
 

 

 

Abstract—The so called activity index is defined on the second-

order statistics. In multiple-input multiple-output (MIMO) models, 

it estimates the level of activity of individual input sources. In this 

paper, we study an extended definition of activity index, which 

deploys higher-order statistics instead of the second-order. 

Experiments with synthetic models show that noise resistance at 

higher even orders increases. In spite of the fact that the level of 

superimpositions of source activity also increases, which is 

disturbing, a difference of  the 4th- and 2nd-order activity indexes 

proves to be a reliable relative measure of the number of 

simultaneously active input sources. The measure is not influenced 

either by the properties of sources, or by the level of additive 

random Gaussian noise, or the over- or underdeterminancy of the 

model output observations. This can be of considerable help when 

analysing and, in particular, decomposing compound MIMO output 

signals.    

 

Keywords—Activity index, Compound signal segmentation, 

Higher-order moments, MIMO models, Sparse signal sources.  

I. INTRODUCTION 

System identification or signal and image detection in many 

fields of applications are faced with compound observations. 

Telecommunications, seismic and radar measurements, 

speech processing, medical diagnosing are some typical 

cases. To extract useful information based on these 

observations, efficient analysis methods have been developed 

to estimate the measured signals, transmission channels, and 

signal sources. Recently, research was intensified in  the 

field of blind analysis techniques that try to identify 

properties of system channels and signal sources when only 

received or observed signals are available [6]. These cases 

can be modelled in multiple-input multiple-output sense 

(MIMO). When the model inputs can be considered 

orthogonal, many blind source separation (BSS) techniques 

are available to separate the sources. Robust and successful 

solutions have been reported for telecommunications [1], 

seismic and radar signals [2], speech processing [3], 

bioelectrical signals [4], and image processing [5]. 
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Even if source signals are only close-to-orthogonal and if 

the number of observations does not guarantee 

overdeterminancy, some algorithms can cope with their 

separation. A very successful one was proposed in [8]. 

Although it was basically built for the cases  where sources 

produce only a limited number of finite symbols (source 

activity), it means a novel and general paradigm in the field 

of compound signal decomposition. When finite symbols are 

sent through a transmission channel, they are convolved by 

the channel responses and contribute to the system output as 

observations of transmitted symbols. Bioelectrical signals, 

such as electrocardiograms (ECG), can be modelled with 

entirely orthogonal sources (no overlap is possible between 

different types of heart beats, e.g. normal systoles and 

extrasystoles), while electromyograms (EMG) lose 

orthogonality by increasing muscle contraction forces [11], 

[15]. The number of overlapping motor-unit action 

potentials (MUAP) increase with higher contraction forces 

[9]. On the other hand, when observing certain types of 

communications, such as CDMA [1], orthogonality of 

sources may be supposed as well.  

Compound signal decomposition aims at  the detailed 

information on the properties of individual separated signal 

sources. Different applications, such as medical diagnosing 

or communication channel multiplexing, highly benefit from 

it. However, more global indications are also important, 

such as the number of sources, duration of their responses, 

or the amount of their overlapping [9]. These may help 

improve the signal decomposition results or just assess the 

observed measurements quickly, possibly in real time.  

Some time ago, we developed a blind signal 

decomposition method called Convolution Kernel 

Compensation (CKC) [8], [10]. The method has proved 

itself with a high rate of properly decomposed surface 

elecromyograms. The initial decomposition step is based on 

a global measure that estimates the input activity of a MIMO 

system by only observing its outputs. This measure was 

introduced under the name activity index. 

Activity index actually measures Mahalanobis distance 

[7]. Its implementation deploys second-order statistics. 

Related to MIMO models, it indicates the level of activity of 

individual input sources and is computed as follows: 
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where 
etR  and 

eyR  stand for correlation matrices of model 

input source activity and model output observations, 
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respectively. Eq. (1) holds with exact equality in noise-free 

cases. In all cases, it depends on the extended system output 

observations ye(n): 

1,,0);()()(  Nnneneene vtHy  (2) 

where subscript e designates extended vectors and matrices 

and N stands for the signal length. Extended  output 

observations consist of: 
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where Me stands for an extension factor. 

