
 

 

  
Abstract— It is commonly assumed that neural networks 

have a built in fault tolerance property mainly due to their 
parallel structures. The international community of Neural 
Networks discussed these properties only until 1994 and 
afterwards the subject has been mostly ignored. Recently the 
subject was again brought to discussion due to the possibility 
of using neural networks in nano-electronic systems where 
fault tolerance and graceful degradation properties would be 
very important. In spite of these two periods of work there is 
still need for a large discussion around the fault model for 
artificial neural networks that should be used. One of the most 
used models is based on the stuck at model but applied to the 
weights. This model does not cover all possible faults and a 
more general model should be found. The present paper 
proposes a model for the faults in hardware implementations 
of feedforward neural networks that is independent of the 
implementation chosen and covers more faults than all the 
models proposed before in the literature. 
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I. INTRODUCTION 

 
AULT tolerance in Artificial Neural Networks (ANNs) 

has been a topic almost forgotten in the last decade. Only 
a few papers concerning this topic have been published after 
1994: [5], [10], [1], [3], [7]. In spite of that, the intrinsic fault 
tolerance of Neural Networks is a very important 
characteristic. As stated in [9]: “The characteristic of a 
graceful performance degradation without additional 
redundancy is specially interesting for applications such as 
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long-term, unmanned space missions, where component 
failures have to be expected but no repair or maintenance can 
be provided”. Recently the utility of ANNs’ built in fault 
tolerance was also pointed out within nano-electronic systems 
[5]. Beyond these areas, situations where hardware acts inside 
the human body can make use of both fault tolerance and 
graceful degradation. It is suitable that in the presence of a 
malfunction such hardware still performs, at least, part of its 
functions instead of showing complete failure.  

To study fault tolerance and graceful degradation in a 
general way a global model for the faults is needed. Several 
authors have addressed this question and proposed solutions 
but, as will be shown here, the solutions proposed have all left 
uncovered some important situations. 

This paper proposes the fault model that the authors believe 
to be more accurate and general (regardless of the 
implementation type used in the hardware).  

The main objective of the paper is to enable the discussion 
of the model proposed which will be the base for future work. 

The remainder of this paper is organized as follows: section 
2 details the types of implementations available for ANNs, 
section 3 analyses the location of the possible faults in a 
neural network, section 3 reviews the previous work done in 
this field and analyses its limitations, section 4 introduces the 
model proposed in the present work, section 5 presents the 
conclusions and section 6 reports the author’s perspective for 
future work. 

 
 

II. TYPES OF IMPLEMENTATIONS  
This section shows the reader the types of implementations 

that can be found either in commercial hardware or academic 
implementations of ANNs. We start with a classification of 
the hardware solutions as proposed in [16]. This classification 
is represented in figure 1. 

In this paper the global hardware solution is called 
Neurocomputers, which can be of two types: Standard Chips 
or Neurochips. The Standard Chips can be classified either as 
Sequential and Accelerator boards or Multi-Processor 
solutions. 
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The Neurochips, which are constituted by Application 

Specific Integrated Circuits (ASICs), can be based in different 
kinds of circuits: Analogue, Digital or Hybrid. 

The Standard Chips are digital implementations and for the 
present work the solution chosen for the circuit (analogue, 
digital or hybrid) has an important impact in analyzing the 
effect that the faults can have in the ANNs output. 

 

A. Analogue Implementations 
 
In general, analogue implementations have the advantage of 

obtaining high speed and density while having several 
technological drawbacks. These difficulties are mainly related 
to: store the weights, stability with temperature variations and 
obtaining linear multipliers over a wide operating range. 
Naturally these problems may result in a loss of precision 
when compared to other types of implementation [17], [18]. 

 

B. Digital Implementations 
 

The digital implementations, in general, have the following 
advantages: weight storage in memory, easy to integrate with 
other applications, less difficult to implement learning 
algorithms and exact within the number of bits of the operands 
and accumulators. In a simple way, when compared with the 
analogue solutions, the digital ones can be labeled as more 
precise [18]. 

