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Abstract—Design conditions for existence of memory-less feed-
back control for stabilization of discrete-time systems with
equality constraints given on the state variables are presented in
the paper. The design problem is addressed for linear discrete-
time systems with equality constraints tying together some
state variables. Using the classical memory-less feedback control
principle LMI-based procedures are provided for computation
of the gain matrix of state control laws, and influence of equality
constraints is explained if a tracking problem be considered.
The approach is successfully illustrated on simulation examples,
where the validity of the proposed method is demonstrated with
an equality constraint tying together all state variables of the
system.
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I. INTRODUCTION

In the last years many significant results have spurred
interest in the problem of determining the control laws for the
systems with constraints. For the typical case where a system
state reflects a certain physical entities this class of constraints
rises because of physical limits and these ones usually keep
the system state in a region of the technological conditions.
Some authors deal with problems of this kind that designing a
control law such that states be driven to origin asymptotically
while the coordinates of the command input are subject to
unsymmetrical or symmetrical constraints [1], and [5], [4],
[24], [26], respectively, others prefer respect of constraints
by constructing a stabilizing memory-less controller with
inequality defined on the control law gain matrix [3], [4], or
solving problem using invariant set theory [13], [14]. Special
attention is also focused on the principle of Kalman filtering
with equality and inequality state constraints [8], [11], [16],
where it is possible to reduce the system model, and use the
reduced state equation for such systems, and for given linear
state equality constraints.

However, this problem can be formulated using technique
dealing with the state constraints directly, where the equations
of both, the unconstraint system and the stabilized constraint
relations are combined to a coupled system of equations which
can be interpreted as a descriptor system [9],[28]. Because a
system with state constraints generally does not satisfy the
conditions under which the results of descriptor systems can
be applicable this approach is limited in a realization.

In principle, it is possible and ever easy to apply a direct
design method, namely to design a controller that stabilizes
the systems and simultaneously forces the closed-loop systems
to satisfy the constraint such that a special form of the con-
strained problems can be so formulated while the system state

variables satisfy the equality constraints [21]. This technique
for discrete-time multi-input/multi-output (MIMO) systems
has been introduced in [15] and was extensively used in the
state constrained control [6], as well as in the reconfigurable
control design [18], [19]. Used principle can be applied in
optimization of active multivariable combustion control and
proportional control.

A number of problems that arise in the state feedback
control can be reduced to a handful of standard convex and
quasi-convex problems that involve matrix inequalities. It is
known that the optimal solution can be computed by using
interior point methods [20] which converge in polynomial time
with respect to the problem size and efficient interior point
algorithms have recently been developed for and further de-
velopment of algorithms for these standard problems is an area
of active research. For this approach, the stability conditions
may be expressed in terms of linear matrix inequalities (LMI),
which have a notable practical interest due to the existence of
powerful numerical solvers. Some progres review in this field
can be found in [2], [23], and the references therein.

This paper aims at providing controller design conditions
with closed-loop state equality constraints for discrete time
systems using quadratic in the state and linear in the parame-
ters Lyapunov function, as well as its modification known as
bounded real lemma [2]. Such a restriction does not lead to
very conservative results, and design conditions are simple to
be established as a set of LMIs which can be solved numeri-
cally with the help of an LMI solver. The task considered in the
paper is to design state feedback control of discrete-time linear
systems that forces selected state variables of a linear system
to satisfy prescribed equality constraint relation and guarantees
control system asymptotical stability. Based on the discrete-
time linear system state description the generalized controller
structure is formulated, and associated with the standard forms
of the controller structure for time-invariant discrete control
under defined state equality constraints.

The paper is organized as follows. Starting with problem
formulation presented in Section II, then in Section III basic
preliminaries are introduced together with an adapted version
of discrete algebraic Riccati equation, referred to as equiv-
alent form. These results are used in Section IV to derive
a convex formulation of design conditions where closed-
loop state equality constraints are considered. The proposed
approaches lead to a set of LMIs to prove asymptotic stability
conditions. Subsequently, in Section V a numerical example
is presented to illustrate basic properties of these approaches.
Section VI is finally devoted to a brief overview of the
method properties demonstrating accepted conservatism of the
proposed approach.
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II. PROBLEM FORMULATION

