
 

 

  
Abstract—This study investigates and compare different methods to 
estimate the number of signal sources in the hyperspectral data.  To 
achieve an accurate map of mineral distributions in the study area by 
means of the spectral analysis of Hyperion data, the number of 
endmembers was computed by different methods. This process is 
also known as determination of virtual dimensionality of the image. 
Estimation of Virtual Dimensionality of data or in other words, the 
number of detectable endmembers from data is very important task in 
hyperspectral imagery. If this estimated number doesn’t meet the 
reality, final estimation of mineral abundances will be erroneous. The 
results established that principle component analysis underestimates 
the virtual dimensionality of data. This is reasonably due to lower 
abundances of some minerals on the earth surface that will be 
considered as unimportant principle components because of their 
lower energy fraction in the total radiance measured at sensor. The 
higher order statistical method on the other hand, showed better 
performance. This method uses Neyman–Pearson detection theory 
and its estimation is more realistic. 

 

 Keywords—Hyperion, Hyperspectral imagery, Principle 
component analysis, Signal processing, Virtual dimensionality. 

I. INTRODUCTION 
Estimation of Virtual Dimensionality (VD) of data or in 

other words, the number of detectable endmembers from data 
is very important. In the case of having considerable mistake 
in determination of VD, final estimation of mineral 
abundances will be erroneous. In such a condition, 
determination of minerals in the image is meaningless. Two 
groups of methods were investigated to perform this task. One 
based on variance evaluation of channels (PCA and MNF) 
which have been applied for long time in various researches 
(e.g. [1]-[5]) and another based on high order statistical 
method which has found its way in image data analysis 
recently. The study is performed on the Hyperion scene from 
Erongo complex, Namibia.  

A. Hyperion description 
   The objective of the Hyperion instrument is to provide high 
quality calibrated data that can support evaluation of 
hyperspectral technology for Earth observing missions. 
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Hyperspectral images can be defined as images with a high 
spectral resolution, typically 100 to 300 different wavelengths 
[6]. The Hyperion is a pushbroom instrument. Each image 
frame taken in this "push broom" configuration captures the 
spectrum of a line 30 m long by 7.5 km wide (perpendicular to 
the satellite motion). Frames are then combined to form a two 
dimensional spatial image with a complete spectral signature 
for each pixel. Hyperion has a single telescope and two 
spectrometers, one visible/near infrared (VNIR) spectrometer 
and one short-wave infrared (SWIR)) spectrometer. Each 
pixel views a 30 m x 30 m region of the ground. The swath 
length of each image depends on the duration of the collect 
and is commanded by the spacecraft [7]. 

B. Study Area 
    The area which is located in northwest of Namibia and 
includes Erongo Complex with a diameter of approximately 
35 km which is one of the largest Cretaceous anorogenic 
complexes in that country. The centre of the complex is 
located approximately on 21o40’ S and 15o38’E. 

It represents the eroded core of a caldera structure with 
peripheral and central granitic intrusions. Surrounding the 
outer granitic intrusions of the Erongo Complex is a ring dyke 
of olivine dolerite, which locally reaches some 200 m in 
thickness and has a radius of 32 km (Fig.1 and Fig.2). The 
ring dyke weathers easily and is therefore highly eroded. 
However, it can be easily identified on aeromagnetic data and 
satellite images. The central part of the Erongo complex 
consists of a layered sequence of volcanic rocks, which form 
prominent cliffs rising several hundred meters above the 
surrounding basement. The interior of the complex is deeply 
eroded, giving access to the roots of the structure. The 
basement rocks consist of mica schists and meta-greywackes 
of the Kuiseb Formation and various intrusions of granites. In 
the southeast, the rocks of the Erongo Complex overlie the 
Triassic Lions Head Formation, which consists of 
conglomerates, gritstone, arkose with interbedded siltstone 
and mudstone, and quartz arenite. 
 The base of the Erongo Complex consists of a series of flat-
lying basaltic lava flows and interbedded pyroclastic rocks. 
These basal volcanics are exposed throughout the entire 
complex and may originally have had an even wider 
distribution. With some 300 m thickness, the thickest layers of 
the basal volcanics are located in the southeastern part of the 
complex. The rock compositions range from tholeiitic, fine-
grained basalt and basaltic andesite to andesite. Most basalts 
are considerably altered and commonly amygdaloidal, with 
vesicles filled with calcite and chalcedony. The alteration also 
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caused local growth of quartz, actinolite, epidote and 
chalcopyrite. Plagioclase is sericitised and saussuritised, and 
Clinopyroxene is replaced partially or fully by chlorite and 
epidote. 

