
 

 

 

Abstract—Ant colony optimization (ACO) is a population-based 

metaheuristic that mimics the foraging behavior of ants to find 

approximate solutions to difficult optimization problems. It can be 

used to find good solutions to combinatorial optimization problems 

that can be transformed into the problem of finding good paths 

through a weighted construction graph. In this paper, an edge 

detection technique that is based on ACO is presented. The proposed 

method establishes a pheromone matrix that represents the edge 

information at each pixel based on the routes formed by the ants 

dispatched on the image. The movement of the ants is guided by the 

local variation in the image’s intensity values. The proposed ACO-

based edge detection method takes advantage of the improvements 

introduced in ant colony system, one of the main extensions to the 

original ant system. Experimental results show the success of the 

technique in extracting edges from a digital image. 

 

Keywords—ant colony optimization, image edge detection, 

swarm algorithm.  

I. INTRODUCTION 

nt colony optimization (ACO) is a nature-inspired 

optimization algorithm [1], [2] that is motivated by the 

natural foraging behavior of ant species. Ants deposit 

pheromone on the ground to mark paths between a food 

source and their colony, which should be followed by other 

members of the colony. Over time, pheromone trails 

evaporate. The longer it takes for an ant to travel down the 

path and back again, the more time the pheromones have to 

evaporate. Shorter – and thus, favorable – paths get marched 

over faster and receive greater compensation for pheromone 

evaporation. Pheromone densities remain high on shorter 

paths because pheromone is laid down faster. This positive 

feedback mechanism eventually leads the ants to follow the 

shorter paths. It is this natural phenomenon that inspired the 

development of the ACO metaheuristic. Dorigo et al. [3] 

proposed the first ACO algorithm, ant system (AS) [1], [2], 

[3]. Since then, extensions to AS have been developed. One of 

 
Manuscript received January 15, 2010.  This work was funded by the 

Philippine Department of Science and Technology under the Engineering 
Research and Development for Technology program and the Ateneo de 

Manila University.  

A. V. Baterina is taking up a Master’s degree in Electronics Engineering in 
Ateneo de Manila University,  Katipunan Avenue, Loyola Heights, Quezon 

City, 1108 Philippines (phone: +632-911-7715; e-mail: nbaterina@ 

gmail.com). 
C. Oppus is with the Department of Electronics, Computer, and 

Communications Engineering, Ateneo de Manila University, Katipunan 

Avenue, Loyola Heights, Quezon City, 1108 Philippines (e-mail: 
coppus@ateneo.edu).  

the successful ones is ant colony system (ACS) [1], [2], [4]. 

ACO has been used to solve a wide variety of optimization 

problems. In this paper, an ACO-based method for image edge 

detection is proposed. 

II. IMAGE EDGE DETECTION 

Image edge detection refers to the extraction of the edges in 

a digital image. It is a process whose aim is to identify points 

in an image where discontinuities or sharp changes in intensity 

occur. This process is crucial to understanding the content of 

an image and has its applications in image analysis and 

machine vision. It is usually applied in initial stages of 

computer vision applications. 

Edge detection aims to localize the boundaries of objects in 

an image and is a basis for many image analysis and machine 

vision applications. Conventional approaches to edge 

detection are computationally expensive because each set of 

operations is conducted for each pixel. In conventional 

approaches, the computation time quickly increases with the 

size of the image. An ACO-based approach has the potential 

of overcoming the limitations of conventional methods. 

Furthermore, it can readily be parallelized, which makes the 

algorithm easily adaptable for distributed systems. 

Several ACO-based approaches to the edge detection 

problem have been proposed [5]-[9]. Previously reported 

ACO-based approaches to image edge detection, to the best of 

the authors’ knowledge, all use a decision rule that is based on 

AS. This paper presents a technique that is derived from 

improvements introduced in ACS, one of the main extensions 

to AS. One of the significant aspects of ACS is the form of 

decision rule used, the pseudorandom proportional rule. The 

approach presented in this paper uses such rule in the tour 

construction process. 

III. PROPOSED EDGE DETECTION METHOD 

This section provides a theoretical discussion on the ant 

colony optimization metaheuristic and ACS, the first major 

improvement to AS. The theoretical discussion is followed by 

a discussion on the proposed ACO-based image edge 

detection technique. 

