
     

 

 
Abstract— - In this paper we propose a new approach for image 

classification by simplifying contour of shape and making use of the 
tangent function as image feature. We firstly extract shapes from a 
sample image and connecting pixels of its contour. The extracted 
contour is simplified by our algorithm and converted into tangent 
function which is regarded as a feature. The tangent function 
represented a shape is input into classified system and compared with 
tangent function from existed classes by computing their distance. 
The input sample image will finally be classified into a class that has 
minimum distance with it. The experimental results show the 
proposed method can achieve high accuracy. 
 

Keywords— Shape classification, contour, simplification, 
tangent function.  
 

I. INTRODUCTION 

 
lassifying a group of images, telling out which class they 
belong to, is an important problem in shape classification 
and image retrieval systems. Shape classification systems 

are generally used in applications like image databases in 
which the shape segmented from an image will be classified 
into a class that have exit in database according to a defined 
criterion, which judge how similar or dissimilar the sample 
shape to those existed in classes. Often the criterion, or called 
metric, is features based. Simply comparison of pixels does 
not work well on most systems, since the difference between 
images is reflected on differences of certain features. Shape is 
an important visual feature of an image for content-based 
image retrieval or recognition [1]. Techniques for shape 
feature extraction can be generally classified into two 
categories: boundary-based methods and region-based 
methods. Boundary-based methods are widely used. They 
depend so much on the boundary that a slight change can 
cause grave retrieve errors. Compared with boundary-based 
ones, region-based techniques are comparatively more suitable 
for general applications. Zernike Moments (ZM) method is 
one of the most desirable region-based methods. The modified 
ZM has been adopted by MPEG-7 as a standard region-based 
descriptor. The generic Fourier Descriptor is another 
favorable method proposed in recent years. However, most of 
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the existing methods cannot achieve high recognition rate for 
images with complex inner shapes. Therefore, researches in 
the field of similarity measuring and image matching mainly 
focus on image features nowadays[1, 2]. For example, in[3], 
Inner-Distance was used as an feature of shape that described 
the characteristics unique from others and in[4] Radon 
Composite Features was employed. One widely used approach 
is template matching. However, a direct template matching 
also has its main disadvantage: very high computational cost. 
This is owing that representation of template from image can 
be complex in processing, for instance, the higher resolution 
or more noise, the heavier computation is required. A 
meaningful similarity measuring should have two important 
elements: finding a set of features that adequately contain 
characteristics that can be employed to differentiate images 
and endowing the feature space with a proper metric.[2] 
Researchers have also done substantial studies on that how to 
choose features for a particular problem [5, 6]. On the other 
hand, designing a proper metric is equally important. Most of 
the time, a metric is designed for a specific features. 
Mathematicians have established the reasonable architecture 
for a metric, defining a metric as a cost function ( , )d   [7] 

satisfying conditions:  
 

1) ( , ) 0d A B  for all A and B. 

2) ( , ) 0d A B  if and only if A=B. And ( , ) 0d A A   in 

particular a shape resembles itself. 
3) ( , ) ( , )d A B d B A  for all A and B.(Symmetry) 

4) ( , ) ( , ) ( , )d A B d B C d A C   for all A, B and 

C. (Triangle Inequality) 
 
Moreover, a mature Shape classification system is also 

required to be invariant under transition, rotation, and change 
of scale. 

 
 This paper presented an approach to obtain an 
approximation of shape contour and proposed a novel 
approach to classify shapes into multiple classes based on the 
tangent function. 
 
 The procedure of our system is given as following:  
 

Shape Classification Using Contour 
Simplification and Tangent Function 
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Fig. 1  The process of the proposed approach 
  
The raw images are input into to a segmentation system. The 
system extracts and segments the shape of objects by color, 
hue or even contrast etc. Extensive literature and approaches 
concerning shape segmentation are available.[1, 8] Since the 
standard dataset for image retrieval are simple shapes with 
blank background and considering this paper mainly focuses 
on shape rather than segmentation, we supposed shapes have 
already segmented from images. Here are working steps in 
details: 
 
 S1. Extract shapes from a sample image and connecting 
pixels of its contour. 
 
 S2. The simplification is imposed on the shapes firstly. The 
output is a simplified, de-noised, and more linear boundary 
and of less pixels which preserves important and relevant 
shape information of the original image. The remaining points 
constitute significant part of the shape. This step also reduces 
computational complexity for following steps. 
 