Most digital implementations are slower then their analogue 
counterparts (due to the need of conversion of the analogue 
inputs and to the operation of digital multipliers) and present 
also limitations in the implementation the activation functions 
which are, most of the times, simplified.  

Digital implementations are usually divided into four 
classes: slice architectures, single instruction multiple data 
(SIMD), systolic array devices [19], [20], [21], [22], [23], [24] 

and Radial Basis Functions (RBFs), although some other 
classes are sometimes assumed like multiprocessor chips or 
others that result from the technology used (Programmable 
Logic Devices –PLD- and Field Programmable Gate Array - 
FPGA) or the similarity with other type of hardware (For 
example Digital Signal Processors) [18]. 

 

C. Hybrid Implementations 
 

The hybrid implementations appear as a compromise 
between digital and analogue, in an attempt to obtain the best 
of these implementations.  

Typically the external input/outputs are digital to facilitate 
integration into digital systems, while internally some or all 
the processing is analogue [20]. 

 

D. General Hardware Characteristics 
 

There are several hardware characteristics that are 
important to analyze the way a fault can affect the functioning 
of the remaining hardware: 

• The kind of storage used for internal values, inputs 
and weights 

• The precision used for these values in the digital 
implementations 

• The way neurons, accumulator, multipliers and 
activations functions are implemented 

The behavior of the different implementations must be 
taken into account when developing a global model for fault 
tolerance in ANNs. 

 

E. Examples of implementations 
 

This subsection supplies the reader with examples of 
commercial implementations taken from [17] and [18]. 

Standard Chips Neurochips

Sequential
+

Accelerator
Multi-Processor Analogue Digital

Hybrid

Neurocomputers

 
Figure 1- Neural networks’ hardware categories 
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Table 1 – Examples of commercial hardware for Artificial Neural 
. 

Name Architecture Learn Precision Neurons Synapses Speed 
Analogue  
Intel ETANN Feedforward, 

ML 
No 6bx6b 64 10280 2 GCPS 

Synaptics 
Silicon Retina 

Neuromorphic No N.A. 48x48 Resistive net N.A. 

Digital 
Micro 
Devices MD-
1220 

Feedforward, 
ML 

No 1bx16b 8 8 1.9MCPS 

NeuraLogix 
NLX-420 

FeedForward, 
ML 

No 1-16b 16 Off chip 300CPS 

Philips 
Lneuro-1 

Feedforward, 
ML 

No 1-16b 16 PE 64 26MCPS 

Philips 
Lneuro-2.3 

N.A. No 16-32b 12 PE N.A. 720MCPS 

Inova N64000 GP, SIMD, Int Program 1-16b 64 PE 256k 870MCPS 
220MCUPS 

Hecht-Nielson 
HNC 100-
NAP 

GP,SIMD,FP Program 32b 4 PE 512k Off 
chip 

250MCPS 
64MCUPS 

Hitachi WSI  Wafer, SIMD Hopfield 9bx8b 576 32k 138MCPS 
Hitachi WSI Wafer, SIMD BP 9bx8b 144 N.A.  300MCUPS 
Neuricam 
Nc3001 
Totem 

