

Abstract—Feature matching plays a key role in many image

processing applications. To be robust and distinctive, feature vectors

usually have high dimensions such as in SIFT (Scale Invariant Feature

Transform) with dimension 64 or 128. Thus, accurately finding the

nearest neighbor of a high-dimension query feature point in the target

image becomes essential. The kd- tree is commonly adopted in

organizing and indexing high dimensional data. However, in searching

nearest neighbor, it needs many backtrackings and tends to make

errors when dimension gets higher. In this paper, we propose a

multiple kd-trees method to efficiently locate the nearest neighbor for

high dimensional feature points. By constructing multiple kd-trees, the

nearest neighbor is searched through different hyper-planes and this

effectively compensates the deficiency of conventional kd-tree.

Comparing to the well known algorithm of best bin first on kd-tree, the

experiments showed that our method improves the precision of the

nearest neighbor searching problem. When the dimension of data is 64

or 128 (on 2000 simulated data), the average improvement on

precision can reach 28% (compared under the same dimension) and

53% (compared under the same number of backtrackings). Finally, we

revise the stop criterion in backtracking. According to the preliminary

experiments, this revision improves the precision of the proposed

method in the searching result.

Keywords—feature matching, nearest neighbor searching (NNS),

kd-tree, backtracking, best-bin-first, projection.

I. INTRODUCTION

EATURE matching is very important to many image

processing applications. This issue is equivalent to the

optimization problem for finding nearest points in metric spaces

[1], [2], [5]-[7]. The nearest neighbor search (NNS) problems

have been developed in a rich literature. Linear searching, the

simplest method, works for small databases but quickly

becomes intractable as either the size or the dimensionality of

the problem is large. To solve this problem, several

space-partitioning methods including kd-tree have been

developed [3], [4]. Kd-tree is a kind of binary tree which

iteratively bisects the search space into two regions containing

half the points of the parent region. Queries are performed via

traversal of the tree from the root to a leaf by evaluating the

query point at each split [8].

In 2004, Lowe proposed the SIFT (Scale Invariant Feature

Transform) to extract and describe feature points in object

recognition application [9]. A local descriptor of dimension 64

or 128 is used for feature points. To match feature points in such

high dimensions Lowe used a kd-tree to organize the feature

points of the database and a backtracking method called best bin

first (BBF) with limited number of backtrackings [10]. Kd-tree

with BBF performs quite well and has been adopted in many

research works. However, since its result is merely an

approximate nearest neighbor, improving the accuracy of

finding the exact nearest neighbor under the same number of

backtrackings becomes very attractive.

In this paper, we propose a multiple kd-trees method to

efficiently search the nearest neighbor of high dimensional

feature points. The motivation of the proposed algorithm is

based on the fact that two near points are always close under

different projections; but two not-so-close points are still not so

close for most of projections and, if there is any, may turn out to

be close under one or two particular projections. Thus, by

increasing the number of different projections, we can increase

the probability of finding the exact nearest neighbor of the query

point.

The remaining of the paper is organized as following. In

Section 2, we give a review on kd-tree and BBF. In Section 3,

our method is proposed and the time complexity is analyzed.

Experimental results are given in Section 4. Finally our

conclusion and future work are stated.

II. RELATED WORK

In this section, we give a review on the nearest neighbor

searching methods including kd-tree and the BBF algorithm.

A. The Nearest Neighbor Searching Methods

Though the exact nearest neighbor can be found by

brute-force searching, it only works for small databases and

quickly becomes impractical as either the size or the

dimensionality of the problem becomes large. Thus many

improvements have been proposed. Hashing and indexing are

among those efforts [11]-[13]. However, it is difficult to find an

appropriate hashing function for high dimensional data so that

points can be allotted to the hashing table uniformly [14].

Space partition methods are commonly used in the NNS and

the kd-tree is one of the most widely used in dealing with high

dimensional data [15]-[18]. However, the accuracy is not ideal

and gets worse as the dimension gets higher. Backtracking is a

way to improve the performance of kd-tree but has a tradeoff of

complexity in computation.