Extended noise vector ve(n) is considered constructed in 

the same way. 

He contains the observed contributions of source 

symbols:  
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with M equals the number of observations, K the number of 

sources or source symbols, and  
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where L means source symbol lengths. Vectors te(n) indicate 

instants of source firings at lag n:  
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where any element can be only either 0 or 1.  

If the inequality 

)1(  ee MLKMM
 

(7) 

is fulfilled, the matrix He is of full column rank for K 

different observed symbols of length L and M observations. 

The rest of the paper is based on the principles 

introduced and is organised as follows: Section II explains 

an extension of activity index to higher orders, Section III 

describes experimental results, while Section IV discusses 

the results and Section V concludes the paper. 

II. EXTENSION OF ACTIVITY  INDEX BY HIGHER-ORDER 

MOMENTS 

Eq. (1) suggests the way the activity index is computed. By 

definition, correlation matrix of system output observations ye 

yields: 

e e

T T
e e e t eyR y y H R H= = , (8) 

where T stands for matrix transpose. When the inverse of 

eyR  is pre- and post-multiplied by ye, convolution kernels He 

compensate: 
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and the right-hand side part of Eq. (1) becomes obvious. It is 

worth pointing out that activity index in its basic form, p(n), 

is computed by second-order statistics, i.e. the correlation of 

observations, and that it depends exclusively on the input 

source contributions if the condition in (7) is verified. 

Experiments in [12] show that even when this condition is 

not fulfilled, i.e. in underdetermined cases, activity index 

represents a very robust measure of the response lengths and 

the number of the input sources. 

A closer look at Eq. (9) reveals a very simple form of 

activity index when sources are strictly orthogonal, no noise 

is present, and condition (7) is fulfilled. Eq. (6) describes 

source firing pulse trains and shows that any source firing 

contributes to activity index L+Me-1 non-zero samples of the 

same value. Such a sequence of samples always belongs to the 

same source. The samples’ value depends on the diagonal 

elements related to that source in the inverse of correlation 

matrix of observations, 1
eyR . These elements equal the 

inverse of the number of firings that belong to the related 

source during the time of observation. Suppose a source 

activates 5 times during the system output measurement. 

Then, the diagonal elements in 1
eyR  for this source equal 

1/5, and so does the corresponding activity index segment. A 

logical consequence of this fact is that the level of activity 

index depends on the source firing rate and the time of the 

system output observation. The higher the rate and the longer 

the time interval, the lower is the corresponding value of 

activity index. 

In overdetermined cases without noise where source 

activities may overlap (sources are no longer orthogonal), 

values of activity index slightly change for all those positions 

that are influenced by system-response samples involved in 

superimpositions [12]. 

When the number of observations is too low to guarantee 

overdeterminancy and when noise is added to observations, 

the values of activity index samples become also dependent 

on the inferior convolution kernel compensation and noise 

energy. The lower signal-to-noise ratio (SNR) and the higher 

underdeterminancy, the weaker is the dependence of activity-

index values on the number of firings of the observed source. 

Nevertheless, it has been observed that also in such situation 

activity index still alludes the overall level of source activity 

[12]. 

Experiments using non-linear extensions of signal 

observations in the CKC application have been reported in 

[13]. The problem of only one signal observation was tackled 

by the CKC decomposition. To increase the number of 

observations, every observed sample yi(n) was considered an 

independent random variable, and new, artificial observations 

were generated using higher-order moments of these 

variables. The same non-linear extension of observation was 
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also applied to the CKC decomposition of electrocardiograms 

[14]. 

Having all the previous work on the CKC and activity 

index in mind, we introduced a more general definition of 

activity index in [17]. We are recapitulating the derivation 

first and then confirming its importance by experiments. 

Dealing with the basic form, it is evident that the inverse of 

correlation matrix comprises inverses of the system channel 

responses He–Eq. (9). In overdetermined cases with condition 

(7) verified, these responses are cancelled out when pre- and 

post-multiplied by ye. Keeping this fact in mind, similar 

schemes can be found if correlation is replaced by higher-

order moments. 