Feedforward, 
ML, SIMD 

No 32b 1-32 32k 1GCPS 
 

Neuricam 
Nc3003 
Totem 

Feedforward, 
ML, SIMD 

No 32b 1-32 64k 750MCPS 

RC Module 
NM6403 

Feedforward, 
ML 

Program 1-64bx1-
64b 

1-64 1-64 1200MCPS 

Siemens  
MA-16 

Matrix ops No 16b 16 PE 16x16 400MCPS 

Nestor/Intel 
NI1000 

RBF RCE, PNN, 
program 

5b 1 PE 256x1024 40kpat/s 

IBM ZISC036 RBF ROI 8b 36 64x36 250kpat/s 
Silicon 
Recognition 
ZISC 78 

RBF KNN, L1, 
LSUP 

N.A. 78 N.A. 1Mpat/s 

SAND/1 Feedforward, 
ML, RBF, 
Kohonen 

No 40b 4 PE Off-Chip 200MCPS 

MCE 
MT19003 

Feedforward, 
ML 

No 13b 8 Off chip 32MCPS 

Hybrid 
AT&T 
ANNA 

Feedforward, 
ML 

No 3bx6b 16-256 4096 2.1GCPS 

Bellcore  
CLNN-32 

FCR Boltzmann 6bx5b 32 992 100MCPS 
100MCUPS 

Mesa 
Research 
Neuralclassifi
er 

Feedforward, 
ML 

No 6bx5b 6 426 21GCPS 

Ricoh RN-
200 

Feedforward, 
ML 

BP N.A. 16 256 3.0GCPS 
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These examples are resumed in table 1, where the speed is 
measured as Connection Per Second (CPS) [20] which is 
defined as the number of multiply and accumulate operations 
per second during the recall or execution phase. An equivalent 
measure exists for the learning phase: Connection Update Per 
Second (CUPS) and rates the number of weight changes per 
second. 

The diversity of implementations that was illustrated in this 
section makes the task of discussing a model for the faults in 
hardware for ANNs a very difficult one. Nevertheless the 
following discussion tries to focus on general model instead of 
considering a specific implementation. 

 

III. LOCATION OF THE  POSSIBLE FAULTS IN A NEURAL 
NETWORK  

 
From a functional point of view and independently of the 

hardware implementation options, an ANN can have the 
following faults: 

 
1. Fault in a connection/weight or multiplier. 
 
2. Fault in an input. 
 
3. Fault in a multiplier, adder or accumulator. 
 
4. Fault in the activation function. 
 
The fault definition presented here is quite similar to the 

one proposed in [8]. Some of these faults can mask each other 
in the sense that it can be undistinguishable which fault 
occurred. This is the case for faults of type 3 and 4, which 
produce the same type of impact in the output and can be 
considered as the same situation. While other faults occur in 
parts of the network which have connections in parallel and 
the impact in the output must be analyzed, in this part of the 
circuit the connection is serial and the effect is similar. 

Faults of type 1 and 3 both include the multiplier. This 
duplication was considered because the existence of a 
multiplier associated with each connection falls into fault type 
1 and the existence of a single multiplier before the activation 
function falls in to fault type 3. 

 
 

IV. PREVIOUS WORK REGARDING  FEEDFORWARD NEURAL 
NETWORKS AND LIMITATIONS  

 
As stated before, this work refers to feedforward ANNs. 

Figure 2 shows a very simple ANN that does not fall into this 
category since it has a feedback connection from the output to 
one of the inputs, while figure 4 has an example of a 
feedforward network of the Multi Input Multi Output (MIMO) 
type. 
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w32
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DELAY

 
 

Fig. 2. Artificial Neural Network with feedback. 
 
 

Most of the previous work was done regarding ANNs with 
binary output. The motivation for this is easy to understand 
since fault tolerance is much more likely to occur in this type 
of networks because the fault’s impact in the output might be 
covered by the fact that the output is binary. In spite of that 
the present work looks for a general model that can be applied 
to every ANN without feedback. 

In [4] the fault model used is based on modifications of the 
weight value of the form W(1+α) where α is allowed to take 
values in the interval ]-1,1[. The reason to use this model is 
clear: it is less restrictive than most of the other solutions but 
it does not cover most of the possible situations. The weight 
itself is therefore allowed to change from 0 to 2W. Just to 
show an example of the limitations of this model, if a digital 
implementation is considered, a single fault affecting the sign 
bit would not be covered by this model. 

