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The stabilization and the 1dentification
of the rockets’ movement in vertical plane

Mihai Lungu

Abstract—The paper presents some angular stabilization systems
of the rockets in vertical pane using differential or integrator
gyroscope. The first system has not a correction subsystem, while the
second one has. One has determined the transfer functions (in closed
loop or in open loop) of the two systems. The positioning of the
systems’ eigenvalues proofs the systems’ stability. The systems
respond very fast to a step input — the duration of the transient
regime, for the two systems, is about one second. Using three
different methods (least square method, instrumental variables’
method - MVI and neural networks method), one makes the
identification of the system. For both systems one obtains, using a
Matlab/Simulink program, the frequency characteristics, indicial
functions in the complex plane and in discrete plane, responses to
impulse input in the complex and discrete planes. With least square
method (LSM) the output of the system and the output of the model
for the two systems were plotted. The identification is made very well
— the two signals overlap. With the second identification method, one
obtained the frequency characteristics for LSM and MVI on the same
graphic. The identification is made using neural networks. Using this
method, one obtained the indicial responses of the systems and of the
neural networks (these signals overlap too), the weights and the
biases of the neural networks and so on. The system’s identification
made also be done using the prediction error method (MEP). This
method is more complicated than the others, but it is more precisely.
The author also presents other two systems for rockets’ stabilization:
systems with accelerometer and correction subsystem (figures 16 and
17). These two systems also give good stabilization results.

Keywords— rockets’ movement, stabilization, identification
methods, differentiator gyroscope, neural network.

1. INTRODUCTION

HE stabilization systems for the anti-aircraft rockets, air-
to-air rockets and ground-air rockets fulfill the functions
of control over the load. Since most of these oscillations
damping is weak (& < 0,1), it is difficult to control the over-

load. The more the speed and flight altitude increases, the
more difficult this mission is. Thus, the stabilization systems
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must correct the dynamic characteristics of the rockets. One
also requires that the stabilization systems reduce the influence
of external disturbances and internal noise. For this, bandwidth
of the control and disturbance signals is chosen according to
technical quality indicators [1].

II. DYNAMICS OF THE ROCKETS” MOVEMENT
Next, one studies the stabilization systems’ dynamics of
rockets with cross empennage. Mathematical model of rocket’s
motion in the vertical plane is given by equations’ system (1),
the coefficients being those of form (2).

0 = d,o + dsd,
0, =dya—d,d—-d,o., 1

0=0,,0a=0-9,

where 0 is the pitch angle of the rocket, @, — the pitch angu-
lar velocity, o — the incidence angle of the rocket, & — the
rocket’s command, 3 — the slope of the trajectory; the other
terms are coefficients with formula [2]

2 2
pV—Sc(V* + Fp pV—Sle
2 1 2
d=—>~————=—,d, =———,
X mV TV X ‘]z i (2)
pLSZC“ pLSch‘” pLSCS,
2 z 2 z 2 )
dy = ,dy = ,ds =
J J mV

To obtain the frequency characteristics, step and impulse
responses and identification of the system using three different
methods (least square method, instrumental variables’ method
and neural networks method), one uses the following coeffici-
ents

T—l—TT— 1 1 d +d,
1 - = V’ 2 e ) T )

d, Vdidy = d; 2 Vdidy = d; (3)
ko = 4, ey = 9 k= k.

did, —d, dd, —d,

In the case of vertical flight of the rockets, the above equ-
ations set suffers little modifications
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d, Jdid, +d, 2 Jdd, +d, 4
ke did; d ky = koV.

Tdd, +dy T dydy +dy

For each rocket’s type one must obtain the variation in time
of coefficients d,, i = 1,_5 In fig.1 the time variation curves

of these coefficients for a ERLIKON rocket are presented. The
values of these coefficients for second 10 of the flight are

dy =1.125[1/5):d, = 25[1/52];d, = 142851/ 52]; )

d, =0.535[1/s];ky =1.889[1/5s];6 = 0.215;T; = 0.888.
The coefficients d; characterize the stability of the system

d, . The ma-

neuverability of the system may be expressed on a graded
scale which permits the choose of optimal maneuverability [1].

and the stability reserves; if ds = 0, then n?
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Fig.1 Time variation curves of the coefficients
from rockets’ dynamics equations

The maneuverability of the system depends on an indicator
which expresses the dependence of the ratio 7, /T or of the
product n?T, of the damp coefficient &. For the stability’s
improvement and maneuverability’s increase one uses a nega-
tive feedback after angular velocity 0; it leads to the increase

of the damp coefficient.