Redefine Eq. (3) as follows: 
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and treat ye,i(n); i=1,…,M·Me as random variables, as 

suggested in [13]. Thus, a matrix of the k-th order moments 

produced by these variables can be defined as 
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where E stands for mathematical expectation,  for 

Kronecker product, and τ1, τ2, …, τk-1 denote shifts of the 

extended observations ye [16]. Matrix Mk is k-dimensional. 

Any 2D cross-section of this matrix can replace correlation 

matrix 
eyR  in the definition (1) of activity index.  

Note that Eq. (1) requires the same observations that pre- 

and post-multiply the inverse of correlation matrix also 

involved in the correlation matrix computation. To fulfil this 

requirement, we have to divide the set of k repetitions of 

observations ye from (11) into two subsets. Denote these two 

subsets by Y1,j and Yj+1,k and introduce the following 

definition: 
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where the operator ○ stands for Hadamard (entrywise) 

product. 

The generalised definition of activity index based on 

higher-order moments can now be written as: 
1

1, 1,( ) ( ) ( )T
k j j kp n n n-

+= YY R Y  (13) 

with 

1, 1,
T

j j k+=YR Y Y . 

As shown in [13] and [14], higher-moment extensions of 

observations proved beneficial when decomposing signals 

with few observations. On the other hand, activity index has 

also been used in the derivation of an important measure for 

the lengths of source responses. Higher-moment extensions of 

activity index, Eq. (13), are expected to open new insights 

into the signal mixture properties. Therefore, a comparison 

study on different activity index orders was conducted on 

synthetic signals. The basic goal of this study was to reveal 

what information this comparison can provide. The 

experiment and results are gathered in next sections. 

III. EXPERIMENTS WITH SYNTHETIC COMPOUND SIGNALS 

The most evident property of activity index is its 

dependence on the activity of sources. In noise-free cases this 

dependence mirrors only three source characteristics: their 

firing instants, the number of firings within entire 

observations, and the level of overlapping of source 

responses. When noise is taken into account, all three source 

properties still define the basic shape of activity index, but it 

can be smeared by the noise contributions considerably. Noise 

contributions cannot be easily estimated, because the noise in 

activity index means a projection of the observational noise 

from the space of observations to the space of sources. This 

transformation is caused by the inverse of system matrix He, 

which is entirely unknown in real cases. However, the 

observational noise characteristics change when the 

observations are processed by higher moments, and so do the 

characteristics of the noise in different orders of activity 

index. Moreover, observation segments containing the 

superimpositions of source contributions are also modified 

differently because of the non-linear behaviour of higher-

order moments. Putting all this together, it becomes evident 

that a comparison of different orders of activity index must 

single out the segments where simultaneous activity of 

sources appears and, vice versa, most probable segments with 

as few sources active as possible. This is what we were 

looking for in our experiments. 

We experimented with the 3rd- and 4th-order activity 

indexes, p3(n) and p4(n), and compared them to the 2nd-order 

index, which actually is the basic activity index from Eq. (1). 

In all experimental runs, we adopted shifts τ1 = τ2 = … = τk-1 

= 0  (see Eq. (12)). This decision was taken mainly because 

the observations yi, i = 1,…, M are extended by factor Me, Eq. 

(3), so that they are already shifted before entering higher-

order moments. For the 3rd-order index we took into account 

Y1,1 and Y2,3 and for the 4th-order Y1,2 and Y3,4. 

Our experiments involved synthetic signals of random 

source responses, hij. The system inputs corresponded to 

sparse pulse trains in the following form: 







l

jj lTnnt ))(()(  ,  (14) 

with unit-sample pulses placed at Tj(l) lags. Minimum 

interpulse distance was kept longer than the length of source 

responses, L, thus eliminating any possibility of overlapping 

of two consecutive responses of the same source. Tj’s were 

distributed according to Gaussian law, with a truncated 

negative tail due to the minimum interpulse distance. This 

limitation is characteristic in many practical situations, such 
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as in bioelectrical responses or transmitted symbols in 

communications. 