 S3. Every two consecutive points are viewed as a line 
segment or vector. The simplified shape is converted into 
tangent space and angles of every two consecutive vectors are 
mapped to the range of tangent function.  
 
 S4. The array of values of Tangent function is then input 
into classification system. The system compares the tangent 
function from sample with those typical tangent functions in 
each class. And finally find out a class that has minimum 
distance with the sample.  
 

We will give more details in section II in this paper 
concerning contour simplification. The details of definition 
and usage of tangent function will be provided in section III. 
In section IV, a procedure for a novel image classification 
system is given and explained in details. An analysis on result 
and discussion is presented in section V. Finally, a summary 
concluded this approach in the last section. 
 

 

II. CONTOUR SIMPLIFICATION 

 
Generally, a segmented shape contains some noise or small 
dents which contribute little to its features and decelerate the 
process of measuring. In psychology, there are strong 
evidence that concludes recognition from human vision 

mainly relies on significant parts of shape.[9] Therefore, the 
noise and insignificant information on the boundary should be 
removed and those significant points on the large turning 
corners should be remained. A simplification process is 
necessary before measuring in order to obtain a simpler shape 
that preserves the significant shape features. Another benefit 
of simplification is to reduce data storage and therefore 
accelerate processing in later stage. The simplification process 
is also called discrete Curve Evolution Procedure[10, 11]. The 
basic idea of simplification is: we replace two consecutive line 
segments on the contour with a single line segment joining 
their endpoints, if joint ‘condition’ of two consecutive line 
segments lower than a pre-defined threshold. The joint 
‘condition’ is a function which is defined to compute the 
significance of the two consecutive line segments and their 
angle contributed to the whole shape. And our approach 
reduces every shape to a fixed number of points. To achieve 
this, we first define the relevance function 

1 2( , )K s s [10, 11]:  
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Fig. 2  Turn angle 

1 2( , )K s s  between two vectors 

 
The relevance function 

1 2( , )K s s  is defined on two 

consecutive vectors and indicates how much significance the 

triangle consist of 1s  and 2s  contributes to the whole shape. 

The higher value of 
1 2( , )K s s , the more significance of the two 

consecutive vectors contribute to the shape. If there is an i, 
such that the 

i i 1( , )K s s 
 is minimum and points of the shape are 

still more than the pre-defined constant, the two vectors are to 
be replaced by one that connects the endpoints. This operation 
iteratively traverses the shape boundary until number of points 
is reduced to our pre-defined value. From the definition of 

1 2( , )K s s , we can see that the larger angle and longer line 

segments gives a higher function value so that a more 
significant part will not be replaced. 
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Fig. 3 An image boundary to corresponding simplified one 
 
From the figure, after simplification, the result generated a 
simplified shape which is more linear and of less noise and 
preserved shape information as well. Note that data of original 
shape is array of locations of neighboring points, while data of 
simplified one is array of discrete points in clockwise 
orientation.  
 

 

III. TANGENT FUNCTION 

 
A tangent function is a representation of a shape C and 
interpreted as a polygonal curve with all vertices without loss 
of information. And reconstruction of the original shape is 
reversible if the position of one vertex is noted down in 
advance. A vector on boundary is mapped to a value and the 
whole shape is mapped into a step function which can be 
viewed as a signal and analyzed by other tools, e.g. stationary 
wavelet. In [7, 8], tangent function is defined as a step 
function. Let C be a polygonal curve. It is defined as a 
function on 2:[0,1]C     , the length of C is rescaled to 1 in 

order to normalize the shape so that the similarity measure 
between two shapes can be invariant under scale-of-change. 
 The tangent function is also called a turning function 
which is a multi-valued function ( ) :[0,1] [ , ]T C      defined 

by ( )( ) ' ( )T C s C s  and ( )( ) ' ( )T C s C s  , where  

( )( ) ' ( )T C s C s  and ( )( ) ' ( )T C s C s  are left and right 

derivatives of C. The value of  ( )T p , p is a point on C, is 

angle between a reference vector and the line segment vector 
which p lay on. 
 

 
Fig. 4 A simplified boundary and its tangent function 

 

 The tangent function ( )( )T C s  traces where the turning 

takes place on the contour, increasing with left turns and 
decreasing with right turns, makes it a feature frequently used 
as a shape signature. [7, 12-15] In order to achieve rotation 
invariant, we would like to modify and improve the original 
tangent function. In our version, on one hand, we pick up the 

farthest pixel from centroid in the shape to start simplification; 
on the other hand, the value of tangent function corresponding 
to x-axis is the relative angle change to current vector to 
previous one (from the graph of step function, that means the 
value of current step is assigned by the difference that value of 
current step minus value of previous step). In this case, the 
scale of y-axis represents the change of direction from 
previous line segment. 

