Equation = sEMG1-

sEMG5; we can similarly deduce the equations for the other 
spatial filters.  
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In this paper, some nonlinear spatial filters have also been 

discussed, these have been reported in the literature [27], these 
are 1) 1-D Nonlinear Transverse spatial filter (NLT), 2) 1-D 
Nonlinear Longitudinal spatial filter (NLL), 3) 2-D Nonlinear 
spatial filter in Two- Orthogonal Directions (NLTOD) and 4) 
Nonlinear spatial filter in All Four possible Directions 
(NLAFD). The Nonlinear Spatial Filters use the Teager-

Kaiser Energy (TKE) Operator [28]. This technique is a 
threshold ‘energy’ based approach where outliers are first 
detected and then replaced by their estimated values. General 
Form of Nonlinear Spatial Filter using the Teager-Kaiser 
(TKE) operator is given in equation (4), where x(n) denotes 
the location of the sensor in the grid; 

2[ ( )] ( ) ( 1) ( 1).x n x n x n x nΨ = − + −  
 

a) 1-D Nonlinear Transverse Spatial Filter (NLT); equation 
(5) 

2[ ( , )] ( , ) ( 1, ) ( 1, )., x m n x m n x m n x m nd mΨ = − − +  
where, d ,is the subscript for the dimension, for the 1-D filters it is 1 and m 

denotes the longitudinal direction i.e. along the muscle fiber. 
b) 1-D Nonlinear Longitudinal Spatial Filter (NLL); equation 

(6)  
2[ ( , )] ( , ) ( , 1) ( , 1)., x m n x m n x m n x m nd nΨ = − − +  

n denotes the transverse direction i.e. perpendicular to the muscle fiber. 
 

c) Nonlinear Spatial Filter in Two Orthogonal Directions 
(NLTOD); equation (7) 

[ ( , )] [ ( , )] [ ( , )],2 ,2 ,
2

=2 ( , ) ( 1, ) ( 1, ) ( , 1) ( , 1).

x m n x m n x m nd d m d n

x m n x m n x m n x m n x m n

Ψ = Ψ + Ψ

− − + − − +
 

 
d) Nonlinear Spatial Filter in all Four Directions (NLAFD); 
equation (8) 

 

2[ ( , )] 4 ( , ) ( 1, ) ( 1, ),4

( , 1) ( , 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1).

x m n x m n x m n x m nd
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The experiments were carried out on a healthy male subject. 

The ring finger motor point was located using a muscle 
stimulator, manufactured by Rich-Mar Corporation (model 
number HV 1100). Fig. 3 shows a picture of the Muscle 
Stimulator used. The EMG detection system used was a 
Delsys, Bagnoli-16 channel EMG (DS-160, S/N-1116). The 
sensors used for measuring the surface EMG action potentials 
were three pronged DE 3.1 differential surface electrodes.  

 

 
 

Fig. 3 Muscle stimulator 
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The material for the contacts of the electrode is 99.9% pure 
silver, the contacts are 10mm long, 1mm in diameter and 
spaced 10mm apart. The subjects’ skin was prepared, 
according to the ISEK standards, before the sensors were 
placed over the motor point. The electrodes were placed along 
the muscle fibers (Flexor Digitorum Superficialis) for 
recording surface EMG. The reference electrode was placed 
on the elbow where there is no sEMG signal. Nine different 
experiments were conducted and the corresponding sEMG 
signal was measured simultaneously from all the nine (9) 
sensors. The force generated by the subject’s fingers, for a 
given motion, was measured using a stress ball with a force 
sensitive resistor (FSR) mounted on it. Fig. 4 shows the 
location of the FSR on the stress ball. 

 

 
 

Fig. 4 Force sensitive resistor and thumb restrain 
 

System Identification 
System Identification (SI) has its roots in standard statistical 

techniques, such as least-squares and maximum likelihood 
methods, for instance. SI helps the user to build mathematical 
models of a dynamic system based on measured data. This is 
done by adjusting the parameters within a given model until 
its output emulates the measured input in some minimum 
fashion, [29]. System identification is especially useful for 
modeling systems that cannot be easily represented in terms of 
first principles or know physical laws. In this case, one can 
use SI to perform black-box modeling, where the measured 
data determines the model structure. 