A. Ant Colony Optimization and ACS  

ACO is a probabilistic technique for finding optimal paths 

in fully connected graphs through a guided search, by making 

use of the pheromone information. This technique can be used 

to solve any computational problem that can be reduced to 
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finding good paths on a weighted graph. In an ACO algorithm, 

ants move through a search space, the graph, which consists of 

nodes and edges. The movement of the ants is probabilistically 

dictated by the transition probabilities. The transition 

probability reflects the likelihood that an ant will move from a 

given node to another. This value is influenced by the heuristic 

information and the pheromone information. The heuristic 

information is solely dependent on the instance of the 

problem. Pheromone values are used and updated during the 

search. Fig. 1 shows a pseudocode of the general procedure in 

an ACO metaheuristic. 

 

 
 

Fig. 1 ACO metaheuristic 

 

The initialization step is performed at the beginning. In this 

step, the necessary initialization procedures, such as setting 

the parameters and assigning the initial pheromone values, are 

performed. 

The SCHEDULE_ACTIVITIES construct regulates the 

activation of three algorithmic components: (1) the 

construction of the solutions, (2) the optional daemon actions 

that improve these solutions, and (3) the update of the 

pheromone values. This construct is repeated until the 

termination criterion is met. An execution of the construct is 

considered an iteration. 

ConstructAntSolutions. In a construction process, a set of 

artificial ants construct solutions from a finite set of solution 

components from a fully connected graph that represents the 

problem to be solved. A construction process contains a 

certain number of construction steps. Ants traverse the graph 

until each has made the target number of construction steps. 

The solution construction process starts with an empty partial 

solution, which is extended at each construction step by 

adding a solution component. The solution component is 

chosen from a set of nodes neighboring the current position in 

the graph. The choice of solution components is done 

probabilistically. The exact decision rule for choosing the 

solution components varies across different ACO variants. 

The most common decision rule is the one used in the original 

AS. On the  construction process, the  ant moves from 

node  to node  according to the transition probability , the 

probability that an ant will move from node  to node  (i.e., an 

ant in node  will move to node ). The AS decision rule is 

based on the transition probability given by 

 

            (1) 

 

where  is the quantity of pheromone on the edge from 

node  to node ;  is the heuristic information of the edge 

from node  to node ;  is the neighborhood nodes for the ant 

given that it is at node ;  and  are constants that control the 

influence of the pheromone and heuristic information, 

respectively, to the transition probability. 

 is a normalization factor, which limits 

the values of  within . 

DoDaemonActions. Once solutions have been constructed, 

there might be a need to perform additional actions before 

updating the pheromone values. Such actions, usually called 

daemon actions, are those that cannot be performed by a single 

ant. Normally, these are problem specific or centralized 

actions to improve the solution or search process. 

UpdatePheromones. After each construction process and 

after the daemon actions have been performed, the pheromone 

values are updated. The goal of the pheromone update is to 

increase the pheromone values associated with good solutions 

and decrease those associated with bad ones. This is normally 

done by decreasing all the pheromone values (evaporation) 

and increasing the pheromone values associated with the good 

solutions (deposit). Pheromone evaporation implements a 

form of forgetting, which prevents premature convergence to 

sub-optimal solutions and favors the exploration of new areas 

in the graph. The exact way by which the pheromone values 

are updated varies across different ACO variants. The AS 

pheromone update follows the equation 

 

            (2) 

 

where  is the pheromone evaporation rate;  is the 

number of ants;  is the quantity of pheromone laid on 

edge  by the  ant: 

 

            (3) 

 

where  is the tour length of the  ant. The tour length is 

determined according to some user-defined rule. The rule 

depends on the nature of the problem to be solved, but it must 

always be such that desirable routes have smaller tour lengths. 

In general, the tour length is a function of the heuristic 

information associated with the edges belonging to the tour. 

