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   Abstract— Technology scaling has resulted in interconnect delay 
increasing significantly. Buffer-insertion is a well-known technique 
to reduce wire delays of critical signal nets in a circuit. However, the 
power consumption of buffers has become a critical concern with the 
increase of the number of buffers. In this paper, it is shown that this 
problem is not polynomial in time. Thus, we developed a genetic-
based algorithm that provides optimal or near optimal solutions for 
reducing the power dissipation while meeting the time and area 
constraints.  
 
  Keywords— Submicron interconnections, buffer insertion, low-
power design, area and time constraints, genetic-based algorithm. 

I. INTRODUCTION 
ith the advent of new semiconductor technologies, it is 
possible today to integrate multiple systems on a single 
chip (SOC). This tight integration offers several 

advantages, but is certainly not without problems: hybrid 
systems (digital, analog, mixed RFs) that are present on the 
same chip require proper and complicated design (e.g. 
consistent interfacing and communication protocols ...). 
Compared to older systems, there are other problems due to 
electro thermal phenomena, coupling ... Among these 
problems, it is one that is no less important: energy 
consumption. This problem arises in two ways: i) a strong 
energy dissipation resulting in an increase in temperature, 
which could affect the reliability of the system; ii) there exist 
on the current market many portable systems (PDAs, mobile 
phones, notebook PCs, etc ...) and for which the operating 
time of batteries is limited. Obviously, the same problem can 
arise for the systems on board satellites (the stored 
energy during the day should be sufficient to operate the 
system during the night). These are all reasons that lead to a 
need to low-power circuit designs. Thus, the power dissipation 
problem is tackled at each level of abstraction either to 
propose diverse and varied methods estimating this parameter 
or to design circuits with low power consumption [1]-[24].  
      In past technologies, gate delay was the major concern. 
Today, with submicron technologies, this is no longer true. 
Indeed, wire delay has become a critical concern. Buffer 
insertion and wire sizing are two interesting techniques to deal 
with the interested problem. The reader may found many 
interesting works that addressed this problem ([25]-[29]). In 
this paper, we show that buffer insertion is not a polynomial in 
time problem. We then present our genetic-based algorithm 
that features a twofold purpose: solution search processed in 
polynomial time while targeting the most interesting (near 
optimal) solutions. Because power consumption is also a 
critical problem in modern technologies, our buffer insertion is 
processed with power (and area) constraints. Our paper is 
organized as follows. In the next section we present the 

models we used. In section 3 we give details of our buffer 
insertion technique. Section 4 presents some obtained results. 
Finally, we conclude the paper in section 5. 

II. MODEL DEFINITIONS 

A. Delay Model 
    Let us consider “Fig.1” in which 1 and 6 are respectively 
source and sink nodes while 2–5 are candidate positions for 
buffer insertion. Because a precise delay model for an inverter 
exists in literature (e.g. [30]), we implement buffers with 
inverters. Equation (1) shows the delay model for an inverter. 
Di is the delay for the buffer inserted at node i (2 ≤ i ≤ 5), 
CLoad(i) is the capacitance at the output node of the ith buffer, Li 
and Wi are the transistor sizes of the NMOS transistor (a 
similar model as that shown in (1) can be given for the PMOS 
transistor of the inverter). Vdd(i) and Vth(i) are respectively the 
supply voltage and the threshold voltage of the NMOS 
(PMOS) transistor of of the ith inverter. Equation (2) is a delay 
model of the wire portion between nodes i and j ([28]).  CWij   
and   rWij are   the capacitance and the resistance of the wire 
portion between nodes i and j, respectively. lWij is the length of 
this wire portion. 
 
 

 
Fig. 1 Delays involved by candidate positions for buffer insertion 
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The total delay Dij between nodes i and j (as shown in “Fig.1”) 
is then:  

)3(ijiij dDD +=  

W 
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B. Area Model 
    The area consumed by the buffers is merely estimated as the 
sum of the transistor sizes of the inserted inverters. 
 