B. Kd-Tree with Best Bin First

In 1997, Beis and Lowe proposed an algorithm combining

kd-tree and the BBF method (BBF in short) on priority queue

Applying Multiple KD-Trees in High

Dimensional Nearest Neighbor Searching

Shwu-Huey Yen, Chao-Yu Shih, Tai-Kuang Li, Hsiao-Wei Chang

F

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 153

[10]. The kd-tree is built by iteratively bisecting search space on

the medium of the dimension with the greatest variance. A query

point traverses the constructed kd-tree and the distances to each

split (branching point) are recorded on a priority queue. Let D

be the distance of the query point and the leaf. In backtracking

phase, split distances of branching points recorded in the

priority queue are compared with D. If the distance at a

branching point is smaller than D, the corresponding

not-yet-traversed branch will be traversed. The backtracking is

stopped if either the queue is empty or it reaches the allowed

maximum backtracking number. The returned nearest neighbor

is the one with the minimum distance so far. BBF is designed to

efficiently find an approximate nearest neighbor in high

dimensional spaces that, according to [10], it returns the exact

nearest neighbor for a large fraction of queries and a very close

neighbor otherwise.

III. THE PROPOSED METHOD

The kd-tree recursively projects feature points into two

lower-dimensional hyper-planes according to the branching

conditions. But, false positive may occur after projection. For

example, a query point A=(5,5) and two data points B=(7,4),

C=(5,10). Clearly the nearest neighbor of A is B because of

d(A,B)=√5 and d(A,C)=5. When projecting to X-axis, A’=5,

B’=7 and C’=5. The nearest neighbor of A becomes C in the

projected space. This error can be resolved by backtracking

with a computation burden especially when the dimension of

feature point or/and size of data set increases. We propose an

algorithm to project data points into three hyper-planes and to

build two different kd-trees from each hyper-plane. Finally, the

nearest neighbor is the minimum one from these nearest

neighbors found from different perspective.

A. Multiple kd-Trees

Assuming n is the number of data points, d is the dimension

of data, Vi = (vi1,vi2,…,vid) is the ith data point i =1, 2,…, n.

Data points are first projected into three hyper-planes to view

these data from different perspective. Three axes are located

from dimensions which have the largest variances. Without loss

of the generality, assume these three axes are X, Y, Z and points

are projected to hyper-planes X=0, Y=0, and Z=0. These

hyper-planes are denoted by hyplaneX, hyplaneY, hyplaneZ.

On each hyper-plane, points are divided into four parts

according to the centroid given in (1). For example, assuming

data are in 3-dim, in hyplaneZ, the points are divided into four

parts according X = XV and Y = YV as indicated in Fig. 1(a). Note

that ZV = 0 in (1) for points on the hyplaneZ. The cases for

hyplaneX and hyplaneY are similar. Figure 1(b) shows the

corresponding tree of Fig. 1(a) with the first split on X= XV and

then split on Y = YV .

1 21 2

1 1 1

1 1 1
(, ,...,) (, ,...,)

n n n

di i id

i i i

V v v v V V V
n n n= = =

= =∑ ∑ ∑
(1)

(a)

(b)

Fig. 1 (a) Data points are projected into hyplaneZ and divided by X

= XV and Y = YV . (b) The corresponding tree.

After three corresponding trees are built, kd-trees are

constructed on four leaves of the trees. That is, as in Fig. 1(b),

kd-trees are constructed from points A, B, C, and D. But, we

build kd-trees by two different ways. The first one is the

conventional one, i.e., build the kd-tree by iteratively bisecting

search space according to the slitting hyper-plane on the

medium of the dimension with the greatest variance. The second

one is similar to the conventional one except the first split is on

the dimension that has the second largest variance. Again, we

expect projecting points on different perspectives to provide a

better chance of getting the exact nearest neighbor. Fig. 2 (the

first kd-tree) and Fig. 3 (the second kd-tree) illustrate the

situation where P1, …, P10 are data points and q is a query point

in a 2-dim plane. The exact nearest neighbor for q is P7. As the

thick line segments shown in Fig. 2(b), the query point q

traverses the tree and finally lies in A but the exact nearest

neighbor P7 is in B. If we want to find the exact nearest

neighbor using this tree we have to take six backtrackings. Fig. 3

shows the second kd-tree that is built with the first split on the

medium of the coordinate axis with the second largest variance.

As shown in Fig. 3, q traverses the tree and reaches the leaf P7 in

E which is the exact nearest neighbor of q.

To summarize the procedure of building multi-kd trees for

the data set, first these data points are projected to three

different hyper-planes; then, on each hyper-plane, a binary tree

is built in a way that the first two levels are centroid-based and

the rest of the levels are kd-trees. Two kinds of kd-trees are

constructed, one is the conventional one and the other has the

first split on the medium of the axis with the second largest

variance. Therefore, there are two binary trees for each

projected hyper-plane and a total of six binary trees are formed

for the data set. For any given query point q, it traverses all these

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 154

trees with the maximum number of backtrackings allowed just

as in the BBF method. It returns the point P to be the nearest

neighbor if the distance between q to P is the minimum among

all the nearest neighbors found.