In [8], although the analysis of the fault possibilities is very 
similar to the one proposed in section II, after a mathematical 
evaluation the conclusion reached is that from the behavioral 
point of view all the faults can be summarized as an error in 
the output of the neuron. This analysis is not correct since it 
does not hold for an error in the input because this error would 
affect not one but several neurons. 

The paper [10] considers two types of faults: in the links or 
connections and in the hidden units. For the first case the 
faults are modeled as stuck at +MAX, 0 or –MAX, where 
MAX is the largest weight value in the network. For the 
second situation the faults are stuck at +Output_Max or -
Output_Max. This model is more complete than the previous 
ones but the choice made for the hidden units is related to the 
activation functions used and is not general. The model also 
does not cover a fault in the inputs. 

In [7] the fault model used consists of stuck at +W,  -W and 
0, where W is the maximum of {maximum magnitude among 
all the parameter values developed during learning; value 
needed to drive a unit into saturation}.  For the bias, only +W 
and –W faults are considered. This model covers most of the 
situations but again it does not cover a fault in the input.  
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Several other authors used a simpler model with only a 
stuck at 0 possibility as pointed out in [7]. This model only 
covers the possibility of a missing link and ignores all other 
types of faults. Because of this, these models are not 
considered as a valid option. Their reference is not included 
here for simplicity’s sake. 

 
 

V. FAULT MODEL PROPOSED   
 
For easier perception of the following discussion figure 3 

shows a representation of a neuron and figure 4 has an ANN 
of the MIMO type. 
 

1

I1
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I3

w1

w2

w3
∑ F y

w4

 
Fig. 3.  Neuron structure. 

 
Starting with a simple model similar to the one used in [9] 

of stuck at +WMAX, -WMAX or 0 for all connections it is 
possible to verify what else is necessary to model all fault 
possibilities. This analysis will be done considering a Multi 
Input Multi Output (MIMO) ANN with one single fault at a 
time and for the sake of simplicity. 

Looking at the list of possible faults in section II it is easy 
to verify that this model covers faults of type 1.  

Faults of type 2, in one of the inputs would affect more than 

a single connection. If input 2 is taken as an example, it will 

affect the links associated with the weights w21 and w22. This 
would be better modeled considering the range of the affected 
input and analyzing the impact of stuck at faults at +IMAXN, -
IMAXN and 0, where IMAXN is the maximum value that the input 
N can assume with practical effect (for the hardware 
implementations there is always a limit in the maximum input 
due to the DACs, ADCs and power supply limits). Here each 
input can have a different range and it is important for the 
evaluation of the fault impact that the different ranges are 
considered. 

Faults of type 3 and 4 will be analyzed together because of 
the similar effects they produce. The proposal here is to model 
these faults as faults in the weights connecting the outputs of 
the corresponding neurons to the next layer. This does not 
hold when dealing with the output neuron and contains also an 
approximation since the output of the neuron does not have 
the same range of the weights. In the first situation none of the 
models presented in the previous section covers an error at the 
output neuron and such an error is so critical that the output 
will have no relation with the input in most of the situations. 
For the second situation if the hidden layer’s activation 
function has a limited output (which is true for a large part of 
the applications) the fault considered does cover appropriately 
the situation. Otherwise the fault will be under evaluated. 

The global model to be used consists of faults of type stuck 
at +WMAX, -WMAX or 0 for all the connections and faults of 
type stuck at +IMAXN, -IMAXN or 0 for all the inputs, where 
WMAX is the maximum value that the weight can assume with 
practical effect and IMAXN is the maximum value that the input 
N can assume with practical effect. This model must be used 
in the following way: 

 
i) Test the effect of each individual fault by setting 

the weight associated with each connection to 
+WMAX, -WMAX and 0. 

 
ii) For each input test the effect of a fault by setting 

the input to +IMAXN, -IMAXN and 0. 
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Fig. 4. Representation of a simple feedforward NN of MIMO type. 
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iii) For each neuron in the hidden layer(s) test the 

effect of a fault by setting all the weights deriving 
from the output of this neuron to +WMAX, -WMAX 
and 0. This test is not needed in the case of MISO 
networks of only one hidden layer since then only 
one weight connects the output of each neuron. 