III. ANGULAR STABILIZATION SYSTEMS WITH DIFFERENTIAL
GYROSCOPE, WITH OR WITHOUT CORRECTION SUBSYSTEM

The block diagram of the rockets’ angular stabilization
system with differential gyroscope, without correction subsys-
tem is presented in fig.2. The input variable is the rocket’s

command u,, while the output of the system is the pitch angle

v

(6) or the pitch angular velocity (9); the differentiator gyro-

scope measures this angular velocity and gives a voltage signal
which is applied to the input of the differential amplifier [1].
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Fig.2 The block diagram of the rockets’ angular stabilization system
with differential gyroscope and without correction subsystem

For the system from fig.2, with negative unitary feedback,
the closed loop transfer function and the open loop transfer
function are, respectively

k ko (Tis + 1)
s(T,s + 1)T2s2 + 26Tys + 1)

“V(S) B 1+ kdkvkske(Tls + 1) | (6)
(1,5 + 1)T2s2 + 26Tys + 1)
HB ( — e(S) _ kvkske(Tls-’_l)
AL ,
w uy(s)  Cust + Cys® + Cys? + Cys
k,k ko(Tis +1

Hd(s): - V3S 9( 1 > ) , —, (7)

Cys™ + C38° + Cys” + Cis + C
where
C, =1+kykkky;Cy =T, +2ET, + kyk kkoT, ;
Cy = 2601, + 17 :C4 = T3 ; ®)
Cl =1+ kykk kg -k k ko, ;Ch = -k, k K -

The block diagram of the rockets’ angular stabilization
system with differential gyroscope and with correction subsys-
tem is presented in fig.3.

+ .
tos iy (Ts +1) I 1]e
- Tie? + 2ETs +1 T
T, Ts+1
T, Tys +1

Fig.3 The block diagram of the rockets’ angular stabilization
system with differential gyroscope and correction subsystem

For the system from fig.3, with negative unitary feedback,
the closed loop transfer function is

kk ko (Tys +1)
s(Tys + 1722 + 26Tys + 1) .
kokkko(Tis+1) T, Tys+1°(9)
(T,s +1)T2s% +26Tys +1) Ty Tys+1
B,s? + Bis + B,
Ass® + Agst + 4383 + 4,87 + Ays ’
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B, = T\T,Tsk k kq ; By = Tsk,k ko(Ty + Ty); By = Tok, k kg ;
As = T, T,TF 5 Ay = 26,1, TS T, + T3T22(T4 + Ts);

Ay = T3T,T, + 26T,T5(Ty + T,) + TyT2 + kyk ko T\ T5T,
Ay = TsTy + T, Ty + 28T,T; + k gk k ko (T) + T5);

A =Ty + kyk k koT, .

(10)

The open loop transfer function for the system from fig.3,
with negative unitary feedback is

B,s? + Bis + B,
AssS + Ayt + AP + (4, — By 2 + (4, - B s - B,

(1)

Hd(s)
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Fig.4 The indicial functions and responses to impulse input
in the complex and discrete planes for the system from fig.2
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Fig.5 The indicial functions and responses to impulse input
in the complex and discrete planes for the system from fig.3

For both systems one obtains, using a Matlab/Simulink
program (see the Appendix), the frequency characteristics,
indicial functions in the complex plane and in discrete plane,
responses to impulse input in the complex and discrete planes.
Also, one identifies the systems using three different methods
(least square method, instrumental variables’ method and
neural networks method). For each of these methods, some
graphics were obtained.