Black-box modeling has the following advantages; 1) the 
structure and the order of the model need not be known, and 
2) many model structures can be estimated and compared, and 
the best among them can be selected to suit the measured data 
sets. Systems that can be represented using ordinary 
difference or differential equations can be modeled using 
grey-box models. Grey-box models have a known 
mathematical structure and unknown parameters and they 
have the following advantages over black-box models; 1) 
Known constraints can be imposed on the model 
characteristics, 2) there are fewer model parameters to 
estimate, 3) coupling between parameters can be defined in 
the model structure, and 4) in the non-linear case the dynamic 
equations can be specified dynamically.  

The most common system identification models in 
engineering are Auto-Regressive with eXogenous input 

(ARX) and Auto-Regressive Moving Average with 
eXogenous input (ARMAX). The more recent additions to 
system identification have been black-box models with a non-
linear structure such as Artificial Neural Networks, Fuzzy 
models and so on. 

The most basic relationship between the input and the 
output of a system can be given by a linear difference 
equation, [30] such as: 

1 1( ) ( 1) ... ( ) ( 1) ... ( )n my t a y t a y t n bu t b u t m+ − + + − = − + −  ,     (9) 
where,  are the input and output of the system at time t 
respectively, and  are the parameters of the system. 

 1 1[ ,..., ,..., ]Tn ma a b bθ =  ,                                      (10) 
where,  is the parametric vector with coefficients and a bn m . 

 ( ) [ ( 1)... ( ) ( 1)... ( )]Tt y t y t n u t u t mϕ = − − − − − − ,            (11)         

then we can write: ( ) ( )Ty t tϕ θ= ,                                  (12) 
where, ( )tϕ  is the regression vector. 
Generally, a model structure is a parameterized mapping from 
past inputs and outputs Zt-1 to the space of the model outputs, 
[31]:  

1ˆ( | ) ( , )ty t g Zθ θ −=   ,                                                  (13) 
where,  is the predicted output. 

In practice most of the systems are nonlinear and the output 
is a non-linear function of the input variables. However, linear 
models often sufficiently and accurately describe system 
dynamics. While modeling a system using grey-box models, 
the linear and the nonlinear structures can be set using its 
differential or difference equations. Since linear models are 
adequate for many situations, it should be tried first to see if 
the results of the model fit are satisfactory. 

It is a possible and a quite common situation where the 
dynamics of the system can be well described using linear 
models, but they do not account for any static nonlinearities at 
the input and/or at the output. This might be the case if the 
actuators are nonlinear. For example when saturation occurs 
or when the sensors employed have nonlinear characteristics. 
A model with a static nonlinearity at the input is called a 
Hammerstein model. When the nonlinearity is at the output a 
Wiener model is more appropriate. The combination of the 
two is then the Hammerstein-Wiener model, [32]. Refer Fig. 
5[A] (a) and (b) for Hammerstein and Wiener models 
respectively. Consider the Hammerstein case where the static 
nonlinear function ( )f •  can be parameterized either in terms 
of physical parameters, such as saturation point and saturation 
level, or in black-box terms such as spline-function 
coefficients. This defines ( , )f η• , [31]. If the linear model is 
given by, the predicted output model will be in the following 
form: 

Equation 14 describes the Hammerstein-Wiener model 
structure: 

 

,

,

( )
( ) (( ( )),    ( ) ( ),   ( ) ( ( )),

( )
j i

j i

B q
w t f g t b t w t y t h x t

F q
= = =

      
where, ( )w t and ( )b t  are internal variables, ( )w t  has the same 

Thumb Restrain

Force Sensitive Resistor (FSR) 
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dimensions as ( )u t - input, and ( )x t  has the same dimensions 
as ( )y t - output. ()g and ()h are the input and output non-
linearity functions respectively. ( )B q and ( )F q are regression 
polynomials. Fig. 5[A] and 5[B] represent the Hammerstein- 
Wiener models individually and their combination 
respectively. The model fit values are computed using 
Equation 15 as follows; 
 

.
ˆ1

ˆ
1 0 0 *

y y
y y

f i t
− −

−
=  

 

where, ŷ  is the estimated output by the model. The linear 
block is specified using the terms bn - the number of zeros 

plus one, fn - the number of poles and kn - the delay from the 

input to the output in terms of the number of samples. The 
commonly used nonlinear estimators for Hammerstein-Wiener 
model are, a) Dead Zone, b) Piecewise Linear, c) Saturation, 
d) Sigmoid Network, and e) Wavelet Network, [32]. 
 