ACS has three significant differences from AS. First, it uses 

a more aggressive decision rule, the so-called pseudorandom 

proportional rule, which strengthens the exploitation of the 

search experience accumulated by the ants. Second, 

pheromone evaporation and deposit are done only on edges 

belonging to the best-so-far tour, as opposed to AS where 

pheromone evaporation is done on all edges and pheromone 

deposit is done on edges belonging to any solution constructed 

in the current iteration. Third, each time an ant uses an edge to 

move from one node to another, it removes some pheromone 

from that edge to increase the exploration of other areas. The 

Initialize 
SCHEDULE_ACTIVITIES 
   ConstructAntSolutions 
   DoDaemonActions (optional) 
   UpdatePheromones 
END_SCHEDULE_ACTIVITIES 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 4, 2010 26



 

 

process of removing pheromones from edges as they are 

crossed is called local pheromone update. The local update 

counterbalances the effect of the greedy decision rule, which 

favors the exploitation of the pheromone information.  

1. ACS Tour Construction 

In the pseudorandom proportional rule, the transition 

probability depends on a random variable q that is uniformly 

distributed over  and a parameter . If  , then the 

transition that maximizes  is chosen; otherwise, the AS 

probabilistic decision rule (Eq. 1), with , is used. The 

value of  determines the degree of exploration of the ants: 

with probability , the ant chooses the transition with the 

highest , while with probability , it performs a 

biased exploration of the edges. The balance between biased 

exploration and pheromone exploitation can be tweaked by 

adjusting the value of . 

2. ACS Global Pheromone Update 

The global pheromone update is performed only on the 

best-so-far solution according to the equation 

 

            (4) 

 

where  is the amount of pheromone deposited by the 

ant that produced the best-so-far-solution, which is normally 

 

          (5) 

 

where  is the tour length associated with the best-so-far 

solution. 

Another thing that makes the global update in ACS different 

from that in AS is that in ACS, the pheromone deposited is 

decreased with a factor of , the evaporation rate, which 

results to a new pheromone value that is a weighted average 

between the old value and the amount deposited in the current 

iteration. 

3. ACS Local Pheromone Update 

Local pheromone update is interleaved with the tour 

construction process and applies each time and immediately 

after an ant traverses an edge during the construction process. 

After each construction step, an ant updates the pheromone 

value associated with the last edge that it has traversed based 

on the equation 

 

              (6) 

 

 where  is the pheromone decay coefficient;  is the 

initial pheromone value. 

Local pheromone update diversifies the search by 

decreasing the desirability of edges that have already been 

traversed.  

B. ACO-based Image Edge Detection 

Image edge detection can be thought of as a problem of 

identifying the pixels in an image that correspond to edges. A 

w × h two-dimensional digital image can be represented as a 

two-dimensional matrix with the image pixels as its elements 

(Fig. 2). 

 

 
 

Fig. 2 Matrix representation of an image 

 

The graph is defined as follows. The components of the 

graph are the pixels of the image. The connections of the 

graph connect adjacent components or pixels together. The 

construction graph representation of an image is shown in Fig. 

3. An 8-connectivity pixel configuration (Fig. 4) is used: a 

pixel is connected to every pixel that touches one of its edges 

or corners. Ants traverse the graph by moving from one pixel 

to another, through their connections. An ant cannot move to a 

pixel if it is not connected to the pixel where the ant is 

currently located. This means that an ant can move only to an 

adjacent pixel. 

 

 
 

Fig. 3 Graph representation of an image 
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Fig. 4 8-connectivity configuration for pixel (  

 

Artificial ants are distributed over the image and move from 

one pixel to another. The movement of the ants is steered by 

the local variation of the pixel intensity values. The goal of the 

ants’ movement is to construct a final pheromone matrix that 

reflects the edge information. Each element in the pheromone 

matrix corresponds to a pixel in the image and indicates 

whether a pixel is an edge or not. 

The algorithm consists of three main steps. The first is the 

initialization process. The second is the iterative construction-

and-update process, where the goal is to construct the final 

pheromone matrix. The construction-and-update process is 

performed several times, once per iteration. The final step is 

the decision process, where the edges are identified based on 

the final pheromone values. 

1. Initialization Process 

In the initialization process, each of the  ants is assigned a 

random position in the  image. The initial value of 

each element in the pheromone matrix is set to a constant , 

which is small but non-zero. Also, the heuristic information 

matrix is constructed based on the local variation of the 

intensity values. The heuristic information is determined 

during initialization since it is dependent only on the pixel 

values of the image, thus, constant. 

