
 

 

  
Abstract — We study input parameters of energy methods for image 

restoration, when a restored image is obtained after minimization of 

an integral functional. Although such a functional is global, only few 

pixels in a small neighborhood of any pixel on the initial image can 

influence on the corresponding pixel on the restored image. 

Conversely, any pixel on the initial pixel affects some pixels in a 

neighborhood of the corresponding pixel on the restored image. We 

call these neighborhoods "influence areas" and propose a technique 

for their calculation and their visualization on computer screen. The 

whole testing technique based upon this approach is applied to a 

couple of known image restoration methods. The parameters of these 

methods, ensuring their better performance, are found. 

Keywords — energy minimizing methods, image processing, 

image restoration, image segmentation, testing. 

I.  INTRODUCTION 

One of the main tasks in evaluation of image processing 

algorithms is to estimate the best parameters of the considered 

algorithm for different applications [1]. In recent years, energy 

minimizing methods, where the output image is the result of 

minimization of a certain functional in an integral form, found 

an application in such areas as image segmentation [2]-[3], 

[11], [14] and image restoration [4]-[19].  In the present paper, 

we focus on the energy minimizing restoration methods. 

Nowadays, many types of such functionals, which are used for 

the restoration of distorted images, are known (see e. g. [15]-

[16] and references thereafter). Similar approaches to the 

restoration problem are intensively studied in recent 

publications [22]-[26]. The variety of methods creates the need 

to select the optimal one for a specific practical task. 

One can say that image restoration is a state of art technique 

for enhancement of image quality, based on a few absolute 

criteria. Generally this process involves some methods for 

elimination of distortions, for example, such as noise. But in 
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practice this cannot be done ideally. However, in some cases, 

significant improvements can be achieved. 

In this paper we restrict ourselves to considering the 

following properties of energy minimizing methods: 

a) to reduce significantly the noise level in the parts of the 

image where the intensity changes smoothly;  

b) to protect from blurring the high contrast intensity 

changes (in other words, to preserve the boundaries of objects 

on the processed image). 

These properties are essential for practical applications and, 

therefore, their thorough study is important. 

The "influence areas" introduced in the paper is a tool 

which allows one to find out some important features of image 

restoration methods. We introduce the testing technique based 

on the use of influence areas and apply it for testing of two 

known energy minimizing restoration methods. In particular, 

we find the values of the methods' parameters ensuring their 

effective performance.  

The paper is organized as follows. 

In Section II we formulate the main problem considered in 

the paper.  

In Section III we introduce the two types of “influence 

areas” (further on, we use this term without quotations) and 

propose a technique for their calculation.  

In Section IV, the formulas of functionals for two energy 

minimizing restoration methods: PL [14] and GR [8], [11] are 

given. These methods are studied with the help of the 

influence areas.  

The results of the study are presented in Section V.  

Finally, we make the conclusions on the optimal methods’ 

parameters choice for both good noise reduction and good 

contrast boundaries preservation. 

II.  PROBLEM SETTING 

Let I be an initial image and u be a restored image. I(x, y) 

and u(x, y) are corresponding image functions taking integer 

values from gray level range 0...255. 

In our study we use functionals of the following type: 
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where 

  E(u) – the energy to be minimized, 
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22 )()(|||| yx uuu +=∇  – the gradient norm , 

  f(r) ≥ 0 – this function will be described in Section IV, 

  Ω – image area 256×256 pixels of size,  

  w1, w2 – weights specified for items of the equation (1). 

Usually w1+w2 = 1. 

Let I(x0,y0) be intensity of a pixel at the location (x0,y0) on 

the initial image I (Fig.1.a). The corresponding pixel on the 

restored image u has the intensity u(x0, y0) (Fig.1.b). Starting 

points for our study were two following observations.  

a) It appears reasonable that the value I(x0, y0) exerts the 

most influence on calculating of the value u(x0, y0) under 

restoration process. It is possible that the value I(x1, y1) of 

closely spaced pixel (x1, y1) has some influence on calculating 

of the value u(x0, y0). At the same time, it seems highly 

improbable that a peripheral pixel (x2, y2) (Fig.1.a) can have a 

measurable influence on the value u(x0, y0). Indeed, if this 

were not the case, the restored image u simply would not be 

similar to the original image I. 

 

 
Fig.1.a. Original image                      Fig.1.b. Restored image 

 

b) On the other hand, image restoration with functional (1) 

is a solution of a global optimization task: all the pixels of the 

initial image are used to find u(x, y). Hence, the neighboring 

pixel (x1, y1) and the distant pixel (x2, y2) can formally affect 

the intensity u(x0, y0) equally.  