As we have explained, the values of the activity index 

samples depend on the following factors: the number of 

source firings, i.e. the lengths of observations and source 

firing rates, the level of superimpositions, the fulfilment of 

condition (7), and SNR. The role of different lengths of 

observations is straightforward by being in a linear 

relationship with the index level, this is why we fixed the 

length of observations to only one value. We decided to 

influence the level of source superimpositions by three 

parameters: the number of sources, lengths of their responses, 

and their firing rates. We regulated the noise energy applying 

different SNRs. Finally, we also compared the cases with 

over- and underdeterminancy, which we managed by 

simulating different numbers of model output observations 

with different extensions. 

A. Parameters and trials  

Our experiments involved four different models that differ 

by the number of sources, K, their response lengths, L, 

number of observations, M, and number of observation 

extensions, Me–see Eqs. (4) and (5): 

 Model 1: K = 5, L = 5, M = 10, Me = 30 

 Model 2: K = 5, L = 20, M = 10, Me = 30 

 Model 3: K = 20, L = 5, M = 50, Me = 15 

 Model 4: K = 20, L = 20, M = 50, Me = 15 

All models were generated with random source responses 

whose samples were distributed according to uniform 

distribution, and all observations were of length N = 2000. In 

noise-free cases, activity index levels depend only on the 

number of source firings. This further depends on the source 

firing rate and the length of observations. Therefore we 

decided to generate the models form 1 to 4 in two different 

ways. In the first group of simulations we considered source 

firings identical for all the sources by fixing the mean 

interpulse distance at 200 samples with standard deviation of 

20 samples–see Eq. (14). This caused any source to contribute 

to activity index by the same basic increment being equal to 

the inverse of source firing rates. Considering the lengths of 

observations and interpulse distances, the rate was 10, 

therefore the increments of activity indexes equal 0.1. 

The second group of experiments examined the behaviour 

of activity indexes when sources fire with different rates. 

Such a situation is much more realistic, but it causes rather 

different increments related to different sources in activity 

indexes. The models for this group of simulations were based 

on randomly chosen interpulse distances between 70 and 300 

samples and randomly chosen standard deviations between 7 

and 30 samples. The two values were generated with even 

distribution over the sources. Once a pair was chosen for a 

source, it determined the firing conditions for this source 

throughout its activity. 

Each model was involved in 30 Monte-Carlo simulation 

runs, and for every run 3 different noise conditions were 

considered: no noise, SNR of 20 dB, and SNR of 10 dB. 

Additive noise was random, zero-mean Gaussian in all cases. 

For any model and source signals generated, activity 

indexes of orders 2, 3, and 4 were computed. Order 2 index 

was then subtracted from indexes of orders 3 and 4. These 

differences were statistically verified in order to find out 

possible regularities in behaviour of the three indexes.  

It has been observed that any superimpositions of source 

activities generate phantom sources when higher-order 

indexes are computed [13]. Actually, the level of any higher-

order activity index increases in the same way as if there were 

additional sources active in intervals where the activity of the 

original sources overlap. As this does not happen in the 2nd-

order index, a difference between a higher-order and the 2nd-

order index is supposed to be bigger in the intervals of 

superimpositions, as opposed to the intervals of fewer sources 

active. 

To be able to assess the differences between indexes, we 

need a reference. It is rather straightforward to determine the 

intervals with superimpositions of source activity when 

dealing with simulations. If there is more than one pulse at 

any time position, n, in the extended sequences of source 

firings, te from Eq. (6), the number of simultaneous pulses 

indicates the number of overlapping sources. This measure 

was taken as a reference in all our experiments. 

An example of activity indexes is given in Figs. 1 and 2, 

the former depicting the 3th-order index (black dashed), 2nd-

order index (grey dotted), and the reference signal (grey 

solid), whereas the latter shows the same combination for the 

4th-order index. 

IV. SIMULATION RESULTS 

Results of simulation for four models detailed in Subsection 

III.A are summarised in two groups of figures. First four 

figures show activity index differences for the simulations in 

which all the sources fire with the same frequency–Figs. 3 to 

6. Next four figures correspond to the models whose sources 

fire with different, randomly chosen frequencies–Figs. 8 to 11. 

All the figures consist of two subplots: the upper one is 

related to the difference of activity index of the 3rd and 2nd 

order and the lower one is related to the difference of indexes 

of orders 4 and 2.  