Through the paper the task is concerned with design of
the state feedback (3) which controls a discrete-time linear
dynamic system given by the set of state equations

q(i + 1) = Fq(i) + Gu(i) (1)

y(i) = Cq(i) (2)

where q(i) ∈ IRn, u(i) ∈ IRr, and y(i) ∈ IRm are vectors
of the state, input and objective variables, respectively, and
nominal system matrices F ∈ IRn×n, G ∈ IRn×r, and
C ∈ IRm×n are real matrices. Problem of the interest is to
design an asymptotically stable closed-loop system using a
linear memoryless state feedback controller of the form

u(i) = −Kq(i) (3)

while all state variables are measurable, K ∈ IRr×n is the
feedback controller gain matrix, and design constraint in the
next equality form

q(i) ∈ ND = {q : Dq = 0} (4)

is considered, with D ∈ IRk×n, rankD = k ≤ r.
To optimize the state feedback controller parameters while

the system state variables satisfy the equality constraints the
design task is specified be singular.

III. BASIC PRELIMINARIES

Proposition 3.1: (e.g. see [16], [23]) Let Λ is a matrix vari-
able and A, B are known non-square matrices of appropriate
dimensions such the equality

BΛ = A (5)

can be set. Then all solution to Λ means

Λ = B�1A + (I − B�1B)Λ◦ (6)

where
B�1 = BT (BBT )−1 (7)

is Moore-Penrose pseudoinverse of B and Λ◦ is an arbitrary
matrix of appropriate dimension.

Proof: Supposing that the product BBT is a regular
matrix, then pre-multiplying left-hand side of (5) by the
identity matrix gives

BΛ = BBT (BBT )−1A (8)

and with (7) it yields

Λ = BT (BBT )−1A = B�1A (9)

Let Λ◦ is another matrix of appropriate dimension such that
substituting in (5) it can be written

BΛ◦ = BB�1A = BB�1BΛ◦ (10)

Thus,
B(I − B�1B)Λ◦=̇0 (11)

(I − B�1B)Λ◦=̇0 (12)

respectively. Therefore, for an arbitrary Λ◦ (9), (12) implies
(6).

Note, matrix pseudoinverse is generalized for a singular
matrix BBT , usually written as

B�1 = BT (BBT )† (13)

Proposition 3.2: Let H ∈ IRn×n is a real square matrix
with non-repeated eigenvalues, satisfying the equality con-
straint

dTH = 0 (14)

Then one from its eigenvalues is zero, and (normalized) dT

is the left raw eigenvector of H associated with the zero
eigenvalue.

Proof: If H ∈ IRn×n is a real square matrix having non-
repeated eigenvalues then the eigenvalue decomposition of H
takes the form

H = UZV T (15)

U =
[

u1 · · · un

]
, V =

[
v1 · · · vn

]
(16)

Z = diag
[

z1 · · · zn

]
, UT V = I (17)

where ul, is right eigenvector, and vT
l is left eigenvector

associated with the eigenvalue zl of H , l = 1, 2, . . . n. Then
(14) can be rewritten as

dT
[

u1 · · · uh · · ·un

]
· diag

[
z1 · · · zh · · · zn

]
V T = 0

(18)

If dT = vT
h then orthogonal property (17) implies[

01 · · · 1h · · ·0n

]
· diag

[
z1 · · · zh · · · zn

]
V T = 0

(19)

and it is evident that (19) can be satisfied only if zh = 0.
Proposition 3.3: (Schur complement) Let Q > 0, R > 0,

S are real matrices of appropriate dimensions, then the next
inequalities are equivalent[

Q S

ST R

]
> 0 ⇔

[
Q−SR−1ST 0

0 R

]
> 0

�
Q − SR−1ST > 0, R > 0

(20)

Proof: Let a linear matrix inequality takes the form[
Q S

ST R

]
> 0 (21)

then using Gauss elimination it yields[
I −SR−1

0 I

] [
Q S

ST R

] [
I 0

−R−1ST I

]
=

=
[

Q − SR−1ST 0
0 R

] (22)

det
[

I SR−1

0 I

]
= 1 (23)

and it is evident that this transform doesn‘t change positivity
of (21), and so (22) implies (20).

Proposition 3.4: Let for given matrices M , N and Θ =
ΘT > 0 of appropriate dimension a matrix X has to satisfy
the inequality

MXNT + NXTMT − Θ < 0 (24)
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then any solution of X can be generated using a solution of
inequality[ −MH−1MT −Θ MH−1+NXT

∗ −H−1

]
< 0 (25)

where H = HT > 0 is a free design parameter.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof: If (24) yields then there exists a matrix H =
HT > 0 such that

MXNT +NXTMT −Θ+NXTHXNT <0 (26)

Completing the square in (26) it can be obtained

(MH−1+NXT )H(MH−1+NXT)T−
−MH−1MT −Θ < 0

(27)

and using Schur complement (27) implies (25).