 

Fig.1: Location of Erongo Complex and surrounding geological formations. 

 

The basal volcanics are followed by a sequence of felsic 
volcanic units, which have been subdivided by Pirajno into 
four phases. The first phase is characterized by minor 
eruptions of mafic-intermediate lavas and major ash-flow tuffs 
of intermediate to felsic composition. These so-called 
Erongorus ash-flow tuffs occur mainly in the north, the 
northwest and the west of the complex, but the units are 
absent in the east. They are generally altered and characterized 
by a devitrified groundmass with phenocrysts of quartz and 
altered K-feldspar. 

 

 

 

The Erongorus tuffs are overlain by the Ombu ash-flow tuff 
sequence, which is volumetrically the main rock type of the 
complex and forms the most prominent cliffs. The Ombu tuffs 
are generally more quartz-rich than the Erongorus tuff units, 
but the most striking difference is that the Ombu tuffs 
frequently contain abundant sizable (cm- to dm) fragments of 
basement rocks. Compositionally, the Ombu tuff units are of 
rhyodacitic and rhyolitic composition [8]. 
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I. DATA CORRECTION 
Electromagnetic waves travelling from the energy source to 

the earth and from the earth to the sensor interact with a 
variety of materials, including various gases, water vapour, 
and aerosols. It is therefore necessary to compensate for these 
undesirable effects, which is known as atmospheric 
correction. We therefore used ACORN mode 1 for the 
atmospheric correction of the dataset.  
Quality of Hyperion datasets is related to existence of bad 
pixels and bad bands. For example a dead detector will make a 
dark sample column respected to it with 0 or filled with 
constant DN for all pixels. This problem could be corrected by 
resampling using adjacent pixels. It is noteworthy that during 
processing, they preferably would be masked but for any 
visual output the resampling results in better performance. 

Other problem about pixels is smile effect. According to Jupp 
and Datt [9] this is a systematic effect that has been noticed in 
Hyperion processing and application involves problems in the 
spectral alignment of the VNIR array. It has been called 
spectral smile since its consequence is that the central 
wavelength of a band varies with spatial position across a line 
in a smoothly curving pattern. However, since the peak of the 
curve in Hyperion tends to be near the middle of the line it 
could perhaps be better called (and for more than one reason) 
spectral frown. In their report, they have collected the findings 
of different researchers. They showed that among options for 
its removal only wavelength interpolation, in which the smile 
is removed from each vertical column by interpolating to a 
standard set of central wavelengths prior to atmospheric 
correction, could reduce it and maintain spectral integrity. 

Unfortunately, interpolation was unable to remove all of the 
smile effect just to reduce it. Therefore there was a great deal 
of discussion about how to live with this smile effect and most 
people have worked without a specific correction in place. 
The good points for the situation are that: 

-It is only significant in the VNIR. The SWIR has little to no 
“smile” effect; and 

-It only affects indices, ratios or derivatives near to sharp 
atmospheric features or the residuals from such features after 
atmospheric correction. 

Whereas we used SWIR channels in most of feature detection 
processes, therefore fortunately this problem will not be a 
crucial in our work. 

Determination of bad bands in our work could be the most 
important task of quality assessment of the dataset. A short 
definition for bad bands refers to some bands in the dataset 
which have insignificant and inconsiderable information or no 
information to be extracted. The dataset produced by USGS so 
only 198 bands from 242 (VNIR: 8-57, SWIR: 77-224) 
available channels have already been selected by supplier 
according to different calibration parameters. 