It appears that items a) and b) contradict one another. So, 

despite the fact that the functional (1) is global, only some 

significant pixels located in close proximity to pixel (x0, y0) on 

the image I,  can have noticeable influence on the value of 

u(x0, y0).  

 The notion of influence area, introduced in this paper, is a 

result of  this contradiction. In our view, its determination task 

comprises the following issues: 

     1. To find the points on the restored image u in a certain 

neighborhood of (x0,y0) affected by intensity change at one 

pixel (x0,y0) on the initial image I.  Obviously, after the change 

of intensity value I(x0, y0) and after the restoration of the 

modified image, not only the value of  u(x0, y0) will be 

changed, but also the intensity values of the pixels near (x0,y0) 

on the restored image u. These pixels form a certain 

neighborhood of (x0, y0) on  u which we call an influence area 

of the first kind. 

 2. To find the pixels on the initial image I in a neighborhood 

of  (x0, y0) which affect the intensity change at one pixel (x0, 

y0) on the restored image u (their existence is also obvious). 

We call this neighborhood an influence area of the second 

kind. 

 

Note that to find the influence area of the first kind, one 

must have the initial image, the restored image, the 

modification of the initial image and the result of its 

restoration. Thus the restoration procedure must be done 

twice. At the same time, in order to find the influence area of 

the second order, in addition to the initial and the restored 

image, one must have many modifications of the initial image 

at one pixel near (x0, y0) and respectively the results of their 

restorations. Thus, for the calculation of the second order 

influence area many restorations are needed, which makes the 

whole process more complicated compared to the first order 

area calculation.  

The goal of our study is to assess the shape and size of such 

areas. We develop a technique for calculating such areas 

(Section III) and demonstrate this technique on the example of 

two known energy minimizing methods (Section IV). For this 

purpose we use  a synthetic image shown on Fig.2. This image 

is taken from the test image database of our PICASSO system 

designed for evaluation of various image processing 

algorithms [15]-[16], [20]-[21]. 

 

   

      Fig.2.a. Ideal image.         Fig.2.b. Noisy image I(x,y). 

 

This image has an inner boundary in the middle. Its contrast 

varies from bottom to top. Namely, on the Fig.2, the contrast 

of the boundary pixels is determined by ordinate y and 

continuously decreases from the most value at the bottom of 

the image to the least value at the top. The performance of 

energy image restoration methods significantly depends on the 

contrast values near the boundaries [21]. This image allows 

one to study efficiently the specific features of these methods. 

It appears that influence areas are significantly different a) if a 

tested pixel is far from the boundary and b) if it is close to the 

boundary. 

III.  INFLUENCE AREAS AND TECHNIQUE FOR THEIR 

CALCULATION 

We develop the following technique in order to evaluate the 

size and the shape of influence areas. To do it, the following 

steps are necessary (1-12):  

 

1. Choose a noisy image having inner boundaries. In this 

paper we use Fig.2.b. Denote this image as I.  

2. Restore the image using functional (1). Denote the 

resulting image as u.  

restoration 
· u(x0, y0) · I(x0, y0) 

· I(x2, y2) 

· I(x1, y1) 
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3. Select a pixel (x0, y0) both on I and u. 

 

The above three steps are used for calculation of influence 

areas of both the first and second kind. 

The restored image u is the result of energy functional (1) 

minimization procedure that includes solving of a differential 

equation via numerical methods. The solution is usually found 

by standard iterative process. To do it, all intensity values I are 

considered as floating-point values. 

The values of restored image u are also floating-point. 

Further on, the intensity values of u are rounded to integers to 

be displayed on the computer screen.  

To calculate the influence areas of the first kind, the 

following steps are needed (4-6): 

4. Modify the image I  in (x0, y0). Namely, replace I(x0, y0) 

by Iδ , where Iδ(x0,y0)=I(x0,y0)+δ and δ is a small value (see 

below). In all other points the image Iδ is equal to I.  

5. Perform the restoration of  Iδ. Denote the resulting image 

as uδ.  

6. Find the function D1 (x, y)= uδ (x, y)- u(x, y). 

D1 (x, y) is considered as an image, representing the 

influence area of the first kind. Formally it has the same size as 

Iδ  and uδ. However only a small neighborhood of (x0, y0) 

contains differences between uδ  and u. Obviously, only this 

subdomain of D1 is reasonable to consider. 