C. Power Model 
    The switching power dissipation is given by (4). However, 
because we target dual Vdd dual Vth circuit designs, we 
transform it as shown in (5).  
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Vdd and f are respectively the supply voltage and the 
frequency. CGi  is the load capacitance of the ith logic gate 
while NGi is the number of times CGi is charged or discharged 
under some input sequence. Vdd,L and Vdd,H are the lower and 
the higher supply voltages, respectively. EL (EH) is the set of 
the logic gates that are fed with Vdd,L(Vdd,H). 
The leakage power dissipation is given in BACPAC (Berkeley 
Advanced Chip Performance) by (6). 
 

)6(2813.0 V
tV

avgtransddleak LWNKVP α−
××××××=

 
Wavg, L, Ntrans and Vt are the average transistor width, the 
transistor length (in µm), the total number of transistors in the 
circuit and the threshold voltage, respectively. K=10 µA/µm, 
αV = 0.095 V. 
Again, because we are dealing with low-power circuits, we 
transform it by (7) so that dual Vdd dual Vth design 
methodology could be possible. 
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NbN,i (NbP,i) is the number of NMOS (PMOS) transistors of 
the buffers, VtN,i (VtP,i) is the threshold voltage of the NMOS 
(PMOS) transistors in the ith buffer and Vdd,i is the supply 
voltage of the ith buffer. 

III. BUFFER INSERTION 
     Let N be the maximal number of buffers to insert between 
the source and sink nodes (see “Fig.1”). In order to reduce the 
wire delay while meeting power and area constraints, an 
obvious way is to consider all the cases (inserting 1, 2, …, or 
N buffers) then to pick the best solution. But to insert only a 
single buffer, we have N possibilities: placing it at node         
2, 3, …., or (N+1). For inserting m (m ≠ 1) buffers, the 
number of possibilities is much larger. The total number of 

possibilities is ∑∑
==

−=
N

k

N

k

k
N kNk

NC
11

)!(!
! , which is a huge 

number of possibilities. Like many other problems that are 
intractable [31], this obvious buffer insertion is 
computationally infeasible, which led us to develop a genetic-
based algorithm that features a reasonable CPU time while 
insuring near optimal solutions. Before describing our method, 
notice that our genetic-based algorithm handles a single 
individual at each generation. This is due to the following 
reasons: 

- starting with the most interesting one, namely with 
the one that meets the time and area constraints while 
consuming the lowest power 

- in case one or both constraints are not met with the 
current individual, the next one is generated from it 
with making few modifications: if the obtained 
solution will meet the constraints, it will be near 
optimal since it is generated from the best 
candidate(s) 

Notice also that at each generation, the individual is generated 
in a deterministic way for the following reasons: 

- to keep it not too far from the most interesting 
solutions (but that did not meet the constraints) 

- to guarantee that already explored solutions are not 
again generated (the CPU time is only consumed to 
explore new solutions) 

- to avoid falling in a cyclic scenario (i.e. the same 
explored solutions are periodically generated) 

 Such advantages are explained in details in our book review 
[32].  
   For each interconnection in each equipotential, our main 
algorithm determines, if possible, the buffer positions such 
that the time and area constraints are met while minimizing 
the power dissipation.  
   Determine_buffer_positions() includes three main parts. For 
each combination (i.e. for some number of buffers and their 
positions) among M ones, it generates the ideal individual, 
namely the one with which the power dissipation is the lowest 
one. In case the time and area constraints are met, the search 
process continues with another combination. Else, the 
procedure tries to find an individual (belonging to the same 
combination) that meets the constraints with carefully tuning 
(to keep the solution not too far from the ideal one that did not 
meet the constraints) the characteristics of the current 
individual (supply voltage, threshold voltage, size transistors, 
…): this is the part (k=2) in the procedure 
Generate_Individual(). In case the previous individual met the 
constraints but it is not the ideal one, Generate_Individual() 
enhances it in order to reach a lower power dissipation that is 
possible without violating the constraints: This is the part (k > 
2). 
      Select_configuration() returns, if the combinational 
problem is solvable, three possible solutions: 