For the system without correction subsystem, the indicial
functions and responses to impulse input in the complex and
discrete planes are presented in fig.4 (the first two graphics
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correspond to the complex plane, while the last two corres-
pond to the discrete plane). The program calculates the matri-
ces that describe the state equations of the system in the com-
plex plane or in the discrete plane. Also, the Matlab/Simulink
program gives the transfer functions in complex description or
in discrete description.
For the system with correction subsystem, one has obtained
the graphic characteristics from fig.5.
IV. IDENTIFICATION OF THE SYSTEMS USING THE LEAST
SQUARE METHOD (LSM)

A state estimator must assure the controllability of the
system whose parameters are estimated, whatever the adap-
tive structure [2], [3]. The least square method doesn’t
always give models characterized by controllability. That’s
why in some cases it must be modified. The system, whose
parameters must be determined, is described by the equation

L(Z’1 )y(t) = z’qM(Z’l)u(t) + C(z’1 )e(t) +d, (12)

where z7! — the delay operator and the polynomials L(z™!)

and M(z™") are

Lz =1+az"+a,z? +..+a,z™",

M@z =by + bz +byz7? + ...+ b,z7";

(13)

The estimated model A of the leading system A
(aircraft), obtained by an parametric identification method,
may be described by equation

i(z_l )y(t) = z_q]\;l(z_1 }4(1?) + é(z_l )é(t) +d,

(14)

where é(t) is the noise applied to the model and the poly-

nomials i(z’l),]\;[(z’l) and é(z’l) have expressions

i(z’l) =1+d4z7" +a,z72 +...+a,z7",
A;l(z*‘): by +byz™' +byz "t + .+ bz, (15)
é(z’l) =1+¢&z ' +6,27 2 +..+¢,27"

LSM algorithm (least square algorithm) modification is
based upon the discrete transfer function modification
through origin pole ( :O) compensation. The modified
LSM algorithm (LSMM) builds a convergent vector v(¢) and
with it the vector of the estimated parameters [4]

b'(k) = b(k) + P(k)v(k). (16)

Thus, the coefficient b' is almost non-null.
The control law may be chosen of general form
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u(k) = Rlz™, ' Juk) + Sz, B') yih), (17)
with the polynomials

. o . . B .
R(z’l, b') =Yz () ,S(z’l,b') =D 775, (b). (18)

i=1 i=0
The closed loop system is described by equation [4]
. k+1

Wk + 1) = Dl ') {e( 0+ )}, (19)
where

. _7l-1 g -1 £
D(Z’l,b')z z[l L(Z :b )] Mz ,lz ’ (20)

ZS(Z‘1 , b’) zR\z7, b’

and
e(k +1) = xT (b)|p(k) — bT (k)] + n(k + 1), 1)

n(k +1) is a white noise.

0
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Fig.6 The output of the system and of the model for the system
with differential gyroscope and without correction subsystem

In the Matlab program, one forms first the matrices 4,
and B, (they contain the coefficients of the discrete transfer
function). The input u and the perturbation e of the leaded
system are chosen as random type. For the b parameters of

model A estimation one uses ARX operator from Matlab,
which has the following syntax th=ARX(z,nn), where
Z =[y u] — matrix that contains the output vector (y) and

the input vector (u), nn = [na nb nc]— defines the denomi-

nator order (na), numerator order (nb) and the model’s
delay (nc); th returns the estimated parameters in theta

format (the elements of the vector 1;) using the least square
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method. The program plots the characteristics y(¢f) and
¥(t), presented in fig.6 and fig.7; y(¢) is the output of the
control system (A4), while p(¢) is the output of the estimated

model (A)
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Fig.7 The output of the system and of the model for the
system with differential gyroscope and correction subsystem

As one can see in the above figures that the identification is
made very well - the two signals overlap (jz - y).