Some bands having large amount of noise degrades the 
interpretability of data and should then categorized as bad 
bands. This noise might be produced by numerous factors 
including thermal effects, sensor saturation, quantization 
errors and transmission errors. 

The quality of digital remote sensing data is directly related to 
the level of signal to system noise ratio (SNR). This is a 
dimensionless number that describes overall system 
radiometric performance. System noise is tied to sensor design 
and takes into account factors such as detector 
performance/sensitivity, spatial/spectral resolution, and noise 
characteristics of the system electronics. Theoretically, SNR 
ratio for Hyperion is 190 to 40 as the wavelength increases 
[10]. Although the noise levels for a given sensor are 
generally fixed, for remote sensing data acquisition, the signal 
portion of the SNR is affected by other external factors such 
as solar zenith angle, atmospheric attenuation and scattering, 
and surface reflectance, which modify the signal available to 
the sensor. 

One common means for determining an approximate SNR for 
remote sensing data is to use a mean/standard deviation 
method. This approach requires definition of a spectrally 
homogeneous area, calculation of the average spectrum for 
that area, and determination of the spectrally distributed 
standard deviation for the average spectrum. SNR calculated 
using this method are representative of those that can be 
extracted directly from the data, however, SNR for bright 
targets may be underestimated because of homogeneity issues 
at higher SNR (increasing SNR may result in breakdown of 
apparently homogeneous areas into multiple materials, and 
new homogeneous areas must be selected). Slightly higher 
SNR values could probably be obtained through direct 
analysis of the data dark current signal, an “Instrument SNR”, 
however, this is not always possible. SNR calculated using the 
mean/standard deviation method, an “Environmental SNR,” is 
sensitive to acquisition conditions as mentioned above and, 
thus, should be considered a lower limit on performance. 

Analysis of approximately 14 Hyperion scenes from around 
the world using the mean/standard deviation SNR method 
shows that there is a strong relationship between the 
acquisition time of year and the SNR of the Hyperion data. 
Calculated SNR for Hyperion SWIR data are higher in the 
summer and lowest in the winter. This has a direct effect on 
spectral mineral mapping, with lower SWIR SNR resulting in 
extraction of less detail [11]. As a result of this process, 
uncalibrated channels (channels 1-7 and 225-242) in addition 
to those affected strongly by water vapour absorption (940nm, 
1400nm, 1900nm) are listed in bad bands list of the data for 
next processing tasks. Besides that, the bands which possess 
considerable less SNR ratio comparing to vicinity channels 
are also considered as bad bands.  

After assessing of quality of data bands (signal to noise 
ratio), we used up only good bands (166 of total 242 bands) to 
avoid any possible mistakes during preprocessing and 
subsequent steps. As a final pre-processing task, the data were 
polished using a geostatistical algorithm presented by the 
author [12]. This algorithm reduces the total error in terms of 
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discrimination of the endmembers. 
 

 
 
Fig.2: Erongo complex can be easily identified in the middle 
of this ASTER scene (left), and the image in the right hand 
belongs to the Hyperion image of Erongo. 

II. METHODOLOGY 

A. Principle component analysis 
    To estimate the VD of the Hyperion data, PCA transform 
available on ENVI platform was used by rotating the majority 
of information content (variance) into fewer bands. The 
specific method of PCA is completed by rotating the original 
data into a set of axes that maximizes the variability in the first 
few axes ([13];[14]). This is done by finding a new coordinate 
system in hyper‐dimensional vector space where the data 
exhibits no correlation.   Basically,  the  covariance  matrix  in 
 the  new  coordinate  system  is  diagonal  or  uncorrelated.  A 
 linear  transformation,  U,  that  transforms  the  original 
 hyperspectral  data,  X,  into  the  new  coordinate  system  Y 
 must  then  be  calculated. 
Use either SI (MKS) or CGS as primary units. (SI units are 
strongly encouraged.) English units may be used as secondary 
units (in parentheses). This applies to papers in data storage.  
.   The  original  covariance  matrix,  Σ

x,
  becomes  the 

 diagonalized  covariance  matrix,  Σ
y
.  The  solution  to  this 

 problem  becomes  a  generalized  eigenvalue  problem  of 
 the  form:  