For the influence areas of the second kind, the 

corresponding steps (4-6) are different: 

4. Perform series of modifications of the image I: Replace I 

with new ones I∆x, ∆y (x0+∆x, y0+∆y) = I(x0+∆x, y0+∆y)+δ where 

δ is a small value, the same for each I∆x, ∆y . That is, the image I 

is changed in a single pixel. In all other points the image I∆x, ∆y  

is equal to I. Values ∆x and ∆y are sequential integers with 

step 1. In our experiments we took -5 ≤ ∆x, ∆y ≤5.  

 

The δ value should be chosen for the following reasons.  

a) Any change of the initial image should not influence 

essentially the result of restoration. This means that the 

reduction of δ by several times should not considerably change 

the size, or the shape of the influence area. Our experiments 

have shown that for δ = 1.0 and δ = 0.1 both size and the shape 

of the influence areas are practically stable.  So, such values 

for δ are appropriate. In what follows, the value of  δ = 0.1 is 

used. 

b) For the correct search of distinctions between I and I∆x, ∆y, 

both images should be processed under the same scheme. 

Since the restored image is found by an iteration method, then 

in both cases the number of iterations should be the same. For 

the δ choice equal to 0.1, it was observed in all measurements. 

 

5. Perform restorations of all the images I∆x, ∆y. The restored 

images will be denoted as u∆x, ∆y. 

6. Find the function D2(∆x, ∆y) = u∆x, ∆y(x0, y0) - u(x0, y0). 

 

D2(∆x, ∆y) is considered as an image, and ∆x ∆y are its 

coordinates. The values ∆x=0 and ∆y=0 indicate the center. 

Intensity value D2 (∆x, ∆y) shows the influence of change in 

initial image I(x0+∆x, y0+∆y) on the restoration result u(x0, y0). 

The following steps (7-12) are for better computer screen 

displaying. They are applied for both D1 and D2, from now on, 

we denote both functions by D. Now we make several 

transformations of the function D but we keep the same 

evident notation for it. 

 

7. Cover the function D(∆x, ∆y) using two-dimensional 

spline interpolation. Due to this, the coordinates ∆x, ∆y can be 

treated as floating-point values. 

8. Scale the arguments ∆x, ∆y of the function D so that their 

range becomes 0…127. In all subsequent Figs the influence 

areas are enclosed in squares 128×128 pixels of size. 

9. Calculate negative image 255 – D. Then the points with 

the greatest influence on restoration look black, and the points 

with the least influence look white.  

10. Scale the intensity of D in such a way that its range for 

non-negative values of D becomes 0…255. Negative values of 

D (if any) are marked as gray. 

11. After scaling of size and intensity, the values of D have 

to be rounded to integer. Zero intensity integers outline the 

borders of the received image D. 

12. Maximum of D is marked as a center localization pixel. 

 

To calculate an influence area at another pixel (x0, y0), the 

steps 1-12 has to be repeated for this pixel. In what follows we 

consider series of points (x0, y0) located from the left and from 

the right sides of the inner boundary on Fig.2. 
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Fig.3. Influence areas calculation example: σ = 10, y0 = 27 

 

On Fig.3 we can see a typical example of influence areas in 

case when a restoration method “works well”. Some other Figs 

will be shown in Section V. In all these pictures the first row 

represents the influence areas of the first kind and the second 

row the areas of the second kind respectively. Here σ is 

Gaussian noise deviation, and x0 accepts values from 123 to 

133; y0 = 27.  

The size of each image on Fig.3 is 11×11 pixels; however 

the images are stretched to the size 128×128 pixels by means 

of splines. The boundary is located between the pixels number 

128 and 129 on the horizontal axis of Fig.2. Most interesting is 

the dynamics of influence areas if tested pixels are 

approaching to the boundary. One can see that if the pixel 

(123, 27), (left images on Fig.3), is far enough from the 

boundary (x0 = 128), both influence area of the first and the 

second kind are large. While approaching to the boundary, 

influence areas deform and decrease.  

Thanks to this fact the image is blurred in the image areas 

with no boundaries, so the noise is reduced. But in image areas 

with boundaries there is no blurring and contrast boundaries 

are preserved. 

IV.  ENERGY FUNCTIONALS FOR TESTING 

Now we apply the technique from the Section III for testing  

two functionals of type (1). We will keep the notations PL and 

GR both for functionals and for corresponding image 

restoration methods. 