V.IDENTIFICATION OF THE SYSTEMS USING THE INSTRUMENTAL
VARIABLES’ METHOD (MVI)

This method is a generalization of LSM. It gives the
estimated parameters only for the determinist part of the

model 4 and not for the parameters of the polynomial
é(z‘l) associated to the random perturbation. The control
system model (A) is described by the equation (12) and the
one of the estimated model (1:1) by equation (14); in this
equation one considers C(z™') = 1. The equation equivalent

to equation (14) is

y(k) = xT (k)b + é(k). (22)

By multiplication of this equation with W(k)— instru-
mental variable vector (whose elements haven’t physic signi-
fications, they are only necessary “instruments” for the b

estimation), one obtains the equation of estimator b

N N A
D W ky(k) = {Z W (k)x” (k)}b (23)
k=1 k=1
or
. N “Irw
b= {Z W (k)" (k)} [Z W(k)y(k)} : (24)
k=1 k=1
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where N is the measurements number; the vector W may
be chosen in different ways. Let vector W be [5]

wik) = Flz)[utk = 1) utk=2) ... u(k - ny)], (25)
where ny, = m+n; if LA(z*I) and A;[(zfl)are the L(z‘l) and

M(zfl) polynomials estimations, one chooses
(26)

The input u and perturbation e of the leading system are
random type. For the parameters estimation of the vector b
one uses, in Matlab, the operator iv4. In fig. 8 and fig.9 the
frequency characteristics for the two systems (using LSM —
continuous line, blue color and MVI — dashed line, red
color) are plotted.

Frequency characteristics
T T T T T I
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Fig.8 The frequency characteristics for the system with

differential gyroscope and without correction subsystem

Frequency characteristics
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Fig.9 The frequency characteristics for the system with
differential gyroscope and correction subsystem

VI. IDENTIFICATION OF THE SYSTEMS USING THE NEURAL
NETWORKS’ METHOD

Flying parameters’ modification and atmospheric distur-
bances leads to difficulties in stability derivates calculus and to
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flying objects’ models stabilization. That’s why one may use
identification methods or state estimate methods [6], [7], [8],
[9], [10], [11]. The identification method presented in this
paper is based on a neural network’s use. As one can see in
fig.10 [6], for off-line identification, a feed-forward neural net-
work is used; the network is trained by minimizing the quadra-

tic quality indicator J(k) = %e2 (k), e(k) being the training

€ITor.

LEADING
o SYSTEM

/

NEUROMAL
NETWORK

L

7

Fig.10. Dynamic model of the control system

The dynamic of the rockets’ movement may be described
by equation

y(k) = vk =1 ytk =2) - y(k = n,) utk = q)-utk —q —n, +1), 27)

with y = 0 — the pitch angle, u = u, — rocket’s command,

g — dead time; n, and n, express the system’s order.

Desired indicial response (blue) and the output of NN before training (red)
T

i
1200 1400 160 180 200

0 20 40 &0 60 100
Time [sec]

Fig.11 The output of the system from fig.2 (blue color)
and the output of the NN (red color) before training.

If nothing is known about the control system (n,,n,,q, f
and n, — the number of hidden layer neurons), by identi-

fication one determines these parameters. So that, starting
from minimal neural network’s architecture (numbers

n,,n,,n, and ¢) and imposing a value for the error e(k)
and a maxim number of training epochs, the neural networks

begins the training process. If the error e(k) doesn’t tend to
the desired value then n,,n, and n, are modified.

For identification process’s simulation of the rockets’
dynamics with neural network one may use discrete transfer

13
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function associated to the two systems. A neural network with
one hidden layer is chosen. This network is characterized by
n, =ln, =3,n, =5 and g = 0.

Desired indicial response (blue) and the output of NN after training (red)
0.14 T T T T T T T

Time [sec]

Fig.12 The output of the system from fig.2 (blue color)
and the output of the NN (red color) after training.

Desired indicial response (blue) and the output of NN before training (red)

i i i
o a0 100 1580 200 250 300
Time [sec]

Fig.13 The output of the system from fig.3 (blue color)
and the output of the NN (red color) before training.

Desired indicial response (blue) and the output of NN after training (red)

i i i
0 50 100 150 200 250
Time [sec]

Fig.14 The output of the system from fig.3 (blue color)
and the output of the NN (red color) after training.

