
 

 

  
Abstract— Large scale system are complex to be modeled and 

controlled by centralized controllers. In this paper, a multi variable 
non-linear system (two inverted pendulum coupled by a spring) is 
linearized about equilibrium point and formed to decentralized 
optimized control decentralized control law is designed basis on 
existing theorems and modern techniques and its stability is surveyed. 
This opens a possibility that based on this model to formulate some 
benchmark problems to simulate a wide research interest in large 
scale control. 
 

Keywords— Decentralized Control, Benchmark problems, 
Controller design, Stability 

I. INTRODUCTION 

t is generally recognized that, in an ever-increasingly inter-
connected technological society, large-scale system control 

becomes more and more important [1]. Nonlinear large-scale 
systems are difficult to control due to various reasons, such as 
lack of centralized computing capability, system non-linearity, 
interconnection of subsystems, and system uncertainty [2]. 
Many interconnected systems found in real world such as 
industry manipulators and electric power systems are often 
composed of a set of subsystems. The centralized control for 
interconnected systems may be impractical due to a large 
amount of communications among the subsystems. A 
decentralized control system based only on local information 
is highly desirable. The fundamental uncertainties encountered 
in the decentralized controller design are the strength of the 
interactions among the subsystems [3]. 

 Some of the difficulties associated with a centralized 
control scheme can be alleviated via a decentralized control 
structure in which information transfer between subsystems is 
avoided. An important problem in control is that of  
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constructing decentralized control systems, where instead of 

a single controller connected to a physical system, one has 
multiple separate controllers each with access to different 
measured information and authority over different decision or 
actuation variables [4]. Traditionally, due to the practical 
limitations of available means of communications, research in 
large-scale system control is mainly under a theme of 
decentralized control [5]. Decentralized control is considered 
as an effective method to deal with large-scale interconnected 
systems [6]. Most of the early works in decentralized control 
of large scale systems are based on the assumptions that the 
interconnections are bounded by either constraints or first 
order polynomials in states. However, in practice, there do 
exist large scale systems where the interconnections among 
the subsystems are of high order. The high order 
interconnections can potentially destabilize an interconnected 
system if the decentralized controller does not explicitly 
account for these interconnections. 

Also, decentralized control methods are appealing in 
coordination of multiple vehicles due to their demand for 
long-range communication and their robustness to single point 
failures [7]. Despite its importance and potentials, it seems 
that the impact of the research in this area is not as great as it 
could be. There are indeed many successful applications of 
large-scale system control, for example to electrical power 
systems [8]. However, these applications are mainly 
developed by domain experts. All applications in this area are 
''large-scale", i.e., the number of state variables is very big, 
and special knowledge is normally required for the 
formulation of the problem. In the general control 
communities, due to lack of simple yet meaningful examples, 
the interests in this area are not matched with its importance 
and potentials [6]. System of double pendulums coupled by a 
spring (Figure 1) was used in [9] to demonstrate some 
important theoretical results achieved in decentralized control. 
By simply adding more pendulums and springs to the existing 
system, this can be extended to a system of n-inverted-
pendulums coupled by (n-1)-springs [9]. 
 

II. PROBLEM FORMULATION 

A. Theoretical Background 
Consider a system  S ∶ ẋ = A x + B u + E k (t, C x, u) + f (t, x, u)           (1) 
that is an interconnection of N subsystems S ∶ ẋ = A x + B u + E k (t, C x , u ),    i = 1, 2, … , N                                                                    (2) 
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Where x ∈ ℛ   is the state and u ∈ ℛ   is the input of (2) 
at time t ∈ R, and A  and B  are constant matrixes of 
appropriate dimensions, which constitute  stabilizable pairs A , B . In (1), x =  x  , x  , … , x      is the state, u = u  , u  , … , u      is the input of the interconnected system and 
the system matrices are defined as A = diag{A , A … , A }, C = diag{C , C , … , C } B = diag{B , B , … , B }, E = diag{E , E , … , E } 