 

1) PL: functional with Piecewise Linear energy minimizing 

function, [14]; 

2) GR: modified Geman-Reynolds functional, [8], [11].  

 

Rewrite the formula (1) as  

∫ ∫
Ω Ω
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µ  , and  0 ≤ φ(r) ≤ 1.               

Here 0 < λ < 1, and 0 < µ ≤ 1 are two parameters of the 

functional (2). The parameter λ regulates relative contributions 

of two terms in the right hand side of (2). Small values of λ 

restrict a solution to be close to the initial image. Large λ force 

the solution u to be smooth. The parameter µ controls the 

properties of the restoration term. The smaller is the value of 

µ, the better is edge preserving qualities and the worse is noise 

reduction (see below, Fig.4). 

The value c is chosen for proper calculations. Due to such a 

form of c, both integral terms in (2) have approximately the 

same order respective to change of the contrast of the image I.  

PL functional. In [14]-[16], [21] the functionals of type (2) 

with piecewise linear function (3) were studied:  

φ(r)=r, if 0 ≤ r≤ 1, and φ(r)=1, if r > 1.          (3) 

GR functional. Primarily, D.Geman and G.Reynolds worked 

out their functional [8] for image restoration and simultaneous 

boundary extraction. In [11] this functional was modified for 

the task of image restoration only. It obtained the form (2) with 

minimization function (4): 

φ(r)=r/(1+r).                        (4) 

The value r depends on the gradient (2). Functions (3), (4) 

increase rapidly with r when the gradient and r are small on 

noisy areas with slowly varying intensity. Due to minimization, 

both gradient term in (2) and gradient are effectively restricted 

on such areas what results in smoothing of the image u. 

Contrarily, the functions φ are constant or increase slowly if 

the gradient and r are large near boundaries. In this case, the 

gradient is less restricted what results in preserving of contrast 

boundaries. 
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Fig.4.a. µ = 0.5                          Fig.4.b. µ = 0.9 

 

On Fig.4, we show two images restored using PL method. 

Here λ = 0.8. If µ = 0.2...0.7, the boundaries are well preserved 

(Fig.4.a), but the noise reduction is bad. If µ = 0.8...0.9, noise 

reduction is better. However, only most contrast boundaries 

are preserved on the restored image (Fig.4.b). Black arrows on 

Fig.4 indicate boundary points with critical contrast values. If 

the boundary’s contrast is greater than critical then such a 

boundary remains contrast after the restoration procedure. If 

not, the boundary is blurred. We will show that the technique 

of influence areas allows one to find critical contrast values.  

V.  TESTING RESULTS 

Minimization problem (2) can be solved by standard 

iteration method (see e. g. [11]). Our experiments have shown 

that the parameter λ mainly affects the speed of convergence 

of the iteration process. For both methods, we obtained good 

convergence with λ=0.8 to λ=0.9. So, further we use such 

values of λ. As to the parameter µ, it varies within the range 0 

< µ ≤ 1. The result of calculations u very significantly depends 

on the value of µ.  

Next we give some examples of influence areas for PL and 

GR functionals. In all cases, we chose noisy image Fig.1.b 

with Gaussian noise deviation σ = 10. We tried other values of 

σ. The results were not quite the same,  but similar. 

PL method. Fig.3 corresponds to PL method at λ = 0.9,       

µ = 0.3, σ = 10, y0 = 27. Such influence areas are typical for 

the values λ = 0.8...0.9, µ = 0.2...0.8.  

The restored image is obtained as a solution of a nonlinear 

differential equation, so influence areas are not always as good 

as on Fig.3. The situations when a restoration method fails 

maybe are most informative. On Fig.5 we show influence areas 

for µ = 0.1 One can see gray homogenous domains outside the 

neighborhood of (x0, y0) in the second row. Within such 

domains, the function D is less than zero. It means that small 

gain of the intensity near the pixel (x0, y0) on the initial image I 

does not results in the gain of intensity at (x0, y0) on the 

restored image u. Conversely, the intensity at (x0 ,y0) on u 

decreases. Thus, PL method makes certain distortion of the 

boundary on u, and for this value of µ proves to be “bad”. 

 

 

Fig.5. PL method. λ = 0.8. µ = 0.1. y0 = 26. “Bad” domains in the second row. 

Next let us consider Fig.6. If y0 = 27, such a value of y0 

defines too low contrast of the boundary for the given value µ 

= 0.8 (see Fig.4). Thus the initial image is blurred around all 

points (x0, y0) we test, and the boundary is not preserved at all. 