Activity indexes were computed at the 2nd, 3rd, and 4th 

order with three levels of additive noise. Separate simulations 

were conducted for noise-free and noisy cases with SNRs of 

20 dB and 10 dB. Indexes of length N+Me samples were 

segmented into several non-overlapping intervals according 

to the reference as described in the previous subsections. 

These intervals correspond to segments where different 

number of sources was active simultaneously, beginning with 

no sources active, and continuing with a single source active, 

any pair of sources active at the same time, any triplet of 

sources active at the same time, etc.  
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Parameters in Models 1 to 4 influence the behaviour of 

higher-order activity indexes also in dependence of the 

correlation matrix of observations being either over- or 

underdetermined. We wanted to investigate this dependence 

and set up the parameters to the values that caused the 

correlation matrices from Eqs. (1) and (13) overdetermined 

for the 2nd-order indexes in all the cases [10]. The correlation 

matrices for the 3rd- and 4th-order indexes were 

overdetermined only with Model 1, and underdetermined for 

other types of models. 

Activity index differences in Figs. 3 to 6 are related to the 

experiments with sources that fired all at the same rate. These 

differences are averaged in intervals that were defined 

according to the number of overlapping sources, and qualified 

by their standard deviations (vertical bars) across 30 

simulation runs. 

 

Figure 1: A segment of activity indexes in Model 1: 3rd order (black dashed), 2nd order (grey dotted), and reference (grey solid) 
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Figure 2: A segment of activity indexes in Model 1: 4th order (black dashed), 2nd order (grey dotted),  and reference (grey solid) 
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Fig. 3 suggests that activity index, and the signal 

observations at the same time, can be segmented into the 

intervals with different number of active sources by a 

simple thresholding. Taking into account the standard 

deviations, it is evident that the 4th order varies 

significantly less than the 3rd order, even from 10 to 30 

times less if 3 sources are active simultaneously and 

additive noise is present. Fig. 3 confirms this observation. 

An extreme case appeared with model 2 when the noise of 

20 dB was added and the 3rd-order indexes were calculated. 

The mean 3rd- to 2nd-order difference rose even to 25 with 

standard deviation of 55 (this point falls far beyond the 

scale of Fig. 4, this is why it is not show in the figure). The 

reason for that is a high degree of noise in the 3rd-order 

activity index. A well know fact is that higher-order 

moments of odd orders suppress additive Gaussian noise 

[16]. For the calculation of activity index this means that 

the inverse of the correlation matrix loses its natural 

regularisation and, consequently, the observational noise is 

projected into the space of activity index with a much 

higher degree.  

Fig. 7 illustrates the devastating effect of noise in 

indexes of the 3rd order. Only the influence of moderate 

additive noise with an SNR of 20 dB is depicted for Model 

1. Indeed, the differences between the 3rd- and 2nd-order 

indexes clearly show high oscillations (grey dash-dotted), 

while the differences between the 4th- and 2nd-order indexes 

do not (black dashed). Differences in Fig. 7 are based on 

the indexes from Figs. 1 and 2, so that direct comparison of 

these figures is possible. Further investigations also proved 

that the 4th- to 2nd-order differences show rather low noise 

corruption, even when SNR equals 10 dB. And what is 

most beneficial, the 4th- to 2nd-order index differences 

follow the changes of the number of sources active in 

consecutive time intervals by a step-wise relationship, 

whose levels are rather stable and proportional to the 

number of simultaneously active sources. Therefore, signal 

segments with few sources active (ideally, only a single 

one) can be sorted out allowing for the different levels in 

the index differences. As a consequence, by initialising the 

compound signal decomposition, such as in [10], within 

signal segments with fewest active sources the more 

accurate and reliable decomposition results are guaranteed. 

It has to be mentioned, however, that the amplitudes of 

activity indexes decrease by increasing the number of 

sources and noise energy, which causes lower 

discriminancy and poorer signal segmentation. 