(a)

(b)

Fig. 2 (a) The conventional kd-tree for points P1, …, P10. (b) The

corresponding binary tree where the thick lines constitute the path

as q traverses the tree.

(a)

(b)

Fig. 3 (a) The kd-tree with the first split on the second largest

variance. (b) The corresponding binary tree where the thick lines

constitute the path as q traverses the tree.

B. Complexity analysis

Assume that n is the number of data and d is the dimension of

data. The proposed method needs to compute and sort the

variance of each dimension as in conventional kd-tree

construction. After projecting points on three hyper-planes with

first three largest variances, we use (1) to compute the centroid.

The calculations mentioned above are additional comparing to

the building kd-tree in the BBF algorithm. In building the rest of

trees, the complexity in our method is equivalent to build 24 (=

3x4x2) kd-trees each with n/4 points comparing to only one

kd-tree with n points in BBF algorithm. Since n is usually much

larger than d, the rest of discussion is under the assumption that

the dimension d is a constant. Thus, calculations in both

variance and centroid are complexity of O(n), and sorting d

variances is a constant time. The complexity of building a

kd-tree with n points, T(n), has the recurrence relation shown in

(2) where the term O(n + nlog n) is for computing the variances

and finding the medium. Solving (2) can find T(n) is equal to

O(nlog2n) which is also the complexity of building tree in BBF

algorithm.

() ()nnO
n

TnnnO
n

TnT log)
2

(2log)
2

(2)(+=++= (2)

The overall complexity of building trees in our algorithm is

O(n) plus the complexity of building 24 kd-trees of n/4 points.

That is still O(nlog2n) with different constants. In practical

situation, we expect the time consumption in our algorithm to be

less than 6 times of that in BBF algorithm. For building one

complete tree as in Fig. 1(b) (including 4 kd-trees for points in

A, B, C, D) is the same of building one conventional kd-tree with

less computation required since
XV and

YV (from the centroid)

are known already. And in total there are six such trees to be

built. The experiments later also confirm this claim.

Assume that the maximum number of backtrackings allowed

is k and the average length of the backtracking path is half of the

tree height. In the proposed method, the maximum backtracking

number k/6 since the query point traverses six trees. Equations

(3) and (4) are the querying complexity of BBF and the

proposed method.

BBF:

() () nkknn log2/1log2/1log +=×+
(3)

Proposed:

()[]
() knk

knn

−+=

××+

log2/6

66/4/log(2/1log

(4)

where the first term (log n) in (3) and (4) is first time traversing,

1/2 log n in (3) and 1/2 log (n/4) in (4) are the average height

when backtracking. There is almost no difference between (3)

and (4). The complexity favors ours when k is large.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 155

IV. EXPERIMENTS

The experiments are conducted using Borland C++ Builder

6.0 in an environment of WINDOWS XP SP3, Pentium4 CPU

and 512 RAM. The input points and query point are randomly

generated real numbers within 0 and 1000. All figures shown in

Fig. 4, Fig. 5, and Tables are the average of 1000 repeated tests.

The experiments are first conducted in two respects, accuracy

and time consumption, of the NNS problem. Finally, a

preliminary experiment on stop criteria of backtracking is also

performed. Comparisons are made between the proposed

method and BBF algorithm.

A. Precision comparison

Fig. 4 is a summarization of the accuracy of the proposed

method under different data dimension d and allowed

backtracking number k. As in Fig. 4(a), the database size is n =

500, if the dimension of the data is d =10 then the precision is

0.873 with 10 backtrackings on each tree (i.e., k=60), and rises

to 0.98 with 30 backtrackings on each tree (i.e., k=180).

However, the performance drops if dimension increases. As in

d = 50, the precision is 0.505 with k=60 and 0.803 with k=180.

Comparing Fig. 4(b) to 4(a), a 4-folds of data size (n = 2000), all

the precisions descend. For example, when d = 10 (blue lines),

0.873 drops to 0.803 (k=60), 0.98 drops to 0.925 (k=180); for d

= 50 (purple lines), 0.505 drops to 0.347 (k=60), 0.803 drops to

0.604 (k=180). These results confirm that as the dimension d or

size of database n increase the precision reduces, and when the

number of backtrackings k increases the precision increases.