- Ecand_1 (the set that includes the positions of the 
buffers whose electrical parameters are stored in 
Ebuffer_1) and Ebuffer_1 (the set that includes the 
solutions that meet the time constraint while 
consuming both the less power and the less area) 
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- Ecand_S (the set that includes the positions of the 
buffers whose electrical parameters are stored in 
Ebuffer_S) and Ebuffer_S (the set that includes the 
solutions that meet the time constraint while 
consuming the less area) 

- Ecand_P (the set that includes the positions of the 
buffers whose electrical parameters are stored in 
Ebuffer_P) and Ebuffer_P (the set that includes the 
solutions that meet the time constraint while 
consuming the less power) 

 
  We give hereafter the details of our algorithms with 
necessary comments: 

 
BEGIN /* main algorithm */ 
for each  equipotential 
do {Determine all the interconnections belonging to this  

equipotential, then sort them in the decreased length ;  
    /* in order to first satisfy the constraints for the   longest 

interconnections */ 
        for  each interconnection 
        do {Determine  G = (V, E); /* V={nodes in the wire, 

including the source and sink ones}, 
               E={(vi,vj); vi ∈ V ∀ i ≠ j} –see “Fig.1”- */ 
                Determine_buffer_positions(); /* determine the 

number of buffers and their positions */ 
                 Select_configuration (); /* in case of many 
candidate solutions that infer the same wire delay, select the 
one that best suits the application – power and/or area is the 
most critical parameter for the interested application - */   } 
         end  } 
end 
END        
 
Determine_buffer_positions() 
Smin=+∞; Pmin=+∞; Ecand_1=∅; Ecand_S=∅; Ecand_P=∅; 
Ebuffer_1= ∅; Ebuffer_S= ∅; Ebuffer_P= ∅;  
/* Smin (Pmin) is the minimal area (power) of the buffer 
configuration that meets the time and area constraints  
   Ebuffer_1 is the set that includes the solutions that meet the 
time constraint while consuming both the less power and the 
less area  
   Ecand_1 is the set that includes the positions of the buffers 
whose electrical parameters are stored in Ebuffer_1         
   Ebuffer_S (Ebuffer_P)  is the set that includes the solutions that 
meet the time constraint while consuming the less area 
(power) but not the less power (area)  
   Ecand_S (Ecand_P)is the set that includes the positions of the 
buffers whose electrical parameters are stored in Ebuffer_S 
(Ebuffer_P) */ 
for i=1 to M    /*M is the number of explored  combinations;   

M ≤ ∑
=

N

k

k
NC

1

*/ 

do {Generate_Ideal_Individual();  /* Assign WL, VthNH, VthPL,  
VddL  for all the buffers in the current combination */ 

        /* An ideal individual is a number n of buffers     (n  ≤ N) 
such that each one is designed with WL, VthNH, VthPL and 
VddL, i.e. the individual that better maximizes the power 

reduction; subscripts L and H stand to Low and High, 
respectively */  

        k=1; 
        LABEL: 
         D=delay(); // calculate the wire delay 
         S=estimate_area(); // calculate the area of the buffers 
         if |D - Tf| ≤ ε and |S - Sf| ≤ ε   /* Tf and Sf are the time 

and area constraints, respectively */ 
         then {P=Power(); /* calculate the power due to the 

current buffer insertion */ 
                     if S < Smin and P < Pmin 
                     then {Ebuffer_1= {combination i}; 
                               /* combination i stores the electrical 
parameters W, Vdd, Vth of the m buffers (1 ≤ m ≤ N) */ 
                               Ecand_1={less costly path that is found}; 
                              /* this path includes the source and the sink 

nodes, and m buffers */ 
                               Smin=S; Pmin=P;   }          
                       else  {if S < Smin 
                                 then if P = Pmin  
                                         then {Ebuffer_S =   
                                                              {combination i}; 
                                                   Ecand_S={less costly path that is 

found }; }                                  
                                              else {Ebuffer_S=Ebuffer_S ∪ 

{combination i}; 
                                                        Ecand_S=Ecand_S ∪  
                                    { less costly path that is found}; } 
                                               end if                                                   
                                 end if 
                                 if P < Pmin 
                                 then    if S=Smin 
                                            then {Ebuffer_P= 
                                                               {combination i}; 
                                                       Ecand_P={less costly path that 

is found}; } 
                                            else {Ebuffer_P=Ebuffer_P ∪   

