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Abstract: - In this paper, a frontier-based algorithm is used with two 
cooperating mobile robots to explore unknown environment. The aim 
is to decrease the exploration time. The proposed frontier-based 
exploration is based on a new bidding function in which we 
introduced a special parameter to decrease the overlap between the 
robots in addition to the utility and cost parameters. Tens of 
thousands experiments have been conducted, each experiment is 
executed with different weight values set, to see the relative 
importance of the weight parameters used in this technique. As a 
result of these experiments, the weight values can be chosen, 
according to the environment characteristics, to guarantee short 
exploration time. The proposed algorithm has been tested with a set 
of environments with different shapes and different numbers of 
obstacles. Finally, the results of our algorithm were compared with 
the results of one of known exploration algorithms available in the 
literature. The new technique led to promising results 
 
Keywords— Cooperating robots, Exploration, Frontier, Multi-robot, 
Map building, Weight.   

 

I. INTRODUCTION 

The exploration and mapping of an unknown environment 
is a fundamental topic in mobile robots field. Generally, robots 
need the environment map to navigate effectively. Therefore, 
in many mobile robots applications, robots need to explore 
their environment themselves and arrange their sensory data to 
get an understandable representation for the environment.   In 
addition robots need to localize themselves to accurate maps. 
Many techniques have solved the localization problem 
successfully [1-4]. The applications may include, search and 
rescue, hazardous material handling, and devastated area 
exploration after a disaster. There are continuous 
improvements to exploration techniques adopted by many 
researchers [5-20]. 

 
 In [10] Vazquez, J. and C. Malcolm proposed a behavior-

based exploration with multi-robotsystem.  In this technique 
the exploration is guided in a distributed fashion to keep the 
local short-range communication in the mobile network. The 
exploration algorithm is implemented in an environment 
represented by means of a global probabilistic grid map.       
Frontier cells (frontier cell is any free cell for which at least 
one of its neighboring cells is unexplored) are evaluated 
according to the estimated cost and the utility of the 
information. The costs are computed depending on the target-

frontier-cell distance to the robot. And the utility depends on 
the size of the nearby unexplored area and is equal to the 
number of unexplored cells existing inside the circumference 
of the robot sensor range. The utility expected by a robot 
considering moving to a particular frontier is decreased if 
there are any robots near that destination. The cell of 
maximum difference [Utility – Cost] wins the bidding and the 
robot starts moving towards it. In this approach each 
individual robot executes the algorithm in a decentralized 
fashion. 

 
    In [22] Sheng et al provided a fully distributed bidding 

algorithm for the coordination that considers the limited 
communication range, and introduces a nearness measure in 
the bidding algorithm that keeps the robots together. A 2D 
occupancy grid is used to represent the environment to be 
explored. A group of robots start from initial positions which 
are close to each other, and the relative positions are known to 
all robots. Robots try to explore the area individually with the 
maximum exploration information and with minimum cost.  

 
    R. Roucha et. al in [23] proposed a grid-based 

probabilistic model of a 3D map, which stores for each cubic 
cell a coverage belief. And, because of the fact that accurate 
mapping mainly depends on localization, it is assumed that 
robots are externally localized through a global localization 
system to get rid of the problems of localization. The approach 
employs frontier-based exploration. At the beginning of the 
exploration process an initial map is given to the robot. After 
that it gets a new batch of measurements, updates the map, and 
shares useful information with other robots. Then it might 
receive information from other robots and the map is updated 
according to this information. After getting the new map, a 
new viewpoint for the sensor is chosen and the robot starts 
moving accordingly. Once the robot reaches the new target 
position, the process is repeated with a new batch of 
measurements provided by the sensor from its new pose. 

   
   In all of the above mentioned published works, nobody 

tried to tune the weight (i.e. to investigate the importance) for 
each of the “Utility” and the “Cost” used in the bidding 
functions of the exploration algorithms. Furthermore, in the 
papers mentioned above, the proposed techniques have not 
been tested with different environments and different obstacles 
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number. 
 
    In this paper a new exploration algorithm is proposed, in 

which the robots work in pairs and coordinate their actions. 
Our idea depends on selecting a frontier target cell to increase 
the efficiency of the exploration. The proposed technique is an 
extension of the algorithms described in [21-23]. The new 
technique tries to decrease the overlap between the robots as 
much as possible. To further improve the performance we also 
concentrated on finding the best combinations of weight 
parameters in the frontier-based algorithm used. The new 
exploration algorithms were tested with different environment 
sizes, different obstacle distributions and different obstacles 
numbers. Eventually, we compared the results of our 
exploration algorithm with the results of one of the known 
exploration algorithms in the literature. 