IV. CONSTRAINED CONTROL DESIGN

A. Constrained Control

The above format of the stabilization problem with the pure
matrix algebraic equation constraint of the form

Using control law (3) the equilibrium control equation takes
the form

q(i + 1) = (F − GK)q(i) (28)

z(i) = Cq(i) (29)

The format of the stabilization problem with the pure matrix
algebraic equation constraint is prescribed by a matrix D ∈
IRk×n, rankD = k < r to give the design constraint

q(i) ∈ ND = {q : Dq = 0} (30)

implying that the state-variable vectors have to satisfy equal-
ities

Dq(i + 1) = D(F − GK)q(i) = 0 (31)

for i = 1, 2, . . . . It is supposed the matrix D is chosen by
such way that

D(F − GK) = 0 (32)

DF = DGK (33)

respectively, as well as that the closed-loop system matrix
(F − GK) is stable (all its eigenvalues lie in the unit circle
in the complex plane Z).

Therefore, ND is the constrain subspace, and the states
be constrained in this subspace (the null space of D). Under
these conditions the system state stays within the constrain
subspace, i.e. q(i), Fq(i) ∈ ND .

Equality (14) implies that constrain control design condition
(32) results in a singular matrix form. Because such system
with state constraints generally does not satisfy the conditions
under which the results of descriptor systems can be applica-
ble, special design methods have to be proposed so solve this
design task.

Solving (33) with respect to K then (6) implies all solutions
of K as follows

K = (DG)�1DF + (I − (DG)�1DG)K◦ (34)

where K◦ is an arbitrary matrix with appropriated dimension
and

(DG)�1 = (DG)T
(
DG(DG)T

)† (35)

Thus, it is possible express (34) as

K = J + LK◦ (36)

where
J = (DG)�1DF (37)

and
L = I − (DG)T

(
DG(DG)T

)†
DG (38)

is the projection matrix (the orthogonal projector onto the null
space NDG of DG) (e.g. see [16], [17]).

B. Control Parameter Design

Theorem 4.1: For the system (1) the sufficient condition for
the stable control (3) with constrain (4) is that there exist a
positive definite symmetric matrix Y > 0, Y ∈ IRn×n, and a
matrix Z ∈ IRr×n such that

Y = Y T > 0 (39)[ −Y Y (F−GJ)T −ZTLTGT

∗ −Y

]
< 0 (40)

where J , L are defined in (37), (38), respectively.
Thus, K◦ can be computed as

K◦ = ZY −1 (41)

and the control law gain matrix K is given as in (36).
Proof: Defining Lyapunov function as follows

v(q(i)) = qT(i)P q(i) > 0 (42)

where P = P T > 0, P ∈ IRn×n, then the forward diference
along a solution of the system (1) is

Δv(q(i))=qT(i+1)Pq(i+1)− qT(i)Pq(i) < 0 (43)

Δv(q(i)) = qT(i)
(
F T

cPF c−P
)
q(i) < 0 (44)

respectively, where

F c = F −GJ−GLK◦ (45)

and (44) implies

P ◦
c = F T

c PF c − P < 0 (46)

Therefore, using Schur complement property it yields

P ◦
c =

[ −P (F −GJ−GLK◦)T

∗ −P−1

]
< 0 (47)

Defining the congruence transform matrix

Tc1 = diag
[

P−1 In

]
(48)

and multiplying right-hand and left-hand side of (47) by Tc1

it can be obtained[−P−1 P−1(F −GJ−GLK◦)T

∗ −P−1

]
< 0 (49)
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and with notation

P−1 = Y = Y T > 0, K◦P−1 = Z (50)

(49) implies (40).
Analogously, as above the problem concerning with non-
expansive conditions can be also formulated as a pure matrix
algebraic-equation based constrained task with appropriated
modification of Lyapunov function. The objective is to assign
stabile eigenvalues to the system, and simultaneously force the
constraint equation to be satisfied.