Fig. 5 is a summarization of the precision results of BBF

method under different dimensionalities and the different

number of backtrackings. It gives the similar conclusion as in

Fig. 4.

 (a) n=500 (b) n=2000

Fig. 4 The experimental results of the proposed method under different number of backtrackings

(a) n = 500 (b) n = 2000

Fig. 5 The experimental results of the BBF method under different number of backtrackings

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 156

Table II. Comparison of two algorithms in high dimension (n = 2000 data)

Table I. Precision comparison of two algorithms

(a) n =500 data

(b) n = 2000 data

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 157

Table I and Table II list the precisions of these two

algorithms (under the same dimensionality and the same total

number of backtrackings) where the shaded box indicates a

better result and the number inside the parenthesis is the

improved ratio of ours comparing to BBF algorithm. In these

tables, the last column (“Average improvement of Ours to BBF”)

shows the improved accuracy ratios under fixed numbers of

backtrackings, and the last row (“Average”) show the improved

accuracy ratios under the fixed number of dimensionality. We

can observe that in general our proposed method outperforms

the BBF algorithm. In Table I, comparing (a) and (b), the

proposed algorithm outperforms the BBF more when dimension

is higher and the data size gets larger.

As in SIFT, the dimensionality of the feature point can be 64

or 128, and the size of feature points usually is in hundreds to

thousands, we simulate a very complex case with data size to be

2000 and dimensionality is 64 or 128 as summarized in Table II.

The improvement is consistent and up to 28% for both d in 64 or

128. Observing the results on k = 0, the effectiveness of

projecting data into different perspectives in finding the nearest

neighbor is also confirmed. Among eleven out of twelve of these

tests, our method is better with an average of improvement ratio

to be 79.9% (the exception one is when n = 2000, d = 50, and the

ratio would be 72.4% for all 12 tests).

B. Time consumption

Table III is the average time consumption in constructing tree

and per backtracking. As analyzed in Section 3.B, the

constructing time of the proposed method is approximately six

times of that of BBF algorithm. In the experiments, when the

dimension d is 50, the tree construction time of ours method is

5.406 times (n = 500) and 4.835 times (n = 1000) of those in

BBF method. Overall, the tree construction time is low even in

our method (0.62 second for a database size n = 1000 and d =

50). As for the backtracking time consumption, these average

numbers from experiments are of total 100, 150, and 200

backtracking. There is not too much difference between these

two algorithms; however, our method is a bit less. As in (4) of

Section 3.B, when the number of allowed backtracking is large

the time consumption will favor our method. And the

experiments also show that when the number of allowed

backtracking is 200, our time consumption per backtracking is

less than half of that of BBF algorithm.

C. Criteria for backtracking termination

When using Best Bin First (BBF), there are two criteria in

determining whether backtracking should proceed (as

mentioned in Section 2.B). First, the priority queue is empty, i.e.,

every recorded distance, if there is any, is not smaller than D, the

minimum distance of the nearest neighbor of q so far. Second,

the maximum number allowed for backtracking is reached.

However, according to our observation, the backtracking stops

mostly due to the second condition even if the exact nearest

neighbor has been found. When evaluating the distance between

the query q to the splitting hyper-plane, it is a distance on

one-dimension, whereas the stop criterion D is a distance on

d-dimension. Thus, we expand the one-dimension distance into

a hyper-sphere distance of d dimension. That is equivalent to

revise the first constraint in stop criteria of backtracking to be

D’ which is D divided by d as shown in (5).

d

D
D ⋅=′ β , (5)

where β is a constant, D is the minimum distance so far, and d is

the dimension of the data.

We tested the efficacy of the new constraint D’ on a database

of n = 500 and d = 50 with different β values (0.75, 1, 1.25, 1.5,

1.75). Average results from a repetition of 1000 tests are

summarized on Table IV, the number in the cell is the average

number of backtrackings and the number in the parenthesis is

the corresponding precision such that the bolded one meaning

precision is the same or better than the original one. According

to these preliminary tests, the average number of backtracking is

not too much different from those of the allowed maximum

number. However, in (a), our proposed method, at the beginning

of the backtracking, say 10 backtrackings (a total of 60), the

precision is improved most for β = 0.75 (0.538 comparing to

0.505), then in 20 backtrackings (a total of 120), the precision is

improved most for β = 1.25 (0.724 comparing to 0.708), finally

in 30 backtrackings (a total of 180), the precision is improved

most for β = 1.25 (0.815 comparing to 0.803). And in (b), the

kd-BBF-tree algorithm with only one tree, the best precision all

happens on largest β (1.75) except when the maximum allowed

backtracking number is 20 (happened on β = 1.25). We

conclude that the revised D’ does not benefit to a shorter

execution of backtrackings but it improves the precision to our

proposed algorithm especially when β = 1.25.