 
The E k (t, C x , u ) represents the structured uncertainty in 

(2), where E  and C  are n × q  and p × m  constant matrices, 
and k : R × R  × R  → R  , which is a vector component of k =  k  , k  , … , k     , satisfies the inequality 

 ‖k (t, C x , u )‖ ≤ ‖C x ‖                                                   (3)                                                                                   
 
Finally, the function k : R × R × R → R  and f : R ×R × R → R  are sufficiently smooth so that the solutions of 

(1) exist and are unique for all initial conditions and all fixed 
inputs u(. ).Furthermore, k (t, 0,0) ≡ 0,   f (t, 0,0) ≡ 0 is 
assumed to be unique equilibrium of S when u(t) ≡ 0. 

Assuming that a stabilizing control law for (2) exists, it can 
be computed as  u = −R   B  P x                                                              (4)                                                                 

 
Where P  is the positive definite solution of the Ricatti 

equation A  P + P A − P B R   B  P + μ P E E  P + μ   C  C + Q = 0                                                      
                                                                                               (5) 

 Q  and R  are positive definite matrices with proper 
dimensions, and μ  is an appropriate positive number. Then, 
the decentralized control law is  u = −R   B  P x                                                                  (6) 

 
Where   P = diag{P , P , … , P }R = diag{R , R , … , R }  
 
For the above, the following Theorem is obtained in [3]. 
Theorem 1. If there exists positive numbers d , i =1,2, … , N, such that the inequality  x Q  x − 2x P  f (t, x, u) + u R  u ≥ α  x x + β  u u         (7) 
 
holds for some positive numbers α  and β  , where     Q  = diag{d Q , d Q , … , d Q }R  = diag{d R , d R , … , d R }    
 
then the decentralized control u  of (6) stabilizes the 

system of (1). 
Furthermore, if the interconnection term in (1) has the 

following property f (t, x, u) = B g (t, x, u) + h (t, x)                                    (8) 
 
Where 

 g =  g  , g  , … , g     , g : R × R × R → R    
,h =  h  , h  , … , h     , h : R × R → R   and g  satisfies the 
inequality  ‖g (t, x, u)‖ ≤ ζ  ‖x‖ + ή ‖u‖ for all (t, x, u) ∈ R × R × R                
                                                                                                (9) 
 
For some positive numbers ζ   and ή < λ  / (R )/λ  / (R ), 
then the decentralized control law of (6) can be changed to  u  = −ρ R   B  P x                                                            (10) 

 
Where ρ = diag ρ I  , ρ I  , … , ρ I   , and ρ > 1,  =1, 2, … , . 

 
Theorem 2. If there exists positive numbers d , i = 1,2, … , N, 
and a positive number v  such that    x Q  x − 2x P  h (t, x) ≥ v x x, for all (t, x) ∈ R × R                                  
                                                                                              (11) 

     
Then the decentralized control u   of (10) stabilizes the 

system of (1) [10].   

B. Modeling 
A system of two inverted pendulum coupled by a spring is 

shown in figure1. The variables of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Two inverted pendulum coupled by spring 
 
the system are: θ : angular displace ment of pendulum I (i=1, 2) τ : torque input generated by the actuator for pendulum I 

(i=1, 2) F: spring force ϕ: angular of the spring to the earth 
and the constants are: m : mass of pendulum L: distance of two pendulums κ: spring constant 

 
The mass of each pendulum is uniformly distributed. The 

length of spring is chosen so that F=0 when θ = θ = 0, 
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which implies that  θ  θ̇  θ  θ̇   = 0 is an equilibrium of the 
system if τ = 0. For simplicity, we assume that the mass of 
spring is zero. 
The dynamic equations for the system of fig.1 are given as 
 
 [m (l ) /3]θ̈ = τ + m g(l /2)sinθ + l Fcos(θ − ϕ)                                              

                                                                                          (12)  [m (l ) /3]θ̈ = τ + m g(l /2)sinθ + l Fcos(θ − ϕ)                                              
                                                                                              (13) 

 
where g = 9.8m/s   is the constant of gravity and F = κ l − [L + (l − l ) ] /                                           (14) l = [(L + l sinθ − l sinθ ) + (l cosθ − l cosθ ) ] /                                              

                                                                                            (15) 
                      ϕ =tan    l cosθ − l cosθ L + l cosθ − l cosθ                                                                                                                    
                                                                                        (16) 
 
The following variables are used: l = 1m ،l = 0.8m ،m = 1kg ،m = 0.8kg ،L = 1.2m و   κ = 0.04N/m [11]. 
 