On Fig.6 we can see large influence areas both of the first and 

the second kind. This effect means blurring.  
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Fig.6. PL method. λ = 0.8. µ = 0.8. y0 = 27 

Now let us consider Fig.7. The ordinate y0 = 27 defines 

critical level of the boundary contrast for µ = 0.7. If y0 < 27, 

then more contrast boundary is preserved; if y0 > 27, it is 

not (Fig.4). As is seen on Fig.7, the shape of influence areas 

is almost arbitrary and the PL method fails. This means that 

some boundaries of critical contrast can be corrupted.  

 

 

 

 
Fig.7. PL method. λ = 0.8. µ = 0.7. y0 = 27 

 

GR method. As show our tests, good convergence is 

obtained for λ = 0.8...0.95. Thus in the following examples 

we use the value λ = 0.85. Choosing another λ somewhat 

changes shape and size of influence areas. However, these 

changes are not considerable. On the contrary, the choice of 

the second parameter µ is very essential for GR method. 

Next we show pictures for µ = 0.2, µ = 0.7, and µ = 1.0. 

Within the images on Fig.8-10, there are big homogenous 

gray domains outside (x0, y0) where the function D is less 

than zero (both in the first and the second row). It means 

presence of distortions on the restored image. The 

distortions are most considerable when µ is small (µ = 0.2) 

on Fig.8). Note that if the tested pixel is close to the 

boundary (x0 = 128, 129), influence areas are very small. It 

means that the preserving of contrast boundary is good. So, 

in the case of small µ, GR method has a special feature. It 

rather distorts the areas with slowly varying intensity than 

boundaries.  
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Fig.8. GR method. λ = 0.85. µ = 0.2. y0 = 27 

Typical influence areas for λ = 0.85, µ = 0.3..1.0 are 

shown on Fig.9,10. If a pixel is relatively far from the 

boundary (x0 = 123 and x0 = 133), influence areas are large. 

Hence, initial image is blurred in the neighborhoods of such 

points. Due to this we have noise reduction effect. Most 

characteristic are images with x0 = 128 and x0 = 129.  

However, for greater values of µ, the size of influence 

areas increases near the boundary (see below, Fig.9,10). It 

means that for such µ, the  GR method blurs even the most 

contrast boundaries. 

 

 

 
Fig.9. GR method. λ = 0.85. µ = 0.7. y0 = 27 

 

 

 
Fig.10. GR method. λ = 0.85. µ = 1.0. y0 = 27 
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VI.  CONCLUSION 

As seen from the above, the influence areas play the key 

role in the novel technique for testing of energy minimizing 

restoration methods. We used this technique for calculation of 

these areas and applied the whole testing procedure to a couple 

of restoration methods: PL and GR. We studied their ability to 

simultaneously reduce the noise and to preserve contrast 

boundaries on the restored image. In our testing procedure, the 

evaluated method is considered as a black box with input 

parameters which control its performance. 

Our tests showed that for both of the methods there are 

critical contrast values, which may lead to distorted boundaries 

of objects on the restored image. 

For the PL method, the optimal values of its input parameter 

λ are in the range from 0.8 to 0.9 and µ are from 0.2 to 0.8. For 

the smaller µ, the distortions on the restored images may be 

observed; bigger values of µ often lead to the loss of high 

contrast boundaries. 

The GR method almost always creates distortions on the 

restored image. Increasing the intensity value at a certain pixel 

of input image, one may get the decrease of intensity on the 

restored image. However, this is not a disadvantage of the 

method, because this effect can increase the contrast of blurred 

object’s boundaries, or in other words, it can increase the 

image’s sharpness. According to our test results, the optimal 

values of λ for the GR method lay in the range from 0.8 to 

0.95. For the high contrast preservation of the object 

boundaries, the optimal values of µ are from 0.1 to 0.2. If 

noise suppression is the main priority, one should take µ from 

0.3 to 1.0. 

Since the energy minimizing methods are also used for 

image segmentation (see e. g. [2]-[3], [11]) the considered 

testing method can be applied to study the segmentation of 

blurred images by such methods. However, in the results 

presented here, only step-type boundaries were considered 

(Fig. 2). So the comprehensive testing of boundary 

preservation property by such methods remains an open task. 

We believe that the images from the database of PICASSO 

system [15]-[16], [20]-[21] can form a representative set for 

such testing. 
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