Theorem 4.2: (Bounded real lemma) For the system (1), (2)
the sufficient condition for a stable control (3) with constrain
(4) is that there exist a positive definite symmetric matrix Q >
0, Q ∈ IRn×n, a matrix K◦ ∈ IRr×n, and a scalar γ > 0,
γ ∈ IR such that

Q = QT > 0 (51)⎡
⎢⎢⎣
−Q F •T F •TQG◦ CT

∗ −Q−1 0 0
∗ ∗ G◦TQG◦−γIr 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0 (52)

where
F • = F ◦ − G◦K◦ (53)

F ◦ = F − GJ , G◦ = GL (54)

The control law gain matrix K is given as in (36).
Proof: Inserting (36) into (1) gives

q(i + 1) = F ◦q(i) + G◦u(i) (55)

z(i) = Cq(i) (56)

Then, defining Lyapunov function for the system (55), (56) as
follows

v(q(i)) = qT(i)Qq(i)+

+
i−1∑
l=0

(zT(l)z(l)−γuT(l)u(l)) > 0 (57)

the forward diference along a solution of the system (55), (56)
is

Δv(q(i)) = qT (i+1)Qq(i+1)−
− qT(i)Qq(i)+zT(i)z(i)−γuT(i)u(i)<0

(58)

Δv(q(i)) =

= qT(i)(CTC−Q+F ◦T QF ◦)q(i)+

+uT(i)G◦TQF ◦q(i)+qT(i)F ◦TQG◦u(i)+

+uT(i)(G◦TQG◦−γIr)u(i) < 0

(59)

respectively, where (2) was inserted. Thus, using vector nota-
tion

qT
c (i) =

[
qT (i) uT (i)

]
(60)

it can be obtained

Δv(qc(i)) = qT
c (i)P •

cqc(i) < 0 (61)

where
P •

c =
[

A11 A12

∗ A22

]
< 0 (62)

A11 = F ◦TQF ◦+CTC−Q (63)

A12 = F ◦TQG◦, A22 = G◦TQG◦−γIr (64)

Using Schur complement property then (62) can be rewritten
as follows⎡

⎣ F ◦TQF ◦−Q F ◦T QG◦ CT

∗ G◦TQG◦−γIr 0
∗ ∗ −Im

⎤
⎦<0 (65)

It is obvious that (65) gives the stability condition of (55) in
the bounded real lemma form.

Replacing F ◦ by F • it can be written⎡
⎣ F •TQF •−Q F •T QG◦ CT

∗ G◦TQG◦−γIr 0
∗ ∗ −Im

⎤
⎦<0 (66)

and it is obvious that (66) implies (52).
Since of unknown K◦ it is evident that (52) is not an LMI,

and only a conservative solution can by obtained generally
solving (52).

Another way to solve this problem is Finsley lemma applica-
tion [10] within unified algebraic approach. Note this method
doesn’t improve solutions conservatism.

C. Unified Algebraic Approach

Using a similar reasoning provided in the proof of Theorem
4.2 it can be arrived the following result.

Theorem 4.3: Let are given F , G, J , and L. Then the
constrained control is stable if there exits a matrix Q > 0
such that

Q = Q > 0 (67)

G◦T QG◦ − γIr < 0 (68)

Then the gain matrix K◦ exists if for obtained Q there exist
a symmetric matrix H > 0, H ∈ IRr×r, and a matrix Φ such
that [−MH−1MT −Θ MH−1+NTK◦T

∗ −H−1

]
<0 (69)

where

Θ = Φ −

−

⎡
⎢⎢⎣
F ◦TQF ◦−Q 0 F ◦T QG◦ CT

∗ −Q−1 0 0
∗ ∗ G◦TQG◦−γIr 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ (70)

M =

⎡
⎢⎢⎣
−F ◦TQG◦

−G◦

G◦TQG◦

0

⎤
⎥⎥⎦ , N =

⎡
⎢⎢⎣

In

0
0
0

⎤
⎥⎥⎦ (71)

and Φ > 0 , Φ ∈ IR(2n+m+r)×(2n+m+r) is an arbitrary
positive definite matrix such that Θ be positive definite. The
control law gain matrix K is given as in (36).
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Proof: Inserting (53) inequality (52) can be rewritten as⎡
⎢⎢⎣
−Q F ◦T F ◦T QG◦ CT

∗ −Q−1 0 0
∗ ∗ G◦TQG◦−γIr 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦+

+

⎡
⎢⎢⎣

0
−G◦

G◦TQG◦

0

⎤
⎥⎥⎦K◦ [

In 0 0 0
]
+

+

⎡
⎢⎢⎣

In

0
0
0

⎤
⎥⎥⎦K◦T

[
0 −G◦T

h G◦T
h QhG◦

h 0
]
< 0

(72)