 

 

II.    EXPLORATION METHOD 

All of our experiments were conducted using the simulation 
software – Netlogo [24] which is well known in the literature 
and employed in many published research works [25-26]. 
Netlog enables the computer-based investigation of the 
exploration process by a number of agents in an occupancy-
grid-based environment. In Netlog, the environment is 
simulated as an m-by-n grid of square cells. Each cell has 
information about itself stored in variables. With Netlog, the 
same experiment can be repeated and results are stored in an 
Excel file for further analysis. 

  
 

A.   Experiment Assumptions 

The experiments presented in this paper involve one team of 
two robots. The map is an m-by-n grid of square cells, each 
cell of which is allocated a code to represent its occupancy 
status. 

    Each robot is equipped with a 360o sensor, which can 
detect the occupancy status of all its eight neighbors. This 
process is known as “scanning”. Also, it can distinguish 
weather a neighboring cell is occupied by an obstacle or by its 
partner. Each robot knows exactly its own position and the 
position of its partner and they move between the centers of 
cells. Each robot requires an equal amount of time (a single 
step in Netlogo) to perform a 360o scan and move to a 
neighboring cell. Furthermore, robots can access a shared map 
of the environment which is updated in every step of the 
simulation. The communication between the robots is always 
on, and error free. Finally, the environment edges are treated 
as occupied cells. 

.  

B. Exploration Methodology 

During the process of exploration, each cell of the map is 
assigned one of the states as shown in table 1. Table 1 also 
shows the color code used to identify each state. 

 
Table 1 Cells states and color codes 

 
    At the beginning of each exploration, all of the cells in 

the environment are assigned as “F”. When a robot visits a 
cell, all of its free neighbors are assigned to be “S” by 
scanning. If a robot scans a cell and discovers that there is an 
obstacle in that cell, this cell is assigned to be an “O” cell (see 
Fig.1). The exploration process is completed when all the cells 
are explored (free or occupied) as shown in Fig.2. 

 

 
Fig. 1: The environment with one robot after one step of 

exploration. An obstacle near the robot 
 

 
Fig.2:  A completed map with two robots 

 

 

 

3 Experimental Work “Frontier-based 

Algorithm” 

 
A large number of published works in multi-robot 

exploration depends on the use of “frontier cells” e.g. [21-23, 
27]. A frontier cell is any free cell for which at least one of its 
neighboring cells is unexplored. When a robot is directed to 
such a cell, it is expected that it will gain information about 

   Patch Code Meaning Patch  Colour 

F “Fresh” No Idea Yet Gray 

S “Free” by Scanning Brown 
O “Occupied” by Scanning Orange 
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the unexplored area when it arrives. Because a map may 
contain several unexplored areas, the challenge arises of how 
to plan the exploration mission by choosing the most 
appropriate frontier cells. In [21-23, 27] the utility of the target 
frontier cell is computed. The utility of a target cell is the 
number of unexplored cells which can be scanned from that 
target cell. Then the cost of reaching that target cell is 
computed.   The cost is a function of the target cell distance. 
Finally, the target cell with the maximum [Utility – Cost] 
value wins and the robot starts moving towards its target. This 
is the general algorithm that guides the exploration in the 
above mentioned published works. 

 
    Apart from the above mentioned two factors – cost and 

utility, the distance of the other robot from the cell is also 
considered when computing the bidding value for a frontier 
cell. This third factor introduces potential benefit of keeping 
the two robots apart. Each robot computes the bidding value Bi 
for each frontier cell in its shared map based on the bidding 
function represented in equation (1). The relative importance 
of each term in the formula is adjusted by a weight value. The 
most appropriate weight values have been studied and 
suggestions how they can be chosen are made later in this 
paper. 

 
Bi = WnNu+WpDp-WcDr        (1) 
where     
      Bi: The bidding value for the frontier cell i (the   target 

cell). 
      Dr: The distance from the robot to the target cell. 
      Dp: The distance from other robot (the partner) to    the 

target cell. 
     Nu: The number of unknown neighbors for the   target 

cell. 
 
 (weight neighbors), Wp (weight partner) and Wc (weight 

cost) are the weight factors for Nu, Dp and Dr, and 
respectively. 