ΣXU=UΣY                      (1)                               

where  the  eigenvalues  are  the  diagonal  elements  of  Σ
y
, 

 and  the eigenvectors form  the  columns  of  U  [15].  The 
 original  data  X  is  then multiplied  by the  eigenvectors  of 
 the  original  data  covariance  Σ

x
.  The PCA transformation is 

then computed by: 

 Y=UTX                          (2)                                       

Often  times  PCA  is  used  to  either  reduce  the 
 dimensionality  of  the  data processed  in a  target  detection 
 algorithm,  or  to  reduce  the  noise  in  the hyperspectral 
 imagery.  Typically  to  reduce  the  dimensions  of  a  data 
 set  a selection  of  a  certain  number  of  PCA  bands  is 
 made  so  that  certain  percentage of  the  total  variance  in 
 the  data  is  preserved.   The results which introduce 
principle components of the data are listed in table 1 with 
respect to eigenvalues amount. Fig.3 demonstrates the result 
in diagram in which the eigenvalues portions for each 
eigenvector (0 to 100%) are plotted. First 13 eigenvectors 
includes approximately 99% of sum of all the eigenvalues. 
Therefore a preliminary judgment about VD or the number of 
detectable endmembers by this method is 13. 

 
Fig.3: The eigenvalues proportions for each eigenvector       
calculated  by PCA 
 

A. Minimum noise fraction  
   The MNF transformation is a linear transformation related to 
principle components. It determines the inherent 
dimensionality of the data, segregates noise in the data, and 
reduces the computational requirements for subsequent 
processing[16]. Noise is undesired information that 
contaminates an image. Noise appears in images from variety 
sources[17]. 
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Table 1: Eigenvalues calculated for principle components of 
data by PCA ENVI. 

 

It is defined as a two-step cascaded PCA. The first step, based 
on an estimated noise covariance matrix, is to decorrelate and 
rescale the data noise, where the noise has unit variance and 
no band-to-band correlations. The next step is a standard PCA 
of the noise-whitened data. The inherent dimensionality of the 
data is also determined by examination of the final 
eigenvalues and the associated images by using MNF 
transformation from ENVI. The data space can be divided into 
two parts: one part associated with large eigenvalues and 
coherent eigen images, and a complementary part with near-
unity eigenvalues and noise-dominated images. The results of 
the MNF transform are presented in table 2 and related plot 
(Fig.4). In contrary to PCA, none of MNF eigenvectors poses 
such a high eigenvalue. For that eigenvalue number 1 is 
13.68% of sum of the all eigenvalues, however, even 40th 
eigenvector has a considerable value. This outcome could be 
as a result of the application of algorithm presented in the last 
chapter, because the noise in the dataset was whitened in all 
bands. But the corollary that could be realized from this 
outcome is important: 

Probably some of other eigenvectors beside those 13 
introduced by PCA have also some extractable information. 
As a matter of fact this is a reality when the goal of study is to 
survey minerals anomalies, as some low grade minerals on the 
surface of study field are not able to be monitored in high 
value eigenvectors in principle component analysis. Therefore 
in the case of mineral study by hyperspectral data, using other 

complementary and non-linear methods which are not based 
on only variance role is necessary. 