Introducing the congruence transform matrix

Tc2 =

⎡
⎢⎢⎣

In F ◦T Q

In

Ir

Im

⎤
⎥⎥⎦ (73)

then multiplying left-hand side of (72) by (73), and right-hand
side of (72) by the transposition of (73) gives⎡

⎢⎢⎣
F ◦TQF ◦−Q 0 F ◦T QhG◦ CT

∗ −Q−1 0 0
∗ ∗ G◦TQG◦−γIr 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦+

+MK◦NT + NK◦T MT < 0

(74)

Since the orthogonal complement to N is

N⊥ =

⎡
⎢⎢⎣

In

0
0
0

⎤
⎥⎥⎦
⊥

=

⎡
⎣ 0 In 0 0

0 0 Ir 0
0 0 0 Im

⎤
⎦ (75)

multiplying left-hand side of (74) by (75), and right-hand side
of (74) by the transposition of (75) gives

diag
[ −Q−1 G◦TQG◦−γIr −Im

]
< 0 (76)

and subsequently, (76) implies (68).
To obtain a solution the orthogonal complement M⊥ can

be defined as follows

M⊥=

⎡
⎢⎢⎢⎣
−F ◦TQG◦

−G◦

G◦TQG◦

0

⎤
⎥⎥⎥⎦
⊥

=

[
0 G◦⊥ 0 0
0 0 0 Im

]
(77)

Then multiplying left-hand side of (74) by (77), and right-hand
side of (74) by the transposition of (77) gives

diag
[ −G◦⊥Q−1G◦⊥T −Im

]
< 0 (78)

It is evident, that (78) is satisfied for all positive definite Q
and so the design condition be given by (68).

Subsequently, writing (74) in the form

MK◦NT + NK◦TMT − Θ < 0 (79)

then comparing with (24), (25) it is obvious that (79) implies
(69).

The additive design parameters H , Φ bring about a more
conservative solution, potentially using for control properties
tuning.

D. Constrained tracking problem

Considering the tracking problem defined by the control
policy

u(i) = −Kq(i) + Ww(i) (80)

where w(i) ∈ IRr is the tracking control desired vector signal,
and W ∈ IRr×r is the gain matrix of tracking signal, and a
forced motion of the system (1), (2) can be written in the form

q(i + 1) = (F − GK)q(i) + GWw(i) (81)

y(i) = Cq(i) (82)

If q(0) = 0 and m = r it is possible to write

q̃(z) = (zI − F c)−1GWw̃(z) (83)

where
F c = F − GK (84)

Then the state space description (1), (2) is related by the matrix
transfer function

Gc(z) =
ỹ(z)
w̃(z)

= C(zI − F u)−1GW (85)

This function is said to be coupled if any individual input
influences more than one output. If m = r the matrix transfer
function Gc(z) be a square matrix, and considering

lim
z→1

(z − 1)ỹ(z) = lim
z→1

(z − 1)Gc(z)w̃(z) (86)

it is possible to set

lim
z→1

Gc(z) = C(I − F c)−1GW = Im (87)

Thus, if Gc(1) is non-singular and Ac is stable then

W =
(
C(I − F c)−1G

)−1 (88)

and (88) results static system decoupling. The static decou-
pling problem by state feedback is solvable if and only if [25]
(F , G) is stabilizable and

rank
[

F G
C 0

]
= n + m (89)

Theorem 4.4: Using state control satisfying equality con-
strain (30) in forced mode then state constraints given on the
system state variables attains the state steady-state value

qd = DWws (90)

where qd(i) = Dq(i) is a common state variable.
Proof: Pre-multiplying left-hand side of (81) by D gives

Dq(i + 1) = D(F − GK)q(i) + DGWw(i) (91)

It is evident that using (30) the equality (91) implies (90)
In comparison, using the state control satisfying equality con-
strains on state variables in unforced (autonomous) mode there
the state variables hold constrain conditions in all time instant
i = 1, 2, . . .. (in an initial time instant only if Dq(0) = 0.)
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Fig. 1. Step response of the closed-loop system (AM)

V. ILLUSTRATIVE EXAMPLE

To demonstrate properties of the proposed approach, the
system with two-inputs and two-outputs is used in the exam-
ple. The parameters of this system were