 
    Each robot scans the eight neighboring cells around it and 

adds the new information (the scan information) to the shared 
map which is available to both robots. Then each robot 
computes the bidding function according to equation (1) for all 
of its frontier cells in the shared map. Each robot has its own 
bidding function values for the frontier cells in the shared 
map, computed from its own point of view. A cell can be a 
frontier cell to more than a robot. The same cell may yield 
different bidding value to different robots. Finally, each robot 
chooses among its frontier cells the one with the maximum 
bidding function value max{Bi} and starts moving towards it. 

 
    The two robots explore at the same time, and make their 

decisions on where to go at the next step based on the same 
shared map. Equation (1) shows that we are trying to guide 
each robot to a cell with a large number of unexplored 
neighboring cells, far away from its partner, and close to its 
current position. 

    We introduced the weights Wn, Wp and Wc, to investigate 
the relative importance of each of the three parameters Nu, Dp 
and Dr. Wn in our technique represents the weight of the utility 
expected from going to the frontier cell. In other words, it 
reflects the importance of the size of the region that will be 
explored when the robot visits that frontier cell. The weight 
Wp is introduced to reflect the importance of keeping the 
robots away from each other. Keeping the robots away from 
each other may, sometimes, make each robot explore on its 
own a different and relatively large portion of the environment 
completely. This appears to be better than making each robot 
explore small areas in different places in the environment, as 
there is a need to come back again to explore the unexplored 
spots between the explored areas. In addition, keeping the 
robots away from each other reduces the probability of 
overlap. Wc represents weight for the cost function. For distant 
frontier cells the WcDr term reduces their bidding function 
value, because the value of this term is subtracted from the 
bidding function, and hence reduces their probability to win 
the bidding. 

 
    For a particular set of Wn, Wp and Wc in a given 

environment, a problem appears in which a robot starts to 
oscillate between two cells. The robot moves one step towards 
its target (called target number one) then it recalculates the 
bidding function and moves towards another cell (called target 
number two), and after that it calculates the bidding function 
again and moves towards the same previous target (target 
number one) and so on. In such a case, the robot oscillates 
between the two targets. This will not cause a dead loop as the 
oscillation will cease after approximately one to three steps. 
The oscillation disappears because the bidding function for a 
robot also depends on the movement of its partner or, more 
precisely, the distance between the frontier cell (the target) 
and its partner, which changes its position at each step 
independently. So, the winning target cell will change with the 
movement of the other robot. However, the oscillation can 
become a serious problem when both robots start to oscillate 
together. In such cases, the oscillation continues forever and 
becomes a dead loop. This problem has been solved by 
detecting the oscillation and then making one or both of the 
oscillating robots jump to a randomly chosen free neighboring 
cell.  

 
    The aim now is to find the appropriate combinations of 

the weight values that lead to relatively short exploration 
times. The idea is to execute many exploration experiments.  
Each experiment is conducted with different set of weight 
values (Wn, Wp and Wc). After that, the way in which these 
different weight sets affect the exploration time is investigated 
and analyzed. We started with an environment size of 25-by-
25 cells. This environment size requires a relatively short but 
reasonable exploration time with which we can perform a 
large number of experiments.  The results of these 
experiments will provide us with an idea about how the 
exploration time is affected with different weight values.  In 
particular, we will focus on the weights that lead to 
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comparatively short exploration time (“good weights”). 
 
    Then the same procedure is repeated for the same 

environment but with different numbers of obstacles (0, 10, 
20, 30 and 40 obstacles). In particular, we try to see whether 
the “good weights” are affected by the number of obstacles or 
not.  

 
We also thought that it would be useful to test our algorithm 

with a different environment size to see how the good weight 
values vary with the size of the environment.  An environment 
of 31-by-31 cells was chosen. The time required to explore 
this environment will be relatively longer than the ones of size 
25-by-25 cell but still reasonable. 

 
    Finally the same procedure is repeated with a different 

environment shape (20-by-25 cells) in order to see if the 
“good weights” are affected by different environment shapes. 

    The effectiveness of each exploration is evaluated by 
counting the number of steps until the environment has been 
completely explored, and each cell has been identified as free 
or occupied. 