One chooses calculus steps (p), which is equal with
vector
y's components number (the values at respective moments of

the control system). The matrix of neural network P is obta-
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ined (it has the dimension ((nu + n},)x (p-3) ) Also, matrix
T (of desired output of the network, which represents control
system’s output values matrix) is the matrix of the system
output’s values at time moments corresponding calculus
steps; dim(T) =n, x(p- 3), n
number (in this example n, =1).

being output neurons’

e

In fig.11 one presents the output of the system from fig.2
(blue color) and the output of the NN (red color) before
training. After the training process, the two signals overlap
(fig.12). For the system with correction subsystem, the corres-
ponding graphics are the ones from fig.13 and fig.14.

Perfarmance is 9231292011, Goal is 1e-010

Training-Blue Goal-Black

0 00 200 300 400 500 GO0 700 GO0 900

Stop Training 914 Epochs

Fig.15 Dependence between error of the training process
and training epochs’ number for the system from fig.2

Neural network‘s training is made using instruction “train”
till the moment when e(k) = y(k) — (k) = €ipposea (k) OF
until the number of training epochs is reached (in our example
this number has been chosen 10000); e;,cq (k) = 10710 for
the first system and e;;, .4 (k) =107 for the second one. In

fig.15 (for the system from fig.2) and fig.16 (for the system
from fig.3) the dependence between error e(k) and training

epochs’ number is presented.

Petformance is 9.97049e-011, Goal is 1e-010
T

Training-Blue Goal-Black

a 100 200 300 400 500

Stop Training 554 Epnchs

Fig.15 Dependence between error of the training process
and training epochs’ number for the system from fig.3

The training process takes longer in the case of first system
compared with the second one because for the first system the
desired error is greater then the second case desired error.
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By neural network’s training pseudo — neurons weight
matrix W, and hidden layer neurons weight vector ¥, are
obtained. Also, vectors B, and B,, which contains polari-
zation coefficients’ values (bias) for neurons from hidden
layer and for output neuron, respectively, are obtained. For the
two systems they are, respectively

27.6429 16.0283 6.9687 - 7.4648 - 6.7037
-14.6652 - 2.0602 16.4490 31.9792 1.2076

W, =| 4.5626 -14.8750 16.1572 22.4523 |; B, = |- 2.7673|; (28)
-1.1713 26.1090 19.3306 - 9.2346 - 4.1409
19.9705 -3.1093 -17.3665 25.1677 -1.9235

W, = [- 0.0033 - 0.5346 0.1737 0.0001 0.0031], B, = [0.6191]

or
-16.4718 13.4626 18.8918 - 28.3872 2.5634
18.5041 -9.7520 4.5062 34.9162 -3.4015

W, =|-15.1027 28.5663 -19.7417 -8.5982[; B, =| 12514 |; (29)
-24.1919 -2.7047 13.8729 28.8785 - 1.6604
-31.4477 -5.2817 21.9340 0.1910 -1.3155

W, = [0.0327 - 0.0872 - 0.2229 0.0172 - 0.1027], B, = [- 0.0031].

VII. OTHER ROCKETS’ STABILIZATION SYSTEMS

Stabilization system that uses differentiator gyroscope,
although has superior dynamic performances, doesn’t assure
their constant in different flight regimes. That’s why, this
system is recommended only for the stabilization of the
rockets’ angular position. The mono-loop stabilization sys-
tems have some disadvantages which prevent their use for
the overload’s control. Much better are the bi-loop stabiliza-
tion systems.

The block diagram of the rockets’ angular stabilization
system with differentiator gyroscope, accelerometer and
correction subsystem is presented in figure 16 [1]. The input
variable is the rocket’s command u,, while the output of the

Vo
system is the rocket’s overload n,. On the direct way of the
system one has introduced an integrator gyroscope and on
the feedback of the exterior contour — an acceleration
transducer (accelerometer), a correction network with the
transfer function

H )= ot (30)
T, Tjs +1

and an amplifier with k&, amplification factor for the

compensation of the voltage’s failure at the output of the
correction network (subsystem). The transfer function of the
interior loop is calculated as follows [12],

k kS krl
H(s) = VUTs+1 T2+ 28Tys + 1 (€2))
T s13 T, T+l k k, '
1+ 228 (s vn). 2 800y "
Ty Tys+1 Ts+1 T2s? +26Ts +1