Table 2: Eigenvalues calculated for principle components of 
data by MNF ENVI 

 

 
Fig.4: The eigenvalues proportions for each eigenvector 
calculated by MNF 

    B HFC method 

PCA1 2.62E+08 89.29766 

PCA2 11869887 4.051156 

PCA3 6949261 2.371762 

PCA4 4499289 1.535594 

PCA5 1510253 0.515445 

PCA6 1193729 0.407416 

PCA7 711518.3   0.242839 

PCA8 629891.3 0.21498 

PCA9 366060.5 0.124935 

PCA10 273020.7 0.093181 

Num Eigenvalue Eigenvalues 
percentage 

MNF1 75.49992 13.68934 

MNF2 54.43878 9.870621 

MNF3 28.981 5.254717 

MNF4 27.61613 5.007246 

MNF5 23.13752 4.195202 

MNF6 13.02569 2.361766 

MNF7 10.07678 1.827081 

MNF8 8.866292 1.6076 

MNF9 7.55313 1.369503 

MNF10 7.153453 1.297035 
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This is a method presented by Harsanyi, Farrand, and Chang 
(HFC) [18] and it uses Neyman–Pearson detection theory for 
estimation the number of endmembers. This idea is described 
in [18] and [19], but we will have a brief description here as it 
necessary to evaluate the reliability of the method.  

 

Table 3: VDs calculated by HFC method for different false 
alarm probabilities (Pfa). 

 

eigenvalues generated by the sample correlation matrix and 
the 

 Let the sample covariance matrix be denoted by correlation 
eigenvaules and covariance eigenvalues, respectively. Since 
the component dimensionality is equal to the total number of 
eigenvalues, each eigenvalue specifies a component 
dimension and provides an indication of the significance of 
that particular component in terms of energy or variance. If 
there is no signal source contained in a particular component, 
the corresponding correlation eigenvalue and covariance 
eigenvalue in this component should reflect only the noise 
energy, in which case, correlation eigenvalue and covariance 
eigenvalue are equal. This fact provides us with a base from 
which we can formulate the difference between the correlation 
eigenvalue and its corresponding covariance eigenvalue as a 
binary composite hypothesis testing problem. The null 
hypothesis represents the case of the zero difference, while the 
alternative hypothesis indicates the case that the difference is 
greater than zero. When the Neyman–Pearson test is applied 
to each pair of correlation eigenvalue and its corresponding 
covariance eigenvalue, the number of times the test fails 
indicates how many signal sources are present in the image. In 
other words, a failure of the Neyman–Pearson test in a 
component indicates a truth of the alternative hypothesis, 
which implies that there is a signal source in this particular 
component. 
Using this approach, we can estimate the virtual 
dimensionality with the receiver operating characteristic 
analysis for evaluating the effectiveness of the decision. It first 
calculates the sample correlation matrix RL×L and sample 
covariance matrix KL×L and then finds the difference between 
their corresponding eigenvalues. Let {λ’1≥λ’2≥…≥λ’L} and 
{λ1≥λ2≥…≥λ L} be two sets of eigenvalues generated by R L×L 
and K L×L, called correlation eigenvalues and covariance 
eigenvalues, respectively. By assuming that signal sources are 
non-random unknown positive constants and noise is white 
with zero mean, we can expect that 

λ’l > λl  for l=1,2,…,VD                    (3) 

and  λ’l = λl  for l=VD+1,…,L           (4) 

More specifically, the eigenvalues in the lth spectral channel 
can be related by 

λ’l > λl>σ2
nl   for l=1,2,…,VD           (5) 

 and  λ’l = λl=σ2
nl  for l=VD+1,..,L   (6) 

Where  σ2
nl  is the noise variance in the lth spectral channel. 

In order to determine the VD, Harsanyi et al formulated the 
problem of determination of VD as a binary hypothesis 
problem as follows: 

H0:zl= λ’l - λl=0  versus H1:zl= λ’l- λl>0 

for  l=VD+1,…,L                              (7) 