Table III. Time consumption (in seconds)

(a) n = 500 and d = 50 (b) n = 1000 and d = 50

Method

Average Time

in Tree

Construction

Average Time Per Backtracking

k=100 k=150 k=200

BBF 0.056123 0.000159 0.000187 0.000315

Ours 0.303400 0.000126 0.000128 0.000128

Method

Average Time

in Tree

Construction

Average Time Per Backtracking

k=100 k=150 k=200

BBF 0.128131 0.000141 0.000235 0.000298

Ours 0.619562 0.000124 0.000118 0.000120

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 158

Table IV. The results on revised constraint D’ on backtracking stop criterion (n=500, d=50)

(a) Our method

OURS the average number of backtracking & precision

of allowed backtracking 10x6 20x6 30x6

β=0.75 57.582 (0.538) 108.303 (0.669) 149.091 (0.740)

β=1.00 59.826 (0.532) 119.049 (0.706) 177.042 (0.791)

β=1.25 59.973 (0.524) 119.904 (0.724) 179.802 (0.815)

β=1.50 59.982 (0.512) 119.958 (0.719) 179.931 (0.813)

β=1.75 59.982 (0.507) 119.958 (0.710) 179.94 (0.807)

Original precision 0.505 0.708 0.803

(b) The kd-BBF-method

BBF the average number of backtracking & precision

of allowed

backtracking
20 40 60 80 100 120 140 160 180

β=0.75
17.690

(0.216)

28.594

(0.276)

33.532

(0.286)

35.254

(0.292)

35.797

(0.293)

35.979

(0.293)

36.024

(0.293)

36.223

(0.293)

36.223

(0.293)

β=1.00
19.729

(0.249)

38.395

(0.333)

54.194

(0.405)

67.056

(0.445)

76.413

(0.464)

82.525

(0.473)

86.199

(0.477)

88.015

(0.480)

88.905

(0.480)

β=1.25
19.966

(0.259)

39.821

(0.366)

59.449

(0.442)

78.652

(0.510)

96.923

(0.560)

114.179

(0.598)

130.120

(0.620)

144.544

(0.639)

157.418

(0.650)

β=1.50
19.980

(0.258)

39.960

(0.386)

59.935

(0.466)

79.881

(0.540)

99.787

(0.606)

119.636

(0.642)

139.295

(0.678)

158.719

(0.710)

177.919

(0.738)

β=1.75
19.980

(0.258)

39.960

(0.391)

59.940

(0.470)

79.920

(0.543)

99.900

(0.605)

119.880

(0.663)

139.860

(0.709)

159.840

(0.734)

179.820

(0.759)

Original

precision
0.259 0.393 0.47 0.543 0.605 0.663 0.709 0.734 0.759

V. CONCLUSION AND FUTURE WORK

This paper proposed a method using multiple kd-trees to

find the nearest neighbor in high dimensional space. We build

six trees by projecting data into different hyper-planes so that

these data can be viewed in different perspective. We

compared our method to BBF algorithm. Although our tree

constructing time is longer than that of BBF algorithm, but on

the whole our construction time is acceptable (not more than

0.62 seconds for 1000 data of dimension 50). Under the same

number of total allowed backtracking number, our method

almost outperformed on every test. For example, when the

dimension of data is 64 or 128, the average improvement on

precision can reach 28% (dimension fixed) and 53% (number

of backtracking fixed). Experimental results illustrated that the

proposed algorithm improves the precision especially when

dimension is high and size of data set is large. The

effectiveness of projecting data into different perspectives to

look for the nearest neighbor is also confirmed by the

experiments. Under the condition that no backtracking is used,

as our method uses six trees and BBF algorithm uses only one

tree, in eleven out of twelve tests our method is better with an

average of improvement ratio to be 79.9%.