 

 
 
Fig. 5 [A] (a) Hammerstein Model, (b) Wiener Model 
 

  
 
 

Fig. 5 [B] Hammerstein-Wiener model structure 
 

Genetic Algorithm (GA) 
Genetic Algorithm is a class of evolutionary methods for 

solving both constrained and unconstrained optimization 
problems that are based on natural selection. This is the same 
rule that governs biological systems. In GA, the population of 
individual solutions is modified repeatedly.  A solution is 
given by a set of parameters (genes) and packaged as a 
chromosome. Each step or iteration the GA selects individuals 
(chromosomes) in a fashion that may include some 
randomness, from a given population, as parents, and uses 
them to produce offspring for the next generation. Over 
successive iterations or generations, the population evolves 
and finally reaches an optimal solution. The steps that make 

up GA are as follows:  
1) Generate a random population of ‘p’ chromosomes – 

these chromosomes carry information of the population and 
are confined in the feasible solution space.  
2) Evaluate the objective or fitness function f(p) for each 
chromosome. 3) Create a new population or offspring from 
the initial population by using certain rules. 

 

 
 

Fig. 6 General steps in a binary genetic algorithm 
  

These rules include a) Selection – selection of two parent 
chromosomes from the population according to their fitness. 
b) Crossover – crossover the parents to form new offspring, if 
no crossover is performed then the offspring is an exact copy 
of the parents. c) Mutation – involves the changing of a 
variable in a chromosome or some other change in the original 
chromosome as defined by the user. d) Acceptance Condition 
– if offspring satisfies the acceptance condition, include 
offspring in the new population or else discard. 4) Use the 
offspring as the parents for the generation of a new 
population. 5) Continue until the end condition is satisfied. 
Fig. 6 presents a graphical interpretation of the steps in GA. In 
this work, GA is used to assist in finding the optimal values of 
the filter mask for the filtration of the sEMG signal using the 
various spatial filters. The cost function that the GA tries to 
minimize, is the model fit obtained from system identification 
of the sEMG-force data that was collected.  

Fig. 7 gives an overview of the method that was followed 
for this paper.  
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Fig. 7 Overview of the methodology used 

 

IV. SIMULATION RESULTS 
The results of spatially filtered data for the linear and the 

nonlinear spatial filters were first compared based on the 
“Kurtosis” criteria, [27-28]. ‘Kurtosis’ is a measure of 
whether the data sets are peaked or flat relative to a normal 
distribution. That is, data sets with high kurtosis tend to have a 
distinct peak near the mean, decline rather rapidly, and have 
heavy tails. Data sets with low kurtosis tend to have a flat top 
near the mean rather than a sharp peak. A uniform distribution 
would be the extreme case. The mathematical expression for 
kurtosis is given in Equation 11. 

4 2 2

2 2

[ ] 3( [ ])
[ ]

.E x E x
Kurt

E x
−

=  

Fig. 8 shows the plot obtained for the various filters based 
on the kurtosis measure. The y-axis is the kurtosis 
improvements which is the ratio of the output to the input 
kurtosis. It is evident from the plot that the NLT, NLL, NLTO 
and the NLAFD spatial filters performed very well as 
compared to the linear spatial filters under investigation. The 
best kurtosis improvements were obtained for experiment 4 ≈ 
44 for the nonlinear spatial filters.  The x-axis in Fig. 5 shows 
the numbers allotted to the various spatial filters investigated.  
Based on these results we focused our attention to the linear 
spatial filter masks for experiment 3, which exhibits poor 
model fit percentages and also low kurtosis values. This paper 
does not investigate the reason for the low kurtosis values of 
the linear spatial filters but only investigates the use of GA to 
improve the low model fit percentages obtained for 
experiment 3. The filters were compared based on the model 
fit values obtained from various Hammerstein-Wiener models.  
 

 
The MatlabR code for the Hammerstein-Wiener model is:  
nlhw(ze, [ bn fn kn ], …., …). The modeling was carried out 

by varying bn - the number of zeros plus one, fn -  the 

number of poles and nk - the delay from input and output in 

terms of the number of samples for the various Hammerstein-
Wiener models. In all, 42 models with variations in na and 

nb were tested while the value of nk  was kept as 1. The total 

number of models estimated were 7 (filter types) x 4 (time 
windows) x 42 models per time window = 1,176 models. The 
time windows used for estimation and validation of the 
models were called ‘ze’ and ‘zv’ respectively. ‘ze’ contained 
8000 sample points and ‘zv’ contained data points shifted by 
2000 sample points. For example, if ‘ze’ was a time window 
between 2-6 seconds i.e. samples 4000-12000, then ‘zv’ was 
between 3-7 seconds i.e. 6000-14000 samples. These models 
were computed using the filter masks available in literature. 
On examining the fit values closely we found them to have 
large variation from one model order to another. One of the 
reasons of this could be due to the poor correlation in the 
estimation and validation data sets, on account of the large 
variations that were achieved in the force. This paper does not 
list all these models tested but identifies and reports only the 
significant results of the analysis. We found that the filters 
tested performed poorly in the initial time window of 2-7 
seconds for experiment 3. Some of the models for this time 
window were selected and then recomputed using GA to 
optimize the filter mask with the fitness function being the fit 
value of an identified model achieved for a given model order. 
 