Where the null hypothesis H0 and the alternative hypothesis 
H1 represent the case that the correlation eigenvalue is equal to 
its corresponding covariance eigenvalue and the case that the 
correlation eigenvalue is greater than its corresponding 
covariance eigenvalue, respectively. In other words, when H1 
is true (i.e., H0 fails), it implies that there is an endmember 
contributing to the correlation eigenvalue in addition to noise, 
since the noise energy represented by the eigenvalue of R L×L 
in that particular component is the same as the one represented 
by the eigenvalue of K L×L in its corresponding component. 
Despite the fact that the λl and λ’l are unknown constants, we 
can model each pair of eigenvalues λ’l and λl under hypotheses 
H0 and H1 as random variables by the asymptotic conditional 
probability densities given by 

p0(zl)=p(zl|H0)≈N(0, σ2
zl), 

  for  l=1,2,..,L                                      (8) 

and 

p1(zl)=p(zl|H1)≈N(µl, σ2
zl),   

for  l=1,2,…,L                                      (9) 

respectively, where µl is an unknown constant and the 
variance σ2

zl is given by 

σ2
zl=Var[λ’l - λl]= 

Var[λ’l]+Var[λl]-2Cov(λ’l - λl)            (10) 

Eventually, they defined the false-alarm probability and 
detection power (i.e., detection probability) by using above 
mentioned equations and some approximations as follow: 

 ( )01
P P z dzF τ

∞= ∫                         (11) 

∫
∞

=
l

dzzpPD τ
)(1                              (12) 

A Neyman–Pearson detector for λ’l - λl, denoted by δNP(λ’l - 
λl), in the binary composite hypothesis testing problem can be 
obtained by maximizing the detection power PD in (12), while 
the false-alarm probability in (11) is fixed at a specific given 
value, , which determines the threshold value in (11) and (12). 
So, a case of λ’l - λl >Tl indicating that δNP(λ’l - λl) fails the 
test, in which case there is signal energy assumed to contribute 
to the eigenvalue λ’l in the lth data dimension.It should be 

Pfa 10-1 10-2 10-3 10-4 10-5 

VD 43 38 37 37 37 
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noted that the test for hypothesis must be performed for each 
of L data dimensions. Therefore, for each pair of λ’l - λl, the 
threshold T is different and should be L-dependent, i.e., .TL 

Virtual dimensionalities of the image were calculated using 
various amounts of false alarm probabilities are listed in table 
3. 

   

C Estimation of the number of endmembers by PPI and N-D 
visualizer 

  Decreasing in Pfa will increase the threshold amount which is 
used in comparison of λ’l  and λl, but actually after a certain 
magnitude it doesn’t have significant effect on threshold. 
Therefore as it mentioned by the innovators of the method 
(Harsanyi et al. [18]; Chang and Du [19]) 10-4 seems to be a 
reasonable amount for that. 37 detectible endmembers for the 
Hyperion data is final result of this section. As discussed 
before pixel purity index (PPI) is a process to determine most 
pure pixels in the scene. All other pixels’ signal amounts 
could be written as a linear combination of these pure pixels. 
In the case of mineral exploration due to small abundances of 
minerals, however, finding pure pixels is somewhat 
impossible. Therefore the purest pixels themselves are 
consisted of some minerals. This fact will conduct us to two 
points of view: 

We intend to determine the minerals so it should be defined 
how many minerals are comprised in each purest pixel. The 
result will guide us to estimate the number of detectible 
minerals or the number of endmembers in the image data 
which is the goal of this stage of research. 

We intend to determine the groups of minerals like alteration 
mineral groups. This will create new opportunities and new 
challenges and will be discussed next. 

In this research we applied ENVI’s well known procedure to 
determine purest pixels. This procedure uses MNF to 
dimensionality reduction after which the pixel purity index is 
computed by repeatedly projecting n-dimensional scatter plots 
onto a random unit vector. The extreme pixels in each 
projection (those pixels that fall onto the ends of the unit 
vector) are recorded and the total number of times each pixel 
is marked as extreme is noted. A pixel purity image is created 
in which the DN of each pixel corresponds to the number of 
times that pixel was recorded as extreme. 

To be sure about not to miss any extractable information in 
data we used 30 first bands of MNF transform to produce 
pixel purity index image. The PPI is calculated by repeatedly 
collapsing n-dimensional scatter plots (30 dimensions for 
endmember selection) of MNF data onto a random 2-
dimensional unit vector. In each projection, the pixels in the 
scatter plot that fall at or near the ends of the vector (highest 
degree of variance) are identified as extreme pixels. A 
threshold value of 2 to 3 times the variance in the data set is 
suggested as a starting point for the selection of extreme 
pixels. As the PPI threshold increases, the number of selected 

pixels increases, and the probability that mixed pixels will be 
selected increases. 