 
This model covers more fault situations than all the models 

present in the literature. However the model does not cover all 
possible situations. One type of fault that is not covered by the 
model introduced here is the possibility that a connection is 
displaced from neuron i to neuron j. Also a fault at the output 
of a neuron in the output layer is not covered and faults at the 
output of neurons in the hidden layer with unbounded outputs 
may be under evaluated. Nevertheless, since the faults are 
evaluated at extreme situations (worst case) the model can be 
considered as covering with a reasonable accuracy all possible 
single faults. 

The possibility of setting a weight to 0 to model a fault is 
included here more because of its physical significance 
(corresponds to a missing link) than because of its effect since 
setting the weights to +WMAX or -WMAX has a stronger impact 
on the output. 

 
 

VI. CONCLUSION    
  
The strict definition of fault tolerance does not apply to 

most ANNs since they do not give error free results at any 
time, merely an approximation [2] and appropriate models are 
required for accessing the effective fault tolerance of a 
network. 

In the definition of the fault model it might be acceptable to 
test only the most common parts or the ones which will be 
responsible for the largest area [2] in silicium. Applying this 
principle to ANNs, due to the large number of connections, 
would point to testing only the weights as an acceptable 
solution for a large number of applications. In the present 
work the choice was to try to cover all possible situations and 
the analysis of each possible fault led to a different 
contribution to the final model. 

The model presented here covers more situations than the 
models previously discussed in the literature. These models all 
failed to evaluate the effect of a fault in the inputs and under 
evaluate the faults in the neurons in the hidden layer. 
Although the present model has some limitations (considers 
only single faults, faults in neurons in the hidden layer with 
unbounded outputs may be under evaluated, faults at the 
output neuron are not considered) it is more accurate than the 
previous ones. 

The existence of global models for faults is of extreme 
importance to permit evaluation and comparison of different 
networks, training algorithms and special modification 

algorithms regarding fault tolerance of ANNs. 
One limitation of the present work, which also occurs in the 

previous reported papers, is that only setting the weights to 
zero, maximum value and minimum value is considered. Since 
the ANN main output does not need to be a monotonic or a 
linear function of the weights and inputs, other combinations 
may occur which produce lower fault tolerance than the 
maximum one reported with this model. 

 
 

VII. FUTURE WORK    
 

As future work, the authors intend to propose a 
methodology to improve fault tolerance of ANNs. 

It is possible to study the solutions to improve the fault 
tolerance capabilities. At least the following possibilities exist: 

 
i) Change the training algorithms. 
 
ii) Dynamic reconfiguration processes to be applied 

after a fault occurs. 
 
iii) Modify the ANN after the training stage without 

changing its architecture. 
 
iv) Modify the ANN after the training stage changing 

its architecture. 
 

The possibility of changing the training algorithms to obtain 
a better fault tolerance was also the object of study of some 
researchers: [3], [14], [6]. 

The remaining solutions deal with the possibility of 
changing the ANN after the training stage. These can be 
implemented with or without changing the architecture of the 
network.  

The dynamic reconfiguration option obliges the use of on-
line training algorithms and also on-line detection of faults 
which is not at all a straightforward task to implement. This 
on-line detection of faults might be obtained through the use 
of an enlarged Boundary Scan scheme [15] and test 
information with extensive coverage to allow the 
identification of the fault and the reorganization of the ANN 
without the damaged elements. 

The solution to improve fault tolerance after the training 
stage without changing the network’s architecture is 
theoretically possible (at least in some nodes, but depending 
on the ANN structure), though difficult to implement since the 
changes must be such that the network’s answers are the same 
before and after the change for every possible input. 

After elaborating a strategy for improving fault tolerance of 
ANNs, this strategy can then be used as a base to build an 
automatic tool to improve fault tolerance of ANNs. 
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