F =

⎡
⎣ 0.9993 0.0987 0.0042
−0.0212 0.9612 0.0775
−0.3875 −0.7187 0.5737

⎤
⎦

G=

⎡
⎣ 0.0010 0.0010

0.0206 0.0197
0.0077 −0.0078

⎤
⎦ , C =

[
1 2 −2
1 −1 0

]

respectively, for sampling period Δt = 0.1 s. The state
constraint was specified as

0.8 q1(t) − 0.02 q2(t)
q3(t)

= 0.1

which implies

D =
[

0.8 −0.02 −0.1
]

and subsequently it yields

(DG)�1 =
[−48.2558

154.2200

]
, L=

[
0.9108 0.2850
0.2850 0.0892

]

J =
[ −40.4680 −6.3507 2.6811

129.3311 20.2963 −8.5685

]

Solving (39), (40) with respect to the LMI matrix variables Y
and Z using Self–Dual–Minimization (SeDuMi) package for
Matlab [22], the feedback gain matrix design problem in the
constrained control was solved as feasible with the matrices

Y =

⎡
⎣ 0.0226 −0.0732 0.0827
−0.0732 1.0788 −0.3398

0.0827 −0.3398 1.2889

⎤
⎦

Z =
[ −0.3038 0.0329 0.5665
−0.0951 0.0103 0.1773

]

Inserting Y and Z into (41) there were computed the feedback
gain matrices as follows

K◦ =
[ −22.5626 −0.9876 1.6276

−7.0599 −0.3090 0.5093

]
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Fig. 2. Step response of the closed-loop system (FM)

K =
[ −63.0305 −7.3384 4.3087

122.2712 19.9872 −8.0592

]
The closed loop is stable with the system matrix eigenvalue
spectrum

ρ(F −GK) =
{

0.0000 0.8311 −0.2838
}

It is evident that one eigenvalue of F−GK is zero (rank(D) =
1)) since the constrain control design task is a singular problem
[18].

To demonstrate the forced regime properties the control pol-
icy (80) the gain matrix of tracking signal W was computed
as

W =
[ −4.5931 −53.5173

6.8725 110.6048

]
and simulation was done using

qT (0) =
[

0 −1 0
]
, wT (i) =

[ −0.1 −0.1
]

In autonomous mode there was used the same initial system
state vector. In the presented figures the examples are shown
of the closed-loop system step response, where Figure V
represents the autonomous mode step response and Figure V
is concerned with the forced mode, respectively. The control
law parameters are designed to satisfy Lyapunov inequality
(40).

Solving (67), (68) with respect to the LMI matrix variables
Q, γ, and subsequently (69) with respect to K◦ the problem
was solved also as feasible with

γ = 0.7809

Q =

⎡
⎣ 0.6820 −0.0001 −0.0000
−0.0001 0.6807 −0.0003
−0.0000 −0.0003 0.6820

⎤
⎦

K◦ =
[ −12.9664 −0.6628 2.1789

−4.0572 −0.2074 0.6818

]

K =
[ −53.4344 −7.0136 4.8600

125.2738 20.0889 −7.8867

]
where design parameters were set as H = 0.01I2, Φ =
3.7I10, respectively. Resulting control is stable with the closed-
loop system matrix eigenvalue spectrum

ρ(F −GK) =
{

0.0000 0.6799 −0.2547
}
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Fig. 3. Step response of the closed-loop system (AM)

Analogously, the gain matrix of tracking signal W was
computed as

W =
[ −4.8845 −43.6091

6.7814 113.7051

]

and simulation done using the same initial conditions as well
as the desired input tracking signal as was used above. Two
examples are shown of the closed-loop system step response
also, where Figure V represents the autonomous mode step
response and Figure 15 is concerned with the forced mode,
respectively, where the control policy parameters are designed
to satisfy inequality (68), (69).

It is evident, that constrain (31) is satisfied at all time instant
(common variable qd(i)) in autonomous mode for both control
policy.

VI. CONCLUDING REMARKS

The paper describes a technique for discrete-time systems
state feedback control design with equality constraints given
on state variables. The proposed method poses the problem as
a stabilization problem with a static output feedback controller,
while the design principle exploits stability conditions to
obtain implementation of the constraint control concept, and its
limitations. The stability of the control scheme is established
under a non-expansive condition given on the closed-loop
system to have a more efficient control law, where sufficient
conditions in the sense of bounded real lemma inequality,
as well as Lyapunov inequality are derived. The validity of
the proposed method is verified by a numerical example to
demonstrate the role of an equality constraint tying together
the state variables.
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