Nevertheless, Figs. 4 to 6 prove that the 4th- to 2nd-order 

differences remain with the same amount of variance even 

when the number of overlapping sources increases for more 

than twice (from 3 in Fig. 3 to 8 in Fig. 6). Also the 

robustness of this measure remains constantly high as the 

influence of noise with SNRs down to 10 dB does not 

increase its variance noticeably.  

On the other hand, differences of the 3rd- and 2nd-order 

activity indexes appear to be useless in a search of 

observation intervals with different levels of source 

overlapping. Their robustness is far too low. Fig. 7 clearly 

explains why it happens: the 3rd- to 2nd-order differences 

vary intensively throughout the observations, meaning that 

it is literally impossible to decide where signal segments 

with lower or higher level of source overlapping may begin 

or end. 

 

 

  

Figure 3: Model 1 with all sources at the same firing rate: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 

Figure 4: Model 2 with all sources at the same firing rate: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 
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Figure 5: Model 3 with all sources at the same firing rate: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 

Figure 6: Model 4 with all sources at the same firing rate: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 
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Figure 7: Differences of activity indexes in Model 1: 3rd to 2nd order (grey dash-dotted), 4th to 2nd order (black dashed),  and 

reference (grey solid) 

 

Inference on the effect of under- and overdeterminancy 

is also possible to some extent if we consider the fact that 

only Model 1 guarantees overdeterminancy entirely, while 

all other models tend to generate underdetermined activity 

index computations. Thus, Figs. 4 to 6 cover 

underdetermined cases and the only influence that can be 

attributed to the underdeterminancy is shown in a non-

strict dependence of the activity index difference versus the 

number of simultaneously active sources (e.g. a drop with 7 

overlapping sources in Fig. 6). 
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So far, the conclusions are based only on the first group 

of simulations with all sources having the same firing rate. 

A question arises whether a combination of sources firing 

at different rates may ruin the recognised advantages of the 

4th- to 2nd-order activity index differences. The answer is 

given in Figs. 8 to 11. The 4th- to 2nd-order differences 

preserve all their beneficial properties and even the 

variability of the 3rd- to 2nd-order differences decreases, 

although not enough to judge this measure as acceptable. 

But the difference of the 4th- to 2nd-order activity indexes 

qualifies as a robust measure of source activity also in the 

cases when sources fire with different frequencies. This 

fact was not expected per se, because different firing rates 

mean also different levels of activity indexes. Nevertheless, 

the different contributions along activity indexes behave 

analogously in both the 2nd and 4th order. Their difference 

is therefore immune to different firing rates. 

Our discussion confirms the 4th- to 2nd-order activity 

index differences can measure the source activity very 

robustly, because it is independent of the source properties, 

level of noise, and computational over- or 

underdeterminancy. Of course, it must be understood that 

this is not an absolute measure of the number of 

simultaneously active sources, but rather an indication of 

the level of overlapping of source activities observed in the 

outputs of MIMO systems. 

  

Figure 8: Model 1 with sources firing at different rates: differences of 

activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 

Figure 9: Model 2 with sources firing at different rates: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 

  

Figure 10: Model 3 with sources firing at different rates: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 

Figure 11: Model 4 with sources firing at different rates: differences 

of activity index means are depicted for the 3rd to 2nd order (upper 

graph) and the 4th to 2nd order (lower graph) versus the number of 

overlapping sources. Mean values and standard deviations were 

calculated in 30 Monte Carlo runs: light grey solid lines correspond 

to no noise in observations, grey dashed lines to SNRs of 20 dB, and 

black dotted lines to SNRs of 10 dB. 
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V.  CONCLUSION 

The proposed definition of activity indexes based on higher-

order moments leads to interesting conclusions. The most 

important one proves the difference between the 4th- and 2nd-

order activity index can point out the observation signal 

segments with a different number of active sources. The 

difference is proportionally higher where the number of 

simultaneously active sources is higher. Even more important 

fact is that the corresponding levels of the difference function 

are stable and noise-resistant, which makes them a suitable 

measure when looking for the signal segments with minimum 

overlapping of source activity. This information is beneficial 

if avoiding higher levels of source superimpositions is 

necessary. A practical example is the initialisation of the 

CKC decomposition: when it is done within signal segments 

with as few sources active as possible, the decomposition 

results may be expected optimum.  
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