(11) 

Filtering Methods - IIR 
Filters & Linear and Non-

linear Spatial Filters 

Kurtosis Comparison of 
Spatial Filters 

Poor Kurtosis 
Improvements for 

Linear Spatial Filters 

Random Model 
Selection of Linear 
Spatial Filter Masks  

Genetic Algorithm Optimized Filter Mask – 
Constrained & Unconstrained Scenarios 
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Fig. 8 Kurtosis plots of various filters for exp3 – 9; y-axis numbers are for the various filters tested 1-NLT, 2-NLL, 3-NLTO, 4-NLAFD, 5-
LSD, 6-TSD, 7-LDD, 8-TDD, 9-NDD, 10-IB2, and 10- IR 

 
Table 1 shows an example of the fits that were obtained on 

varying the parameters of the Hammerstein-Wiener model. 
The highlighted models (and a few other models) were 
selected randomly to be optimized using GA. We had two 
scenarios under GA –1) GA Constrained and 2) GA – 
Unconstrained. The first scenario GA constrained optimized 
only the mask entry a22 (location of the sEMG sensor on the 
motor unit). The other entries of the filter mask were then 

computed from this optimized value. In the second scenario, 
GA unconstrained we let GA optimize all the entries for 
various masks. The GA parameters for optimization were as 
follows: number of iterations: 50; initial population size 
Generation 0: 96; population size Generation 1: 48; Number 
of Chromosomes kept for mating: 24; and mutation rate was 
set to 4%. Figure 9 shows the difference between the two GA 
scenarios.

 
Table 1 Example of System Identification Results Using Filter Mask from Literature – Highlighted Models Optimized using 

GA 
 

Model 
Number   na   nb   nk LDD LSD TDD TSD NDD IB2 IR 

m1 2 3 1 31.06 41.39 39.53 -9.685 45.55 33.79 35.38 
m2 2 4 1 31.86 17.4 39.36 43.19 36.84 16.88 23.89 
m3 2 5 1 23.54 35.94 30.09 2.247 39.78 36.17 38.16 
m4 2 6 1 3.266 41.99 41.28 43.46 10.83 36.41 36.7 
m5 2 7 1 31.58 40.55 44.65 31.28 2.593 32.26 36.34 
m6 2 8 1 37.84 4.259 21.89 20.08 8.036 36.22 36.57 

m7 2 9 1 31.42 -
0.1887 35.78 28.71 38.11 35.54 35.82 

m8 3 3 1 36.59 40.04 36.17 12.33 4.478 41.09 35.81 
m9 3 4 1 20.74 40.72 31.53 36.57 29.76 37.43 38.76 
m10 3 5 1 39.87 11.53 39.83 30.24 39.25 35.15 37.9 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

:
:

:
:

:
:

: 
: 

: 
: 

:
:

m40 7 7 1 34.91 10.18 40.79 35.21 35.24 33.42 37.92 

m41 7 8 1 -
0.1127 36.28 39.68 40.26 20.27 35.88 24.32 

m42 7 9 1 36.55 -0.412 25.24 31.31 35.4 34.26 39.82 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 5, 2011 604



 

 

 
Fig. 9 Two genetic algorithm scenarios tested 

 
 

Table 2 Results of constrained and unconstrained GA of highlighted models from Table 1 
 

 
 
 
 
 
 
 
       
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Longitudinal Double Differential (LDD)

                               Fit % 

  
From 

Literature 
GA 

Constrained  
GA 

Unconstrained 

m1 31.06 42.8291 61.3475

m6 37.84 53.3134 63.7240

m12 35.54 44.2513 51.7942

m31 39.44 47.0034 60.6489

            Longitudinal Single Differential (LSD)

                          Fit % 
   From

Literature
GA 

 Constrained 
   GA  

Unconstrained

m1   41.39    48.9135   57.9136

m4   41.99    41.5731   60.2369

m8   40.04    40.5924   46.3310

m9   40.72    45.2322   45.4538

Transverse Double Differential (TDD) 