 

IV. SHAPE CLASSIFICATION 

 
In classification system, some templates should be stored in 
the system in advance and samples are input into the system 
then compared with each template to determine which class it 
belongs to. In our idea, templates are preprocessed and stored 
in the form of tangent functions. Each class may include 
several templates that shares some part features but with 
different visual shapes. In order to compare templates and 
samples, the system extracts the boundary of samples, 
simplifies the boundary and converts it into a form of tangent 
function. The similarity metric is defined as follows[7]: 
 

1

0

( , ) ( ) ( )
p

D A B dsA BT s T s            (2) 

 The degree of similarity between two shapes A and B is 
measured by calculating the metrical distance between two 
tangent functions. 

    
a) 

      
b) 

 
c) 

Fig. 5 c) the area between two tangent functions 
 

 In Fig. 5, the area in gray is the distance between two 
tangent functions. Similar tangent functions generate smaller 
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distance. Therefore, classification can be done by comparing 
the template from the sample with each template of each class 
and finding out that one which has minimal distance with the 
sample template. And finally, the shape will be classified into 
the class which the minimal distance template belongs to. 
 We also present our procedure in pseudo-code as follows: 
 
INPUT   Sample set: 1 2{ , ,..., }nS s s s ;    

Class set: 
1 2

{ , ,..., }
m

C C C C ;    

A Class with several templates included: 
1 2{ , ,...}j j jC t t  

PROCEDURE  
 For i=1 to n 
  Segment Shape and extract boundary from  

is  

  Simplified the original boundary 
  Generate tangent function  iT s  from simplified 

boundary 
  For j=1 to m 

   For k=1 to the size of ( jC  ) 

    Compute distance   ( , )i jkD T s t  

    Note down the Class index of minimal D: Min 
   End 
  End 
  Sample is classified into  

MinC  

End 

V. EXPERIMENTAL RESULTS  

An experiment for evaluating this approach is performed on a 
widely used dataset provided by. [16] There are in total 99 
samples in the dataset which belongs to 9 classes. Each classes 
contains 11 samples with relatively similar forms but 
influenced by occlusion, rotation, articulation and missing 
parts. And this dataset is used as templates. Other datasets 
with scaled rotated variations are generated from the original 
templates and used as samples. 
 

 
Fig. 6. Image dataset of 99 testing shapes provided by Kimia eta al[16] 

  
In our experiment, we generated 16 sample datasets base on 
the original one. They are rotated 0, 30, 45 and 90 degree and 
scaled 2/3, 1, 4/3 and 2 times respectively. The overall results 
are showed as follows. All the shapes are simplified into fixed 
28 points. 
 

TABLE I. Overall correctly classification rates for each sample dataset 
 

        Scaled 
Rotated 

2/3 1 4/3 2 

0° 97.0% 100.0% 100.0% 100.0% 
30° 86.9% 85.9% 83.8% 84.9% 
45° 85.9% 85.9% 83.8% 85.9% 
90° 97.0% 100.0% 100.0% 100.0% 
180° 96.0% 99.0% 99.0% 99.0% 

  
From table I, we can see that the performance is quite 
insensitive to change of scale. Even in the worst cases when 
all samples are scaled to 2/3, there are only 3 samples in a 
sample set misclassified. This is mainly because, after the 
simplification, the length of boundary is normalized and all of 
the resized samples are compared in the same scale. However, 
we found that rotation of samples affects the performance of 
this approach significantly when samples are not rotated with 
90*n degree and it can be attributed to change of noise on the 
boundary, since rotation with 90 degree will not change 
relative position of points on boundary otherwise noise may 
be added and the relative position can be changed. Although 
rotation and slight change on boundary might affect tangent 
function, tangent functions from the same category maintain 
relatively similar forms. First column in Table 1 is the worse 
cases. A further investigation is to find out classification rates 
for each class. 
 