When you submit your final version, after your paper has 

been accepted, prepare it in two-column format, including 
figures and tables.  

C.  Controller design 
The state variables are defined as  X = (x x    x x ) =  θ  θ̇  θ  θ̇                                (17) 

The obtained dynamic equations using the state variables are 

 

                                                                                      (18) 
 

Note that nonlinear function in each subsystem S  satisfies 
the following condition: |g(sinθ − θ )| ≤ 0.45|θ |,        |θ | ≤ π/6                 (19) 

 

Considering the equations,     g(sinθ − θ ) can be written 
in form of E k (C x ) using the following relations: E =  0 ∗ .      , C = [1 0], k (θ ) = g/0.45(sinθ − θ )                                             

                                                                                      (20) 

The matricesA ,B , Q  and R  are defined in the same way: A =  0 1    g 0 ,   B =  0       , Q =  m g 00 m  ,     R = 1,                         
                                                                                              (21) 

So the positive response of following Riccati equation A  P + P A − P B R   B  P + μ P E E  P + μ   C  C + Q = 0,                            
                                                                                            (22) 

By considering μ = 1 is: P =  17.5675 3.77563.7756 1.0004 , P =  8.0031 1.29601.2960 0.3176                                                     
                                                                                      (23) 

And finally, using the equation (10), decentralized control law 
will be 

 τ τ  =  11.3269 3.00120 0    0 07.5936 1.8611  x x x x                                                  
                                                                                      (24) 

The nonlinear term which shows the interconnection relations 
is as follows: 

f (x , x ) = ⎣⎢⎢
⎢⎡ 0     Fcos(θ − ϕ)0−      Fcos(θ − ϕ)⎦⎥⎥

⎥⎤
                                   (25)                                                                   

In which F = κ [3.08 − 2.4sinθ + 1.92sinθ − 1.6cos(θ −θ )] / − 1.217)                                                                  (26) 

 

and  ϕ = tan  cosθ − 0.8cosθ 1.2 + 0.8sinθ − sinθ                                          (27)   
Using these equations, we can write |F| ≤ κ(1.49|θ | + 0.18|θ |)                                      (28) 

Consider that that the nonlinear term is independent from 
input and so the stated condition in (7) of theorem (1) is 
reduced to x Q  x − 2x P  f (t, x) ≥ α  x x                                   (29) 

( )

( )

( )

( )






















−−

−
+























−

−
+
































+









































=



















φθ

φθ

θθ

θθ

τ
τ

2
22

1
11

22
2

11
1

2

1

2
22

2
11

4

3

2

1

2

1

4

3

2

1

cos3
0

cos3
0

sin
2
3

0

sin
2
3

0

30
00

03
00

0
2
300

1000

000
2
3

0010

F
lm

F
lm

g
l

g
l

lm

lm

x
x
x
x

g
l

g
l

x
x
x
x

&

&

&

&

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 5, 2011 654



 

 

By defining d = d = 1, we have 
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From inequality (30), we obtain the following results 
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that                                                                               

 

                                                                                       

                                                                                            (32)                         

In terms of theorem (1), the following optimized problem can 
be stated to determine κ       Min        subject to: Π > 0,Π > 0,Π > 0,Π > 0, ε > 0                                             

                                                                                      (33) 