                                Fit % 
From 

 Literature 
GA  

Constrained 
GA 

Unconstrained

m1 39.53 41.5297 59.8055

m5 44.65 49.4667 68.4191

 m10 39.83 41.307 63.8523

m15 43.01 43.3466 56.5113

Transverse Single Differential (TSD) 

                               Fit % 
From

Literature
GA

Constrained 
GA 

Unconstrained

m2 43.19 44.0017 65.9038

m4 43.46 43.0529 58.2755

m11 44.24 39.7867 44.8431

m31 29.1 43.5787 47.6688

Normal Double Differential (NDD) 

Fit % 

  
From 

Literature 
GA 

Constrained 
GA 

Unconstrained

 m1 45.55 53.1512 57.9496 

m3 39.87 47.1084 60.7374 

m7 38.11 51.8065 60.5535 

m11 39.01 46.881 56.1193 

Inverse Binomial 2 (IB2) 

Fit % 
From 

Literature 
GA 

Constrained 
GA 

Unconstrained 

m1 33.79 38.6076 58.2365 

m3 36.17 38.9074 58.1653 

m4 36.41 38.9957 55.5179 

m8 41.09 47.2971 55.0537 
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From the results in Table 2 we can see that the optimization of 
the filter mask using GA worked in almost all the cases 
chosen. GA without constraints performed significantly better, 
in most cases, than the filter masks reported in literature and 
also the mask which we computed using GA, which only 
optimized the entry (a22) i.e. the weight associated with the 
sEMG signal at the motor unit. This restriction on GA would 

leave the filter mask symmetrical. But looking at the results of 
the GA, we can conclude that the filter mask need not always 
be symmetrical for analysis of sEMG, especially for data 
recorded using an array. All the filter masks, with the 
individual entries of the masks that were obtained after 
optimization along with the respective fit values are provided 
in Table 3. 

 
Table 3 Optimized filter masks for constrained and unconstrained GA 

 
Linear Spatial 

Filter Type Mask in Literature GA Optimized Spatial Filter Mask - 
Constrained 

GA Optimized Spatial Filter Mask - 
Unconstrained 

LDD 
m1 

0 0 0
1 2 1

0 0 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 31.06 % 

0 0 0
6.5 13 6.5
0 0 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 42.8912 % 

0 0 0
64.2686 23.5033 20.8633

0 0 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 61.3475 % 

LSD 
m4 

0 0 0
1 1 0

0 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 41.99 % 

0 0 0
2 2 0

0 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 41.5731% 

0 0 0
52.7866 54 0

0 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 60.2369% 

TDD 
m5 

0 1 0
0 2 0
0 1 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 44.65 % 

0 27 0
0 54 0
0 27 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 49.4667 % 

0 41.5561 0
0 54.7329 0
0 22 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 68.4191 % 

TSD 
m2 

0 1 0
0 1 0
0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 43.19 % 

0 28.5 0
0 57 0
0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 44.0017% 

0 74 0
0 89.6214 0
0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fit 65.9038 % 

NDD 
m3 

0 1 0
1 4 1

0 1 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 39.87 % 

0 6.75 0
6.75 27 6.75
0 6.75 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 47.1084 % 

0 11.5790 0
46.7773 36.9276 11.8061

0 70.0491 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Fit 60.7374 % 

IB2 
m1 

1 2 1
2 12 2
1 2 1

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Fit 33.79 % 

0.42 0.83 0.42
0.83 5 0.83
0.42 0.83 0.42

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Fit 38.6076 % 

9.3405 85.0222 53.7102
95.4633 42 30.7811
28.6087 8.2511 10.0189

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Fit 58.2365 % 
 
 

V. CONCLUSION 
The linear spatial filter masks as reported in the literature have 
poor model fit percentages and poor kurtosis improvements. 
Though the reason for the low kurtosis improvements of the 
linear spatial filters was not investigated here, we optimized 
the linear spatial filter masks using GA and compared them 
based on the model fit values achieved. The selected model 
structure for characterizing the sEMG and finger force data is 
a Hammerstein-Wiener model. The fit values did improve 
significantly in the two GA scenarios – GA with and without 
constraints. The GA without constraints performed better than 

the GA with constrains, which brings into focus the possibility 
that the sEMG signal distribution over the entire grid cannot 
be assumed to be symmetrically distributed and that the 
weights associated with the sEMG signal at various locations 
need to be modified depending on probably the subject and 
also based on the experimental design. This is in contrast to 
the reported filter mask in the literature, which are all 
symmetric. Almost all the filter masks optimized resulted in a 
significant improvement over the masks reported in literature.  
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