{combination i}; 
                                                      Ecand_P=Ecand_P ∪ {less costly 

path that is found }; } 
                                             end if 
                                 end if  }   
                    end if 
                    if k=1   // ideal case 
                    then continue;  /* stop generating individuals for 

the current combination, 
 then continue with another one */ 

                    end if   } 
          end if 
          k++; 
          if k ≤ nb_individuals 
          then {Generate_Individual(D, S, P);  
                    goto LABEL;}          
          endif      } 
end 
 
Generate_Individual(D, S, P) 
{ if k > 2 
   then {i=1; 
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            while |D - Tf| ≤ ε and i ≤ nb_buffers 
            do {if Wi=WH   /* minimize power and area while  

meeting the time constraint */ 
                  then {Wi=WL;    calculate D;  }                       
                  end if 
                   i++; } 
           end 
           if |D - Tf| > ε and i > 1 
           then {i--; Wi=WH; } 
           end if 
          // Begin process with VthN 
          i=1; 
           while |D – Tf| ≤ ε and i ≤ nb_buffers in the current 

combination 
           do {if VthN,i = VthNL       /* minimize the leakage 

current in the NMOS transistors */ 
                  then {VthN,i=VthNH;   calculate D; } 
                  end if 
                  i++; } 
           end 
           if |D – Tf| > ε and i > 1 
           then {i--; VthN,i=VthNL; } 
           end if 
            // End process with VthN 
           //  Begin process with VthP 
                Use process with VthN, replacing: VthN with VthP, 

VthNL with VthPH, VthNH with VthPL 
           // End process with VthP 
           //  Begin process with Vdd 

       Use process with VthN, replacing: VthN with Vdd, 
VthNL with VddH, VthNH with VddL 

           // End process with Vdd 
         } 
else { // k=2: Generate an individual from the ideal one that 

did not meet the time constraint 
             i=1; 
             while |D-Tf| > ε and i ≤ nb_buffers in the current 

combination 
             do {if Wi=WL 
                    then {Wi=WH;  /* Attempting to meet the  time 

constraint with enlarging  
                                         the sizes of the transistors */ 
                              S1=S;      calculate S; 
                              if |S – Sf| ≤ ε 
                              then calculate D; 
                              else { Wi=WL;  S=S1; }                                      
                              endif 
                            } 
                    endif 
                    i++; } 
             end 
             // Begin process with VthN 
             i=1; 
            while |D – Tf| > ε and i ≤ nb_buffers in the current 

combination 
            do {if VthN,i=VthNH 
                   then {VthN,i=VthNL;    /* Attempting to  meet the 
time constraint with reducing the threshold voltage of NMOS 
transistors  */ 

                               calculate D;  } 
                      endif 
                       i++;   } 
              end 
            // End process with VthN 
            // Begin process with VthP 
               Use the last process with VthN, replacing: VthN with 
VthP, VthNL with VthPH, VthNH with VthPL 
            // End process with VthP 
              while |D – Tf| > ε and i ≤ nb_buffers in the current 

combination 
              do {if Vdd,i=VddL 
                     then {Vdd,i=VddH;   
                                    for j=i+1 to  nb_buffers in the current 

combination 
                                    do {Vdd,j=VddH;  /* Attempting to 
meet the time constraint with increasing the supply voltages of 
the buffers */ 
                                              j++;    }                                              
                                     end 
                                     i=j; } 
                          else i++; 
                          endif } 
               end  } 
 endif 
 