For each iteration ENVI records which pixels are marked as 
extrema. After multiple iterations, the pixels identified as 
extreme the highest number of times are considered pure. It is 
important to note that if a target does not exist in the image as 
100% cover, the PPI could mark a mixed pixel as being pure. 
If this is the case, the identified mixed pixels are still 
considered to represent endmembers, because they most 
closely represent the spectral reflectance of pure target 
reflectance. 

Interactively adjusting the number of PPI iterations and the 
PPI threshold will produce different results in the PPI 
calculation. Fig.5 illustrates a plot of the number of pixels 
selected versus the number of iterations with the use of 2.5 as 
PPI threshold by iterating 100,000 times. Typically setting a 
high PPI threshold results the selection of more pixels 
including impure pixels as extremes. Alternatively, setting a 
very low PPI threshold (e.g. a threshold of one) will not select 
many mixed pixels, but will also not select all purest pixels. 
For this study, 100,000 iterations at a PPI threshold of 2.5 
produce approximately 27,000 pixels marked as extreme in at 
least one projection. 

The PPI algorithm was able to distinguish purest pixels almost 
uniformly distributed all over the scene. It is noteworthy that 
some pixels along first and last columns and also on a few 
other columns which were selected as pure pixels were 
ignored before subsequently processes. 

The purest pixels indexed by PPI were to be clustered by N-
Dimensional visualizer method in ENVI. This algorithm in 
conjunction with the MNF transform and PPI results can be 
used to locate, identify, and cluster the purest pixels and most 
extreme spectral responses in a data set. The N-Dimensional 
visualizer is an interactive tool to use for selecting the 
endmembers in n-space. Spectra can be thought of as points in 
an n-dimensional scatter plot, where n is the number of bands. 
The coordinates of the points in n-space consist of “n” values 
that are simply the spectral radiance or reflectance values in 
each band for a given pixel. The distribution of these points in 
n-space can be used to estimate the number of spectral 
endmembers and their pure spectral signatures. When using 
the N-Dimensional Visualizer, you can interactively rotate 
data in n-D space, select groups of pixels into classes, and 
collapse classes to make additional class selections easier. The 
selected classes can be exported to Regions of Interest (ROIs).  

At first automatic clustering by ENVI N-D Visualizer module 
was performed to obtain an overall understanding about purest 
pixels signatures. By this method the number of classes is 
equal to the number of MNF image bands (30 in this case). 
More investigation and comparison of mean spectrum of 
classes conducted us to merge some of classes produced by N-
D Visualizer; however, a few new classes were distinguished 
by rotating and projecting pixels in 3,4,5,6 dimensional 
spaces. Finally 11 independent classes were identified. As 
formerly discussed these purest pixel are always mixed of a 
few minerals themselves, as a matter of fact if we want to 
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make a decision about the number of detectable minerals by 
this method, it could be sophisticated. But the most important 
conclusion of applying this algorithm is that the number of 
endmembers could be more than 13 which were resulted by 
PCA method. 

 
Fig.5: The performance of PPI and selected pixels as purest 
pixels versus iteration 
 

IV  Conclusion 
The huge volumes and rates of data generated by 
hyperspectral sensors demand expensive processors with very 
high performance and memory capacities. Dimensionality 
reduction is, therefore, a relevant first step in the hyperspectral 
data processing chain. Whit very high spectral resolution 
hyperspectral sensors which can extract many unknown 
material substances which cannot be provided by a prior 
knowledge, estimation of virtual dimensionality of 
hyperspectral data is more problematic than that of 
multispectral data. 
According to the results of two methods applied for estimation 
of virtual dimensionality on a set of Hyperion data, more and 
reliable VD can be computed by high-order statistic based 
methods such as HFC in comparison to PCA. 
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