TABLE II Classification rates in each class 
       Rotated 
  Class 

 
30° 

 
45° 

 
60° 

Quadrupeds 9 9 10 
Humans 11 11 11 

Airplanes 9 9 7 
Grebes 8 10 7 

Fish 9 10 10 
Hands 11 8 8 
Rays 11 11 11 

Rabbits 8 9 8 
Wrenches 10 8 10 
Overall 86.90% 85.90% 82.80%

  
Form Table II, the experiment successfully classified all 
samples in category Humans and Rays and obtain high correct 
rate in category Fish. Samples in these categories generally 
have smooth boundary and sharp turns. 
 

Comparison with Composite Features by Radon Transform 

 
In mathematics the radon transform in two dimensions, 

named after the Austrian mathematician Johann Radon, is the 
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integral transform consisting of the integral of a function over 
straight lines  sincos yx   (1). Radon transform can 

be represented by 

 







 dxdyyxyxfR )sincos(),(),( 

  (3) 
 
When a generalized image is represented by a function f(x, 

y), the radon transform is used to calculate the projection of 
the image intensity along a radial line oriented at a specific 
angle . In image processing phase, the general image 
function f(x, y) is replaced by binary discrete signal 

),( yxSD  with the size m by n, where  



 


.,0

),(,1
),(

otherwise

Dyxif
yxSD

     
 
The density distribution along lines as Formula (1) can be 

represented by 


 


n

y

m

x
DS yxyxSD

1 1

)sincos(),(),( 
  (4)  

 
Where represents the line direction and  is the distance 

away from the coordinate’s origin. Usually, these two 
parameters  and are equidistantly chosen and their 

numbers are denoted as N and N . The number SD  is a 

matrix with size N by N representing the image density 

distribution along different lines. 
 
 
The image density distribution properties of periodicity and 

symmetry can be easily obtained from the definition, 

))12(,(),(

)2,(),(







kDD

kDD

SS

SS

        (5) 

Parameter  defaults to 0:179, N equals to 180 and 

N are determined by the size of the image. 

Radon Invariant Features 

For an arbitrary angle , we denote 

 
 


 N

iiS RsE
1

),()(
    (6) 

where )( iSE   is the energy of Radon Transform along 

line i , and parameter N is the length of Radon Matrix 

SR in direction. According to the conservation of energy, 

we have )()( jSiSS EEE    for any given angle. 

      A shape in the image can be resized. In order to meet 
the need of size invariant, modified image density distribution 
along lines ),( L is defined by 

),/(/),( 00
'  EERsEED SSS 

  (7) 
 

where E0 is a constant determined by the size of image, and 

variable 0/ EES  is used to make the shape size invariant.  

 
Fig 7 (a) illustrates a series of butterflies. Picture (a) is the 

original image. The remaining ones in the first column are the 
geometry transformations of (a). Picture (b) is resized by 0.5 
time; (c) is translated by 60 by 0 pixels; (d) is rotated counter-
clockwise by 30 degrees. The second column is the image 
density distribution

SD of Column One respectively. Label x is 

the degree from 0 to 179, and Label y is the image density 
distribution in different  values. The third column is the 
modified image density distribution '

SD . Label x and y are the 

same with Column Two. The fourth column is the curve 
of )('

iSDF  .  

By compared (a2) and (b2), we can see 
'
SD  is size 

invariant while (a1) and (b1) reflect SD  is not.  

 
Fig 7: Radon Invariant Features. (a) Original Image; (b) resize 
0.5 time of (a); (c) translate 60 by 0 pixels; (d) rotate 30 
degrees. (*1) are image density distributions 

SD for 

corresponding (*) pictures. (*2) '
SD . (*3) are curves of 

feature )('
iSDF  . 

 
A shape can be shifted in the image. Luckily the image 

density distribution along lines ),( L  is just shifted. The 

boundary can be easily distinguished by judging the first none 
zero value in Radon Matrix. Thresholds, min and max , 
are employed to ascertain the valid range of the shape area 

along direction i .  

 
 niS

niS

DD

DD





),(maxmax

),(minmin

'

'









  (8) 
 

where nD is a threshold controlling the range of shape area 

along a particular line with angle i ; this parameter is used to 

suppress noise and outliers. 
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The energy of Radon Transform (6) now changes to 

 





 max

min

'' ),()( iSiS DE
    (9) 

 
Another distribution feature can be calculated by  

 




 
 max

min

2
'

' )
minmax

)(
),(()( iS

iSiS

E
DDF

  (10) 
 
The shape density discrimination can be normalized 

through 

 )(max/)()('
iSiSiS DFDFDF  

  (11) 
 
The last column in Fig. 7 illustrates the shape 

discrimination )('
iSDF  . By comparing the first three ones, 

the translation and size invariant features can be easily found 
out. Especially, when images are rotated by 30 degrees, 

curve )('
iSDF  is shifted or rotated by 30 degrees. This 

characteristic inspires us to find a rotation invariant 
discrimination, which will be covered in Section 3.  
 