Select_configuration() 
{ 
 if Ebuffer_1 = ∅ and Ebuffer_P = ∅ and  
                                                                  Ebuffer_S = ∅ 
 then {Write “No solution for this problem: Too hard 

constraints“;    exit();} 
 endif 
 if Ebuffer_1 ≠ ∅ /* this set includes solutions that minimize 
both the power and the area while meeting the time constraint 
*/ 
 then use Ebuffer_1 and Ecand_1 for buffer insertion; 
 else if Ebuffer_S ≠ ∅ and Ebuffer_P ≠ ∅  
           then {select 1 combination ∈ Ebuffer_S (resp.                              
                     ∈ Ebuffer_P)                                                                   
/* in case the area constraint (resp. the  
          power constraint) has the highest priority for the   
          interested application */ 
                      use (Ebuffer_S and Ecand_S) or 
                                   (Ebuffer_P et Ecand_P) for buffer  
                                                                      insertion;   } 
             else {select 1 combination among those  
                                         included in the non-empty set ; 
                       use (Ebuffer_S and Ecand_S)  
                             (resp. (Ebuffer_P and Ecand_P)) for  
                                                                buffer insertion;    
 /* according to Ebuffer_S ≠ ∅ (resp. Ebuffer_P ≠ ∅) */ 
                     } 
             endif 
   endif  } 
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IV. RESULTS 
    Many results were obtained for different wire lengths and 
time and area constraints targeting the 0.18µm CMOS 
technology. We present some of them.  
 

TABLE I 
OBTAINED RESULTS WITH WIRE LENGTH=750 µM, TF=2.60PS, AND 

SF=5.70µMÉ 

NA: Not Applicable 
 
Assuming that VddL=1.8V, VddH=3.3V, VthNL=0.45V, 
VthNH=0.55V, VthPL=-0.55V, VthPH=-0.45V, WL=0.22µm and 
WH=1.76µm, Table I shows the obtained results for inserting 
buffers in a wire whose length is equal to 750µm with time 
and area constraints equal to 2.60ps and 5.7024µm2, 
respectively.   The heuristic-based method was able to output 
the exact solution (inserting 2 buffers at nodes 3 and 5. Note 
that 0 and 7 are source and sink nodes, respectively). The total 
power, wire delay and area are obtained with the following 
parameters: 

- Buffer3:  Vdd=3.30V, VthN=0.55V, VthP=-0.55V, 
WN=0.22µm,  WP=0.44 µm  

- Buffer5:  Vdd=3.30V, VthN=0.55V, VthP=-0.55V, 
WN=0.22µm, WP=0.44µm 

Vdd is the supply voltage feeding the inverter, VthN and VthP are 
respectively the threshold voltages of the NMOS and PMOS 
transistors of the inverter. WN and WP are respectively the 
widths of the NMOS and PMOS transistors of the buffer. Due 
to an exhaustive search, the CPU time consumed by the exact 
method was much larger than that of the heuristic-based 
method (4 s VS 1015 s). Note that this buffer insertion leads 
to 95% (100 - 59/12.05) reduction in power dissipation 
against wire design without buffer insertion (0.59 µW VS 
12.05 µW) while meeting the time and area constraints.          
Table II shows the obtained results for inserting buffers in a 
wire whose length is equal to 900µm with time and area 
constraints equal to 3.73 ps and 7.6 µm2, respectively. Again, 
our heuristic-based method was able to output the exact 
solution in a shorter CPU time (23 s) with respect to the exact 
method (21529 s).  The best solution was achieved with 
inserting 2 buffers at nodes 6 and 8 (the results in Table I - 
that are obtained for another wire length and other constraints 
- show that the buffer insertion concerns nodes 3 and 5 
instead of nodes 6 and 8) and assigning the following values 
for the different parameters: 

- Buffer6:  Vdd=3.30V, VthN=0.55V, VthP=-0.55V, 
WN=0.22µm,  WP=0.44 µm     

- Buffer8: Vdd=3.30V,VthN=0.55V, VthP=-0.55V, 
WN=0.22µm, WP=0.44µm 

 
TABLE II 

OBTAINED RESULTS WITH WIRE LENGTH=900 µM, TF=3.73PS, AND 
SF=7.60µMÉ 

  Toal Power 
(µWatts) 

Wire 
delay 
(ps) 

Area 
(µm²) 