 
     To see the importance of the three weight values Wn, Wp 

and Wc, one thousand experiments for each of the above 
mentioned environments have been conducted. Positions of 
the obstacles are fixed in all of the one thousand experiments. 
Each experiment was conducted with a different set of weight 
values. For example, in the first experiment Wn = 1, Wp = 1, 
and Wc = 1, in the second experiment Wn = 2, Wp = 1 , and Wc 

= 1, and in the thousandth  experiment Wn = 10, Wp = 10, and 
Wc = 10.  

 
     We are interested only in the sets of Wn, Wp and Wc 

values that lead to short exploration time. We focus on the sets 
of Wn, Wp and Wc that generate the shortest 10 percent of 
exploration times. For example, after trying one thousand 
different sets of Wn, Wp and Wc values, if the minimum 
exploration time obtained is 100 and the maximum (worst 
case) is 400, then the exploration time ranges from 100 to 400. 
We concentrate on lowest 10 percent of the range, that means 
we only accept the sets of Wn, Wp and Wc that can lead to an 
exploration time of not more than 130. To study the relative 
values of Wn, Wp and Wc and their effects on the exploration 
time we put all the data from the one thousand experiments 
into an Excel sheet. Each row contains Wn, Wp and Wc values 
in addition to the corresponding steps number for that 
experiment. For two of the environments mentioned above 
(environments of ten and twenty obstacles with 25-by-25 
cells), eight thousand experiments were repeated with Wn, Wp 

and Wc varying from 1 to 20. No better result was obtained. 

This indicates that no need for the weight values to go beyond 
ten. 

     It should be noted that in (1) Wn, Wp and Wc represent 
relative not absolute importance. For example, choosing Wn= 

1, Wp= 2 and Wc= 3  is same as choosing Wn= 2, Wp= 4 and 

Wc= 6, and they lead to the same set of movements of robots 
and hence the same total number of steps (exploration time). 
Considering this, Wc is fixed at 1 in all our next experiments 
while Wp & Wn are varied from 0 to 10 in steps of 0.1 
independently. This means that for each of the above 
mentioned environments ten thousand experiments have been 
conducted again. Figs. (3-7) show the results of these 
experiments.  The black squares show the combinations of Wp 

& Wn that have resulted in the best 10 percent of the 
exploration time. 

 
   Fig. 3 shows the exploration of an 25-by-25 environment 

with no obstacle and its results. The black squares are 
concentrated between Wp = 0 - 4& Wn = 0 – 4, meaning that 
high values of Wp & Wn leads to long exploration time. The 
same can be observed in Fig.s 4-7, where neither of Wp & Wn 

should ever go beyond 6 or 7. This observation confirms the 
necessity of introducing the cost of the robot moving to the 
target frontier cell (i.e. the term associated with Wc) into (1).  

 
    In Figs. 3-7, the black squares scatter around the line of 

slope equal to 1. This indicates that the terms associated with 
Wp & Wn are equally important and should both be considered 
when calculating the bidding function.  

 
    Fig. 7b shows the best combinations of weight values for 

15 obstacles but with an environment area equal to one and 
half times that of the previous environments (31-by31 cells). 
This bigger environment has been introduced to see the effect 
of the size of the environment on the weight values. Again, the 
black squares scatter around the line of slop 1. Approximately 
the same results have been obtained with the rectangle-shaped 
(20-by-25 cells) environment. Based on this result, it can be 
concluded that changing the environment size does not change 
the best weight values. 
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Fig.3: Exploration environment (25-by-25 cells) with no obstacles:  a is the environment and b is the weight values. 
The black squares are the weights of the minimum exploration time experiments in this environment when Wc = 1. 

 
 

  
 
 

                                           
 

                                a                                                                                                                                 b 
 
 

Fig.4: Exploration environment (25-by-25 cells) with 10 obstacles:  a is the environment and b is the weight values. 
The black squares are the weights of the minimum exploration time experiments in this environment when Wc = 1. 
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Fig.5: Exploration environment (25-by-25 cells) with 20 obstacles:  a is the environment and b is the weight values. 
The black squares are the weights of the minimum exploration time experiments in this environment when Wc = 1. 

 
 
 
 

 

                  
 

Fig.6: Exploration environment (25-by-25 cells) with 40 obstacles:  a is the environment and b is the weight values. 
The black squares are the weights of the minimum exploration time experiments in this environment when Wc = 1. 
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Fig.7: Exploration environment (31-by-31 cells) with 15 obstacles 

The black squares are the weights of the minimum exploration time 

experiments in this environment when Wc = 1 
. 