For example, for ε = 0.9, ε = 2.7, ε = 0.3, ε = 0.42, ε =1.3 the value κ     = 0.22  is obtained. Also, 
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That is true for |x | ≤ π/6. So (32) is satisfied. Thus, the 
feedback of decentralized state (24) causes the system 
stabilization. Whileκ >       , the condition (32) is not 
established for each d , d > 0. So, the decentralized control 
(6) can not be used for system (8) and high gains as feedback 
must be abstained fortunately, the nonlinear function f (x , x ) satisfies the following condition: 

f (x , x ) = ⎣⎢⎢
⎢⎡ 0 0     0   0    0   0      ⎦⎥⎥

⎥⎤  Fcos(x − ϕ)Fcos(x − ϕ)                             (35) 

Note that the nonlinear function in right-side has a limited 
gain consideringx , x . Then, condition (11) in theorem (2) is 
established for h (t, x) = 0 and decentralized control is 
selected as follows by considering high values for ρ , ρ : 

 τ τ  = −  ρ 00 ρ  Π  x x x x                                            (36) 

 

In which  Π =  11.3269 3.00120 0    0 07.5936 1.8611 .  
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Decentralized control law (6) stabilizes system (1). 

 

III. PROBLEM SOLUTION 
The MATLAB/Simulink model and programs were provided 
for the simulation of system. By changing the values of 
parameters in the ''data file'', various simulation results can b 
obtained. The obtained results of system simulation in stead of 
regulation without disturbance, step disturbance of 0.1 Nm 
and step disturbance of 0.2 Nm is shown in figure 2-7. 
Also, the results are compared with results by Yang [9]. The 
results are shown in figure 8 to 10. Figure 8 shows the 
response to non-zero condition. Figure 9 shows response to a 
step disturbance of 0.1N.m and finally, figure 10 response to a 
step disturbance of 2.0 N.m  
  figure 2 shows the responses of system in non-zero initial 
condition. these responses include angles of pendulums ( θ  
and θ ). figure 3 shows the angular velocities of pendulums 1 
and 2 with non-zero initial condition. figure 4 shows the 
system responses including angles θ  and θ  to step 
disturbance of 0.2 Nm. figure 5 shows system responses 
including angular velocities of two pendulums to a step 
disturbance of  0.2 Nm, figure 6 shows the system responses 
including Angles θ  and θ  of two pendulums to a step 
disturbance of  0.2 Nm. figure 7 shows the system responses 
including angular velocities of two pendulums in state of step 
disturbance of  0.2 Nm. 
figure 8-10 shows the system response in method proposed by 
Yang. Figure 8 shows the system responses to non-zero 
condition. Figure 9 shows system response to a step disturbance of 
0.1Nm. Figure 10shows system response to a step disturbance of 2.0 
Nm. 
The written programs in MATLAB are prepared in Appendix. 
These programs include these values for parameters: l = 1m ، l = 0.8m ، m = 1kg ، m = 0.8kg، 

 L = 1.2m κ = 0.04N/m 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig 2. Angles θ  and θ  in non-zero condition 

 
 

 

 

 

 

 
 

Fig 3. Angular velocities of two pendulums in non-zero condition 
 

 
 

 

 

 

 

 
 
 
 
 
 
 

 
 

Fig 4. Angles    and    in response to a step disturbance of  0.2 Nm 
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Fig 5. Angular velocities of two pendulums in response to a step 
disturbance of  0.2 Nm 

 

 

 

 

 

 

Fig 6. Angles θ  and θ  of two pendulums in response to a step 
disturbance of  0.2 Nm  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Angular velocities of two pendulums in state of step 
disturbance of  0.2 Nm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. response to non-zero condition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig 9. response to a step disturbance of 0.1N.m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig 10. response to a step disturbance of 2.0 N.m  
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IV. CONCLUSION 
In this paper, we have studied a model and redesigned a 
controller for a challenging task. Based on a model of multi-
inverted pendulums coupled by multi-springs and other 
details, we plan to formulate a benchmark problem for the 
study of decentralized control and control beyond the 
limitation of decentralized control. By replacing point-to-point 
connections in a traditional control structure with networked 
communications, the example system can also be served as a 
benchmark problem for ''networked scale systems'' [11], which 
can be considered as a new structure for large scale system 
control. Using the Decentralized Control on this model led to 
stabilization of system. 