 

 
 
Fig. 5 A local configuration for computing the intensity variation at 

(  

 

The heuristic information at pixel  is determined by the 

local statistics at that position: 

 

                      (7) 

 

where  is the intensity value of the pixel at .       

is a function that operates on the local group of pixels (Fig. 5) 

around the pixel . It depends on the variation of the 

intensity values on the local group, and is given by 

 

 

  (8) 

 

 is the maximum intensity variation in the whole image 

and serves as a normalization factor. 

2. Iterative Construction and Update Process 

On every iteration, each ant moves across the image, from 

one pixel to the next, until it has made  construction steps (a 

construction step consists of a single movement from one 

pixel to another). An ant moves from the pixel to an 

adjacent pixel  according to the pseudorandom 

proportional rule. The transition probability for the biased 

exploration is given by 

 

            (9) 

 

where  is the pheromone value for pixel ;  is 

the neighborhood pixels of pixel ;  is the heuristic 

information at pixel . The constants  and  control 

the influence of the pheromone and the heuristic information, 

respectively. 

Each time an ant visits a pixel, it immediately performs a 

local update on the associated pheromone. The amount of 

pheromone on the pixel  on the  iteration, , is 

updated based on the equation for ACS local pheromone 

update:  

 

                       (10) 

 

where  is the pheromone decay coefficient;  is 

the initial pheromone value. Local pheromone updates are 

interleaved with the solution construction process; the 

pheromone values change within the iteration. 

The permissible range of movement of the ants is obtained 

from the 8-connectivity neighborhood (Fig. 4). An ant can 

move to any adjacent pixel. But, this is restricted by the 

condition that an ant moves only to a node that it has not 

recently visited. This is to prevent the ants from visiting the 

same set of nodes repeatedly. In order to keep track of the 

recently visited nodes, each ant has a memory. 

After all the ants finish the construction process, global 

pheromone update is performed on pixels that have been 

visited by at least one ant: 

 

                (11) 

 

where  is the amount of pheromone deposited by the  
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ant on pixel . The deposited amount of pheromone  

is equal to the average of the heuristic information associated 

with the pixels that belong to the tour of the  ant if pixel 

(  was visited by the  ant in its current tour; 0 otherwise. 

Its reciprocal can be interpreted as the tour length. This 

definition of the tour length satisfies the requirement that 

desirable routes have smaller tour lengths. Desirable routes are 

those that pass along pixels with higher local variation in 

intensity. Pheromones for unvisited pixels remain unchanged. 

Global pheromone update for the proposed method does not 

exactly follow the ACS approach. This is because some details 

of the ACS approach do not suit the nature of the proposed 

edge-detection technique. One of the first problems ACO was 

made to solve is the traveling salesman problem (TSP). The 

nature of the ACO-based approach to TSP is different from 

the nature of the ACO-based edge detection technique 

described in this paper. 

     The difference lies in the selection of the tours to be used 

in the update. There is no selection of a best-so-far tour; all 

visited pixels are updated. In ACS, only the solution 

components belonging to the best-so-far solution is updated. 

Having a best-so-far solution makes sense for the ACO-based 

approach to TSP because each ant creates a tour that is a 

complete possible solution to the problem. In the ACO-based 

edge detection approach, however, an individual ant does not 

aim to produce a complete possible solution to the problem 

(i.e., a complete trace of the image edges). Instead, the goal of 

each ant is to produce only a partial edge trace in the image. 

The collective interaction of the ants produces a pheromone 

matrix, which can be used to extract a complete edge trace. 

With this, it is not appropriate to select a best-so-far solution 

during the construction process. Therefore, all edges that have 

been visited by at least one ant undergo a global pheromone 

update. 

3. Decision Process 

The final pheromone matrix is used to classify each pixel 

either as an edge or a non-edge. The decision is made by 

applying a threshold on the final pheromone matrix . The 

threshold value is computed based on the method described in 

[10], also known as the Otsu thresholding technique. 

 

 
 

Fig. 6 ACO-based image edge detection 

 

Fig. 6 shows a pseudocode of the proposed method. 

IV. EXPERIMENTAL RESULTS 

Experiments were conducted using canonical test images to 

observe the effect of the parameter  on the result and to 

compare the edges produced using AS with those produced 

using ACS. 

Fig. 7 shows four test images: Lena, Mandril, Peppers, and 

Pirate. All the canonical test images presented in this chapter 

have a size of 256 × 256 pixels.  