THE STATIONARY WAVELET TRANSFORM 

Wavelets are mathematical functions that cut up data into 
different frequency components, and then study each 
component with a resolution matched to its scale. Classical 
discrete wavelet transform is not time invariant. In order to 
restore wavelet transform shift invariance, the stationary 
wavelet transform (SWT) was employed. 

Stationary wavelet transform (SWT) is shift invariant. Fig 
8 describes the basic decomposition steps for one-dimensional 
SWT. The approximation and detail coefficients at level 1 are 
both of size N, which is the signal length.  

 

Lo_D

Hi_D

S

Low-pass

High-pass

cA1

cD1

Approximation coefs

Detail coefs

 
Fig 4: Basic decomposition step for two dimensional signals  

 

After applied the stationary wavelet transform, )('
iSDF 

can be rotation invariant. Fig 5 (a) and (c) are the exact curves 
as in Fig. 3 (a3) and (d3), and their corresponding stationary 
wavelet transforms are shown in Fig 5 (b) and (d). From this 
figure, the rotation invariant features can be obtained. 

 

Fig 8: Rotate Invariant Features. (a) The exact curve )('
iSDF   

as in Fig7 (a3); (b) Level 6 sub-wavelet of (a); (c) the exact 

curve )('
iSDF   as in (b3); (d) Level 6 sub-wavelet of (c). 

 
A modified Radon transform plus a stationary wavelet 

transform, called Radon Wavelet Composite Descriptor 
(RWCD), can be used to describe invariant shapes in size, 
translation and rotation. RWCDS is defined as 

)'wname',),(( ' LevelDFswcRWCD sS 
  (12) 

 
where  180,0 , Parameter Level is used to decide the total 

number of sub-wavelets and RWCD is a matrix with size 180 
by Level.  

The distance between Shape i and j can be calculated by  
 

180

1 1
Distance

i j

Level

S mn S mnm n
RWCD RWCD

 
      (13) 

 
This distance is used to determine the similarity between 

two shapes. In the experiments phase, it will be adopted to 
determine the retrieve or recognition results. 

 
Fig 9 selects four different levels 4, 6, 8, and 10. This 

figure shows that when level K increases, the recognition rates 
of the nine categories rise. The reason is that when K 
increases, the number of sub-wavelets rises, and the distance 
between pictures is calculated in more detail.  

 
Fig 9: Recognition Rates at Different Levels 

  

Shapes with Complex Inner Structure 

As a region-based analysis method, RWCD can deal with 
shapes with complex inner structures. A test shape database is 
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used here. This database consists of 504 images which are 
selected from the MPEG-7 (CE-2) region-based database. 
They are organized into 24 groups, as shown in Fig 10. In 
each group there are 10 similar shapes including four scaled 
ones, and five rotated ones. The precision–recall diagrams are 
presented in Fig 11 by comparing with two classical retrieval 
methods, Zernike Moments [9] and Generic Fourier 
Descriptors[10].  

 

        
 

        
 

        
 

Fig 10: Shape database selected from the MPEG-7 (CE-2) 
 

Fig 11 reflects that the more detail the images is, the higher 
recognition rate is. In order to raise the recognition rate, the 
size of the original images can be increased.  

 

Fig 11: Recognition Rates to Images with Different Size 
 

Fig 12 reflects the ability of each method in describing 
shapes with complex structures and the overall robustness 
under various geometric transforms. It can be observed that 
the proposed RWCD method can handle shapes with complex 
inner structures more effectively. 

 
Fig 12: Recognition Rates of Different Retrieval Methods. 

 
 

VI. CONCLUSION 

In this paper, we proved that tangent function can be applied 
on classification system and our experiment result turned out 
to be reasonably good. However, we also found that changes 
of noise on the contour affect the tangent functions generated 
from images. That may lead to different tangent functions 
from same shape with different degrees rotated. For instance, 
B is a rotated shape from A. They may have different tangent 
functions. And distance between A and B may be larger than 
certain neighbor shape of B. Fortunately; even if minimum 
distance is from another shape from the same category, we 
found most shapes maintain very small distance when rotated,  
while have large distance with shapes in other categories.  
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