CPU 
Time 

(s) 
Without 
Buffer 

Insertion 
 

 
14.46 

 
3.73 NA NA 

path : 
0 1 3 5 

7 9 

1.19 3.59 0.475200 

path : 
0 1 3 9 

1.23 3.67 0.237600 

path : 
0 1 4 9 

1.23 3.33 0.237600 

path : 
0 1 5 9 

1.13 3.17 0.237600 

path : 
0 1 6 9 

1.23 3.18 0.237600 

path : 
0 1 7 9 

1.23 3.38 0.237600 

path : 
0 2 3 5 

7 9 

1.04 3.59 0.475200 

path : 
0 2 3 9 

1.09 3.67 0.237600 

path : 
0 2 4 5 

7 9 

1.04 3.59 0.475200 

path : 
0 2 4 6 

7 9 

1.04 3.59 0.475200 

path : 
0 2 4 6 

8 9 

1.04 3.52 0.475200 

path : 
0 2 4 9 

1.14 3.24 0.237600 

path : 
0 2 5 9 

0.98 2.99 0.237600 

path : 
0 2 6 9 

0.98 2.91 0.237600 

path : 
0 2 7 9 

1.14 3.02 0.237600 

path : 
0 2 8 9 

1.09 3.30 0.237600 

path : 
0 3 4 9 

1.00 3.33 0.237600 

path : 
0 3 5 9 

0.89 2.99 0.237600 

path : 
0 3 6 9 

0.84 2.82 0.237600 

path : 
0 3 7 9 

0.89 2.84 0.237600 

path : 
0 3 8 9 

1.00 3.03 0.237600 

path : 
0 4 5 9 

0.75 3.17 0.237600 

path : 
0 4 6 9 

0.75 2.91 0.237600 

path : 
0 4 7 9 

0.75 2.84 0.237600 

path : 
0 4 8 9 

0.75 2.94 0.237600 

path : 
0 5 6 9 

0.60 3.18 0.237600 

 

path : 
0 5 7 9 

0.60 3.02 0.237600 

 

  Toal Power 
(µWatts) 

Wire 
delay 
(ps) 

Area 
(µm²) 

CPU 
Time 

(s) 
Without 
Buffer 

Insertion 
 12.05 2.60 NA NA 

path :    
0 2 4 7 0.85 2.49 0.237600 

path :    
0 2 5 7 0.85 2.41 0.237600 

 
Heuristic-

Based 
Method 

 path :    
0 3 5 7 0.59 2.41 0.237600 

4 

path :    
0 2 4 7 0.85 2.49 0.237600 

path :    
0 2 5 7 0.83 2.52 1.069200 

 
Exact 

Method path :    
0 3 5 7 0.59 2.41 0.237600 

1015 

 Heuristic- 
 Based  
 Method 

23
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path : 
0 5 8 9 

0.60 3.03 0.237600 

path : 
0 6 7 9 

0.51 3.38 0.237600 

path : 
0 6 8 9 

0.51 3.30 0.237600 

path : 
0 1 3 5 

7 9 

1.19 3.59 0.475200 

… … … … 

 
Exact 

Method path : 
0 6 8 9 

0.51 3.30 0.237600 

21529 

NA: Not Applicable 
 
 
 

Finally, note that this buffer insertion leads to 96%                   
(100 - 51/14.46) reduction in power dissipation against wire 
design without buffer insertion (0.51 µW VS 14.46 µW) while 
meeting the time and area constraints.Our CAD tool was 
developed with C++ language and qt tool under Linux 
operating system. Our GUI shows that our tool is user-friendly 
and enables the user to perform different tasks: “Fig.2” shows 
the window that allows him to do some common tasks (editing 
a file, saving it, …) while  both “Fig.3” and “Fig.4” serve to 
capture the parameters of the technology process and the time 
and area constraints. The windows in “Fig.3” and “Fig.4” 
serve to perform the exact method and the heuristic-based one, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The main window of our CAD tool (editing a file, saving it, …) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Editing the constraints then launching the exact method 
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Fig. 4 Editing the time and area constraints then launching the heuristic-based method
 

V. CONCLUSION 
 In this paper, we have presented our genetic-based technique 
for low-buffer insertion in order to reduce the power 
dissipation in submicron wires while meeting the time and 
area constraints. The obtained results show that our method is 
a potential and a promising way to deal in a reasonable CPU 
time with wires of circuits designed for modern technologies.  
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