The closed loop transfer function is obtained with equation

H™(s) = n,(s) —k, - : f{f(s)l (32)
' () 1+kk';4,';3rs+l'ka'Hi(S)
3 148+

After calculus, the transfer function in closed loop becomes

n,(s) Bys? + Bjs + B, )
u,(s)  AssS + At + AP + A+ As + Ay

(33)

the transfer function in open loop is calculated in rapport
with the one presented above. The coefficients that appear in
the numerator and dominator of the transfer function (33) are

B, = ko VI By = k ko ko VILT - (T, + T7);

By = ke ke, VIST5 ;

4s = LTVILILLTTY

Ay = T3T3'V(T22T4T4' + 2§T2T5T4T4,V)+ T3T3,V[TST22(T4 + TJ)];

45 = T3T3,V[2§T2T47X + TIT + T (T, + T4')]+

+ T [103 + 26T, (T, + 1))+ 573k k k, k TT(ITy + T3):
4, = T[T + 26Ty (T, + 1) + T,(T, + T]) + T7 + 261,15 |+
+ 573k ko k T, T(TT + Ty + TT3) + k ke kb, TV, ;

(34)

A =TTV (T, + Tj + 26T, + T,) + +k kik koo, LTV (T3 + T3) +
+ 57.3gk ko k(T3 + Ty + T);
Ay = TSIV + 57.3gk k ko, kT, + k Jhe ke ko, T,V .

5?
+
k ) ;Cn -_P’l‘,
Ts+1 252 + 2875 + 1
L
T Tosot 1 ? e
1 §
t et
T s+l

Fig.16: Block diagram of the rockets’ angular stabilization system with differentiator gyroscope, accelerometer and correction subsystem
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E(Ts + 1)

[

B\‘
+
k, + k, _
Ts+1 T2s? + 2ETps + 1
Y
é %
- 5?3g (?;S T 1) il
Y
T, Gs+1

<_E=

T Tys+1

Fig.17: The block diagram of the rockets’ angular stabilization system with integrator gyroscope, accelerometer and correction subsystem

The block diagram of the rockets’ angular stabilization
system with integrator gyroscope, accelerometer and correc-
tion subsystem is presented in figure 17 [1]. The input and
the output variables are the same with the ones from the
previous case.

On the direct way of the system one has introduced an
integrator gyroscope and on the feedback of the exterior
contour — an acceleration transducer (accelerometer), a
correction network with the transfer function

Ty Tys+1
T3 Tys +1

H,(s)

(35)

and an amplifier with k, amplification factor for the com-
pensation of the voltage’s failure at the output of the correc-
tion network (subsystem). The transfer function of the inte-
rior loop is calculated as follows

ki(TiS + 1) . ks . kn
H(s) = s Ts+1 TPs?+28Ts +1 (36)
T 57 3g K(Ts+1) &, k, ’
1+ (Ts +1) s
A% s Ts+1 T2s?+2ETs +1

The closed loop transfer function is obtained with equation

Hn‘( ): nv(s) — k . kV ! Hi(s) (37)
i u,(s) " T, Tys+1 '
v 1+k,{-T7-T +1~ka-Hi(s)
3 48

In equations (36) and (37) the values of the constants are
the ones from equation (33). After calculus, the transfer
function in closed loop becomes

s) B,s® + Bs + B,

Y 4 3 2 :(38)
s) AsS® + Ayt + Azs® + AysT + As + A

<
—|

the transfer function in open loop is calculated in rapport
with the one presented above. The coefficients that appear in
the numerator and dominator of the transfer function (38) are

Issue 1, Volume 5, 2011

16

= k,k

B, = kk kK, TIT 5 By = kkkkk,T - (Ty + T,);
By = k, ki, Ty ;
Ag = BTVLTE 5 Ay = 26TTTY + TV (T + 1)
A = LLTY + V(T + T,) - 26T, + TVTE +

+ 57.3g Ty Tk k, T, ;

= TV(T, + T,) + TV - 26T, + 57.3gTITykk k,T; +

ishnti
+ kikskn];' : 573gT3(Tl + T4) + kkkakiksknané];' >

(39)

4 = TV + 57.3g0(T + T,k k, + 57.3gT5kk kT, +
+ kkkakiksknT4V(7:’ + TB)’
Ay = 57.3gTkkk, + kpk ke, T,V .