The parameters of the algorithm are:  

 : initial pheromone value 

 : number of iterations 

 : number of construction steps 

 : number of ants 

 : parameter for controlling the degree of 

exploration of the ants 

 : parameter for controlling influence of pheromone 

trail (fixed to 1 for ACS) 

 : parameter for controlling influence of heuristic 

information 

 : pheromone decay coefficient  

 : pheromone evaporation coefficient  

In the experiments, the fixed parameters were assigned 

values that have been found to produce good results. 

Their values used in the experiments are: 

  

  

  

  (256 × 256 image) 

  (varies) 

  (ACS) 

  

   

   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 (a) Lena, (b) Mandril, (c) Peppers, (d) Pirate 

 

Do initialization procedures 
for each iteration n = 1:N do 
    for each construction_step l = 1:L do 
        for each ant k = 1:K do 
            Select and go to next pixel 
            Update pixel’s pheromone (local) 
        end 
    end 
    Update visited pixels’ pheromones (global) 
end 
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A. Effect of Parameter  

Fig. 8-11 show the extracted edges of the test images Lena, 

Mandril, Peppers, and Pirate, respectively, at different values 

of . Increasing the value of  results to smoother edges. 

However, it is not good to set  to a very high value because 

it causes some significant features to be missed, as clearly 

shown when  is 1. Evidently, it is also not good to set  to 

0. To take advantage of the ACS decision rule,  must have a 

value between, but not equal to, 0 and 1. At 0, the edges are 

barely distinguishable. At 1, the random exploration of the 

ants is completely removed and important features of the 

image are missed. The range of good values for  depends on 

the nature of the image. In general, higher values of  are 

suitable for images that contain less details while lower values 

are suitable for those that contain more details. 

B. ACS Edges vs. ACS Edges 

A version of the algorithm that uses ant system was 

implemented and tested using the same test images. The 

results produced with AS and ACS were compared, at 

different values of the ACS parameter .  

Fig. 12-15 show that ACS can produce better results. For 

Lena, Mandril, and Peppers, a significant improvement is 

already visible at . For Pirate, although the quality of 

the ACS edges is not as good, the edges extracted with ACS 

are more defined than those with AS. Even at relatively lower 

values of , say , the edges produced by ACS are, in 

general, more defined. 

V. CONCLUSION 

An ACO-based image edge detection algorithm that takes 

advantage of the improvements introduced in ACS has been 

successfully developed and tested. Experimental results show 

the feasibility of the approach in identifying edges in an 

image. With suitable parameter values, the algorithm was able 

to successfully identify edges in the canonical test images. It 

must be noted that the appropriate parameter values depend on 

the nature of the image, and thus, may vary per application. 

As a continuation of this research, it is recommended to 

further examine how the quality of the extracted edges is 

affected by the parameter values and the functions for 

obtaining the heuristic information, for quantifying the quality 

of a solution, and for computing how much pheromone to 

deposit. In a study on a simplified ACO algorithm [11], it was 

shown that the basic properties of ACO are critical to the 

success of the algorithm, especially when solving more 

complex problems.  

In recent studies, techniques that could enhance the 

performance of ACS have been explored. In [12], ants are 

assigned different pheromone sensitivity levels, which makes 

some ants more sensitive to pheromone than the others. In 

[13], multiple ant colonies with new communication strategies 

were employed. The proposed ACS method for edge detection 

could be extended and possibly be improved by making use of 

such techniques. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Fig. 8 Edges for Lena at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 
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(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Fig. 9 Edges for Mandril at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Fig. 10 Edges for Peppers at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (j) 1.0 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 

Fig. 11 Edges for Pirate at different values of : 

(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, 

(f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9, (f) 1.0 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 12 Comparison between AS and ACS edges at different values 

of  for Lena: (a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 13 Comparison between AS and ACS edges at different values 

of  for Mandril: (a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 
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(b) 

 
(c) 

 
(d) 

 
Fig. 14 Comparison between AS and ACS edges at different values 

of  for Peppers: (a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 15 Comparison between AS and ACS edges at different values 

of  for Pirate: (a) AS, (b) ACS 0.2, (c) ACS 0.4, (d) ACS 0.6 
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