To understand more on the consequence of backtracking, we

performed a preliminary experiment on revising the constraint

D’
 such that D’=)/(dD⋅β such that no more backtracking is

performed when every recorded distance in priority queue, if

there is any, is not smaller than D
’
 where D is the minimum

distance of the query point q to the splitting hyper-plane and d

is the dimension of the data. Although the results did not favor

shorting the execution numbers of backtrackings, the precision

of our proposed method is improved. Moreover, these results

seem to indicate that, in one tree, the precision has a relation

with β in the constraint)/(dD⋅β as well as the allowed

backtracking number. For example, β = 0.75 is better if the

number of backtracking is not more than 10; β = 1.25 is better

when the number of backtracking is between 10 and 30; β =

1.75 is better when the number of backtracking is between 30

and 60, etc. Further study on this issue is necessary to better

understand the relation if there is any.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 159

REFERENCES

[1] D. Fuiorea, V. Gui, F. Alexa, and C. Toma, “A new point matching

method for image registration,” in Proc. of 6th WSEAS Int. Conference

on Computational Intelligence, Man-Machine Systems and

Cybernetics, 2007, pp. 134–138.

[2] I. Dozorets, I.Gath, and H. Shachnai, “Prototype-based approximate

nearest neighbor search”, Advances in Signal Processing and Computer

Technologies, WSEAS Press, 2001, pp. 181–186.

[3] R. Nerino, “Invariant features for automatic coarse registration of

point-based surfaces,” in Proc. of the 6th WSEAS Int. Conf. on Signal

Processing, Computational Geometry & Artificial Vision, 2006, pp.

10–15.

[4] A. Moghaddamnia, M. G. Gosheh, M. Nuraie, M. A. Mansuri, and D.

Han, “Performance evaluation of llr, svm, cgnn and bfgsnn models to

evaporation estimation,” in Proc. of the 9th WSEAS Int. Conf. on Signal

Processing, Robotics and Automation, 2010, pp. 108–113.

[5] M. Brown and D. G. Lowe, “Recognising Panoramas,” in Proc. of the

9th Int. Conf. on Computer Vision, 2003, pp. 1218–1227.

[6] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25 , pp.

567–577, 2003.

[7] F. Isgrό, and M. Pilu, “A fast and robust image registration method based

on an early consensus paradigm,” Pattern Recognition Letters, vol. 25,

pp. 943–954, 2004.

[8] A. Moore, “An introductory tutorial on KD trees,” extracted from Ph.D.

Thesis- Efficient Memory-based Learning for Robot Control. Technical

Report, No. 209, Computer Laboratory, University of Cambridge, 1991.

[9] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” Int J. of Computer Vision, vol. 2, pp. 91–110, 2004.

[10] J. Beis and D. Lowe, “Shape indexing using approximate

nearest-neighbor search in high-dimensional spaces,” in Proc. of the Int.

Conf. on Computer Vision and Pattern Recognition, 1997, pp.

1000–1006.

[11] A. Califano and R. Mohan, “Multidimensional index for recognizing

visual shapes,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 16, pp. 373–392, 1994.

[12] C. Chen, S. Pramanik, Q. Zhu, and G. Qian, “A study of indexing

strategies for hybrid data spaces,” ICEIS 2009 LNBIP, vol. 24, pp.

149–159.

[13] H. J. Wolfson and I. Rigoutsos, “Geometric hashing: an overview,”

IEEE Computational Science and Engineering, vol. 4, pp. 10–21, 1997.

[14] S. A. Nene and S. K. Nayar, “A simple algorithm for nearest neighbor

search in high dimensions,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 19, pp. 989-1003, 1997.

[15] J. H. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best

matches in logarithmic expected time,” ACM Transactions on

Mathematical Software, vol. 3, pp. 209–226, 1977.

[16] J. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, vol. 18, pp. 509–517, 1975.

[17] J. Bentley, “Multidimensional binary search tree used in database

application,” IEEE Trans. on Software Engineering, vol. 4, pp.

333–340, 1979.

[18] C. S. Anan and R. Hartley, “Optimised k-d-trees for fast image

descriptor matching,” 2008 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp.1–8.

 Shwu-Huey Yen is with Department of Computer Science and Information

Engineering, Tamkang University, Taipei, Taiwan (e-mail:

shyen@cs.tku.edu.tw)

Chao-Yu Shih is now a firmware R&D engineer in ASUS Tek Computer Inc.

in Taipei, Taiwan (e-mail: josh_shih@asus.com)

Tai-Kuang Li is with Department of Computer Science and Information

Engineering Tamkang University, Taipei, Taiwan

(e-mail:695410141@s95.tku.edu.tw)

Hsiao-Wei Chang is with Department of Computer Science and Information

Engineering, China University of Science and Technology (e-mail:

changhw@cc.cust.edu.tw)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 4, 2010 160