VIII. IDENTIFICATION OF THE SYSTEM USING THE
PREDICTION ERROR METHOD

The system’s identification made also be done using the
prediction error method. This method is more complicated
than the others, but it is more precisely. MEP calculates the
coefficients of the polynomials M (z"),L(z‘l) and the

coefficients of the polynomials that “modify” perturbation
which affects the leading system. Starting from an initial
estimation, one calculates the parameter of the system through
successive iterations till the convergence criteria is reached.
The initial estimations used by MEP may be obtained using
one of the previous methods [5], [13], [14], [15].

The prediction error is the perturbation e

e=y—J. (40)

The leading system is described by equation

L(z‘1 )y = M(z“)u + C(Z")e. (41)
Thus, the residue is
(42)

= al—) [l )y - me )

The estimated parameters (the vector b ) are determined
through the sum’s minimization of the square prediction
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€rrors

(43)

k=1

N
b= arg[mbin D e? (k)] ,

where N is the available data number. An estimation
algorithm is the following one [5]:

1) one makes an initial estimation of the coefficients of
C(z’l) using a CMMP type method, and thus it results

é(z’l);
2) using the previous estimation (é), one calculates the

filtering signals

v (?(Zil)u’ (44)
vy =Cl
3) one determines the estimations I:(z‘l) and M(z‘l) of the
polynomials L(z*l) and M(Z—l)

)

Lzt ()= arg[ILn}\? Z e2 (k)
k=1

- (45)
N 2
- arg[lg}i;; Zl (Ll )y, -mEp,) 1;
4) hereby a new estimation é(z“) is calculated [3]
N 1 2
)= i 7 46
C(z ) arg{mcgn ,; [azj) V] ], (46)

where V' is expressed function of assessments i(z’l) and

M (z‘1 ) from previous step;

V=il )y - M) (47)

The calculus formula for b is

i N Y

b= {Z xF(k)(xF(k))T:l {Z X (k)y* (k):l. (48)
k=1 k=1

IX. CONCLUSIONS

The paper presents two angular stabilization systems of the
rockets in vertical pane using differential gyroscope. The first
system has not a correction subsystem, while the second one
has. One has determined the transfer functions (in closed loop
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or in open loop) of the two systems; a study of stability is
made. All the eigenvalues of the systems are placed in the left
complex semi-plane. This is a proof of systems’ stability. The
systems respond very fast to a step input — the duration of the
transient regimes is about one second. Using three different
methods (least square method, instrumental variables’ method
and neural networks method), one makes the identification of
the system. For both systems one obtains, using a Matlab/
Simulink program (the one from Appendix), the frequency
characteristics, indicial functions in the complex plane and in
discrete plane, responses to impulse input in the complex and
discrete planes. With the least square method (LSM) the
output of the system and the output of the model for the two
systems are plotted (fig.6 and fig7). As one can see in these
figures, the identification is made very well - the two signals
overlap (f/ - y).

With the second identification method (instrumental varia-
bles method - MVI), one obtained the frequency characteris-
tics for LSM and MVI on the same graphic.

The identification may also be made using neural networks.
Using this method, one obtained the indicial responses of the
systems and of the neural networks (these signals overlap too),
the weights and the biases of the neural networks and so on.
One also presented the dependence between the error of the
training process and the training epochs number for the two
systems. The training process lasts longer in the case of first
system (900 epochs) compared with the second one (600
epochs). This doesn’t mean that the second system is better.
This fact happens because for the first system the desired error
is greater then the desired error in the second case.