 

 

 
     Based on these results, we have come to the conclusion 

that changing the obstacles number, environment size and 
environment shape has a very slight influence on the best 
weight values. It is recommended to choose weight values (Wn 
and Wp ) such that they lie on or close to a line of slop equal 1. 
And based on the figures obtained, we recommend the same 
value for both Wn and Wp and to be any value between 0.5 and 
3.0 and for sure with Wc =1. Furthermore, we tested some 
weight combinations that lie very close to the line of slop 
equal 1 but not in the area of the black squares. That means 
they are not in the best ten percent exploration times. It was 
noticed that these weight combinations lead to exploration 
time that is very close to the best ten percent ones.  

 
  We can suggest many weight combinations to guarantee a 

short exploration time (i.e. within or very close to the best 10 
percent). For example, we can suggest the weight values to be 
as follows Wp =2, Wn = 2 and Wc = 1. This combination leads 
to an exploration time around 125 steps in all of the above 
mentioned environments of size 25-by-25 cells. This 
exploration time is one of the best ones in these experiments.  

 

III. RESULTS COMPARISONS 

In this section, the algorithm proposed in this paper is tested 
across a range of environments. All of the environments are 
25-by-25 cells. The results are shown in Table 2. 

   In Table 2 we also compare our work with the exploration 
algorithm in [21]. The algorithm in [21] is much related to 
ours but its bidding function is slightly different. In this 
algorithm the robots choose their next frontier target cell 
according to the following equation: 

gi = w1Ii  –  w2Di + w3λi                     (2) 

where : 
Ii: The information gain for the frontier cell i (the     number 

of unexplored cells within the robot sensor range but, at 
the same time, not in the range of other robots or target 
cells for other robots) 

Di: The shortest travelling distance to the frontier cell i. 
 λi: Is the nearness measure.  

w1, w2, and w3 are the weights for these three    
parameters   and respectively. 

 

   The nearness measure is included in this equation to keep 
the robots close to each other to guarantee the communication 
amongst them. But in our simulation it is assumed that the 
robots operate within their communication range, we just 
focus on the exploration algorithms. In practice, when the 
entire area to be explored is larger than the communication 
range, we can divide the area into smaller blocks and explore 
them block by block. So the robots can share their maps in 
each step. Therefore, the nearness measure (λi) in (2) is 
ignored, by setting w3 to zero, when we compare the results of 
our technique (which is based on (1)) with this technique 
based on (2).  w1 and w2 are set to 1 as Sheng suggests in his 
simulation in [2].  

 

       Table 2 shows comparisons between the 
experiments’ results for both of these exploration 
techniques. The weights used in these experiments are 
Wp = 2 , Wn = 2 and Wc = 1 as suggested earlier. Fig.8 
shows how the exploration time varies with number of 
scattered obstacles.  

 
Table 2 Comparisons between the experiments’ results for the exploration 

techniques presented in this paper. All results are averages across 10 
experiments for each technique in each environment 

  Sheng 2006 Frontier-Bsed 

No Obstacles  158.7 128 

One Obstacle 155.4 127 

Two Obstacles   155.7 126.2 

Five Obstacles  155.2 124.6 

10 Obstacles  153.3 122.6 

20 Obstacles 163.3 123.3 

30 Obstacles 158.8 122.9 

40 Obstacles 155.6 123.1 
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Fig.8 Exploration time (steps) vs. number of scattered    obstacles 

The following points can be observed from the results in 
Table 2 and Fig.8: 

• Our proposed frontier-based exploration algorithm, 
with its recommended weight parameters, is always 
better than the Sheng et. al algorithm in terms of the 
exploration time. 

• The exploration time with frontier-based algorithm is 
approximately fixed if the environment size is fixed 
whatever the number of obstacles is.  

• Changing the scattered obstacles distribution does not 
affect the exploration time. 

 
 
5   Conclusions 
This paper proposes an exploration algorithm in which a 

couple of robots are used to perform the exploration task. The 
algorithm is an extension of the frontier-based algorithms 
known in the literature. The proposed technique tries to reduce 
the overlap as much as possible between the robots. Tens of 
thousands experiments have been conducted to tune the 
weight parameters used in this algorithm. This algorithm with 
the suggested (recommended) weight values have been tested 
with environments with 0, 1, 2, 5, 10, 20, 30 and 40 obstacles 
and with different environment shapes and sizes. Results with 
all of these environments have confirmed that our algorithm 
effectively reduced the exploration time.  
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