In method proposed by Yang, the responses have less 
stability than results of model proposed in this paper due to 
using the sensors in simulation. it is related to the selected 
limitation with length of 0.6 in Yang's method with less secure 
margin  while the obtained results in this paper have been 
achieved with higher stability.  
Also, it seems that the results by Yang's method is becoming 
unstable by time increasing that is because of increasing the 
domains of response variations which are the angles of 
pendulums, here that means exiting from the desirable 
limitation with length of 0.6 that causes finally to instability. 
but these variations are not seen in responses obtained by the 
presented method in this paper. 
other methods used to simulate the large scale systems are 
adaptive feedback linearizing decentralized controller 
architecture that is applicable to the control of nonlinear 
dynamical systems with a bound on the interconnections. to 
approximate on-line the inversion error, the single hidden 
layer neural network can be used. adaptive update laws can be 
derived from Lyapunov analysis. A robust adaptive signal is 
required in the analysis to shield the feedback linearizing 
control law from the interconnection effects [12]. 
another method for simulating the multivariable systems is 
applying decentralized adaptive control of nonlinear systems 
using radial basis neural networks. the results of using this 
method is that the dynamics  for each subsystem are not 
required to be linear in a set of unknown coefficients due to 
the functional approximation capabilities of radial basis neural 
networks [13]. 
these two above methods are proposed adaptive algorithms 
that can be used in simulation to stabilize an interconnected 
double inverted pendulum which can be generalized to utilized 
in modeling the large scale systems. 
the proposed theoretically guaranteed method for large scale 
interconnected uncertain non linear mechanical systems led to 
results that can verify simulation studies. 

 
 
 
 
 
 

APPEMDIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function dx = coupled_pendulums(t,x) 
dx = zeros(4,1);    % a column vector 
l1=1;    % lenth 
m1=1;    % mass 
 
% pendulum 2 
l2=0.8;  % lenth 
m2=0.8 ; % mass 
 
%L is the distance of two penduli 
L=1.2; 
kappa = 4.0; 
 
%g is the gravity constant 
g=9.81; 
%%%%%%%%%%%%%%%%%%%%%%%% 
ls=((L+l2*sin(x(3))-l1*sin(x(1)))^2+(l2*cos(x(3))-
l1*cos(x(1)))^2)^0.5; 
F=kappa*(ls-[L^2+(l2-l1)^2]^0.5); 
phi=atan((-l2*cos(x(3))+l1*cos(x(1)))/(L+l2*sin(x(3))-
l1*sin(x(1)))); 
K=[10.957  3.485  0   0 
 0  0   7.500   2.375]; 
%K = [11.327  3.001  0   0 ;0  0   7.594   1.861]; 
u=-K*x+[.1;0]; 
dx(1) = x(2) ; 
dx(2) = u(1)+(m1*g*(l1/2))*sin(x(1))+(l1)*F*cos(x(1)-
phi); 
dx(3) = x(4); 
dx(4)= u(2)+(m2*g*(l2/2))*sin(x(3))-(l2)*F*cos(x(3)-
phi); 

clc 
a=[0 1;1.5*9.8 0]; 
b=[0;3];Q=[9.8 0;0 1]; 
c=[1 0]; 
E=[0;1.5*.45]; 
B=b*b'-E*E'; 
QQ=Q+c'*c; 
[P1] = care(a,b,QQ) 
 
%------------------------------ 
a=[0 1;1.5*9.8/.8 0]; 
b=[0;3/(.8)^3];Q=[0.8*9.8 0;0 .8]; 
c=[1 0]; 
E=[0;1.5*.45/0.8]; 
R=1; 
B=b*b'-E*E'; 
QQ=Q+c'*c; 
[P2] = care(a,b,QQ) 
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c=[1 0]; 
E=[0;1.5*.45]; 
B=b*b'-E*E'; 
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[P1] = care(a,b,QQ) 
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