APPENDIX

% Angular stabilization of the rocket in vertical plane
clear all;close all;

% The coefficients
d1=1.5;d2=37.5;d3=-18.75;d4=0.90;T1=0.66;T2=0.22;
Kteta=2.79;Kv=0.5;Kd=1;Ks=1;Ts=0.1;csi=0.05;Ks=1;
% The transfer functions

numi=[0 0 Kv*Ks*Kteta*T1 Kv*Ks*Kteta];

deni(1)= Ts*T2*T2;

deni(2)= Ts*2*eps*T2+T2*T2;

deni(3)= Ts+2*eps*T2+Kv*Kd*Ks*Kteta*T1;
deni(4)=1+Kd*Kv*Ks*Kteta;

deni=[deni(1) deni(2) deni(3) deni(4)];
numd=numi;dend=deni-numi;
sysi=tf(numi,deni);sysd=tf(numd,dend);
poli=pole(sysi);zerouri=zero(sysi);
[A,B,C,D]=tf2ss(numi,deni)
Ts=.025;sys_z=c2d(sysi,Ts);

[num_z,den z]=tfdata(sys_z,'v');
sys_z=tf(num_z,den_z)

[A z,B z,C zD z]=tf2ss(num_z,den_z); L=eig(A z);
% Graphical characteristics

h=figure;margin(sysd);
[Gm,Pm,Wcg,Wcp]=margin(sysd)
Gm=20*log10(Gm); h=figure;
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subplot(2,2,1);step(sysi);grid,;
subplot(2,2,2);impulse(sysi);grid;
subplot(2,2,3);dstep(num_z,den_z);grid;
subplot(2,2,4);dimpulse(num_z,den_z);grid;
% System's identification using LSM
Bgq=[num_z(2) num_z(3) num_z(4)];
Aqg=[den_z(1) den_z(2) den_z(3) den_z(4)];
tho=poly2th(Aq,Bq); u=idinput(300,'rbs');
e=randn(300,1);y=idsim([u,e],tho);
z=[y,u]; nn=[3 2 0];th=ARX(z,nn);
y_model=idsim([u,e],th);
% Comparative graphics of the two systems
h=figure;tt=1:length(y);
plot(tt,y,'r',tt,y_model,'--*k");grid,;
present(tho)
present(th)
% System's identification using MVI method
tho=poly2th(Aq,Bq); u=idinput(300,'rbs');
e=randn(300,1); y=idsim([u,e],tho);
z=[y,u]; nn=[3 2 0];th=iv4(z,nn);
% Frequency characteristics for LSM and MVI methods
h=figure;[Gs,Nss]=spa(z);
Gi=trf(th);bodeplot([Gs Gi]);grid;
present(tho)
present(th)
% System's identification using neural networks method
sim('S1");
sim('S2");
M=length(y);
ny=3;nu=1;nh=5;d=0;,
% The obtaining of the matrix P
s1=max(0,nu+d-ny);s2=max(0,ny-nu-d);
s3=max(nu+d,ny);
P=uy(s1+1:M-ny,1)";
for i=2:ny
P=[P;uy(s1+i:M-ny+i-1,1)'];
% P=[P;uy(2:M-2,1)"T;P=[P;uy(3:M-1,1)'];
end
for i=1:nu
P=[P;uy(s2+i:M-d-nu+i-1,2)'];
%P=[P;uy(3:M-1,2)"];
end
% The desired output of the system, t, is plotted
T=y(s3+1:M,1)'; timp=1:length(T);
h=figure;plot(timp,T,'k");grid;
% NN’s initialization
Z=[min(P(1,:)) max(P(1,:));
min(P(2,:)) max(P(2,:));
min(P(3,:)) max(P(3,:));
min(P(4,:)) max(P(4,:))];
h=figure;
net=newff(Z,[5 1], {'tansig' 'purelin'});
yl=sim(net,P);
% yl is the output of the NN before training
plot(timp, T,"b',timp,y1,'r");grid; title('Desired indicial response

% P=uy(1:M-3,1)’;
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(blue) and the output of NN before training (red)');

xlabel ('Time [s]');

% NN's training
net.trainParam.epochs=10000;net.trainParam.goal=1e-10;
net = train(net,P,T);grid,;

h=figure;y2 = sim(net,P);

% y2 is the output of the NN bafter training

plot(timp, T,'bo',timp,y2,'r");grid;

title('Desired indicial response (blue) and the output of NN
after training (red)"); xlabel('Time [sec]');

% Bias and weight calculus

Wl=net.iw{1,1}

W2=net.lw{2,1}

Bl=net.b{1}
B2=net.b{2}
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