
 

 

  
Abstract— The paper presents a new complex adaptive non-

linear system with one input and one output (SISO) which is based 

on dynamic inversion. The stabilization command of the linearised 

system using as input the difference between closed loop system’s 

output and the reference model’s output is made by the linear 

dynamic compensator. The state vector of the linear dynamic 

compensator, the output and other state variables of the control 

system are used for the obtaining of the adaptive control law; this law 

is modeled by a neural network. The purpose of the adaptive 

command is to compensate the dynamic inversion error. Thus, the 

command law has two components: the first is the command given by 

the linear dynamic compensator and the second one is the adaptive 

command given by the neural network. As control system one 

chooses the non-linear model of the aircrafts’ roll movements. One 

chooses a linear reference model. One obtains the structure of the 

adaptive control system of the roll angle and the Matlab/Simulink 

models of the adaptive command system’s subsystems. Thus, charac-

teristics that describe the adaptive command system’s dynamics are 

obtained. 

 

Keywords— attitude, adaptive, neural network, dynamic 

inversion, aircrafts, roll angle. 

I. INTRODUCTION 

HE complexity and incertitude that appear in the non-

linear and instable phenomena are the main reasons that 

require the projecting of non-linear adaptive structures for 

control and stabilization; in these cases the linear models are 

far from a good describe of the flying objects’ dynamic [1], 

[2], [3]. Another reason is the non-linear character of the 

actuators. The observers must be easily adaptable and their 

project algorithms must allow the state’s estimation of the 

flying objects even in the case of their failure or no use of the 

damaged sensors’ signals. In these situations, it’s good to use 

the real time adaptive control based on neural networks and 

dynamic inversion of the unknown or partial known non- 
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linearities from the dynamic model of the flying object [4]. 

The neural network’s training is based on the signals from 

state observers; these observers get information about the 

control system’s error [5], [6], [7]. 

II. DYNAMIC SYSO SYSTEMS 

Let’s consider the dynamic system (A) with single input 

and single output described by equations 

 

( )
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xhy

uxfx

=

=ɺ
  (1) 

 

with ( ) −× n,1nx  unknown f  and −h  unknown nonlinear 

functions, u  and −y  measurable. 

One projects an adaptive control law v  after (in rapport 

with) the output; the neural network (NN) models a function 

that depends on the values of input and output of the system 

(A) at different time moments so that ( )ty  follows the finite 

( ) .ty  The feedback linearization may be made through trans-

formation [8], [9] 

 

( ) ,uy,hv r
ˆ=    (2) 

 

where v  is the pseudo-command signal and −),(ˆ uyhr  the 

best approximation of ( )( ) .u,yxhu)(x,h rr =   

Equation (2) is equivalent with the following one 

 

( ) .vy,hu 1
r
−= ˆ   (3) 

 

If ,ˆ
rr hh ≡  one yields ;)( vy r =  otherwise ( )rr hh ≠ˆ  

 

,)( ε+= vy r   (4) 

 

where  

 

( ) ( ) ( )uyhuxhux rr ,ˆ,, −=ε=ε  (5) 

 

is the approximation of function rh  (inversion error). Asse-

ssing y  to follow ,y  then v  has form [8], [9], [10], [11] 
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,)( vvvyv apd
r +−+=   (6) 

 

where pdv  is the output of the dynamic linear compensator for 

stabilization, used for liniarised dynamic (4), with −= avε ,0  

the adaptive command that must compensate ε  and v  has the 

form [8], [12] 
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with 0, >vz kk  gain constants, −
F

Ẑ  the Frobenius norm of 

matrix −Z,Ẑ  the ideal matrix of the neural network and  

,BPEE ˆ=  with P,Ê  and −Β  matrices. The derivative )(ry  

is introduced for the conditioning of the dynamic error 

y.yy −=~  This derivative is given by a reference model 

(command filter) [9]. )(ry  may be cumulated with other sig-

nals and it results the component rv  of form (12). 

Let’s consider ( ) −sdH  the transfer function of the linear 

subsystem of A (flying object) with the input nu  and the 

output ,y  having to the numerator a p  order polynomial and 

at the denominator a r  order polynomial; .1−≤ rp  For this 

system the author proposes the command structure from fig. 1, 

with the linear part described by equations (9) ÷ (11). 

 

Fig. 1. The block diagram of the adaptive command system based on dynamic inversion 

The transfer function of the linear system A with the input 
n

u  

and the output y  is  
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Considering 
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with −−=λ= 1,0,,,0, rjpib ji  the coefficients of the nu-

merator and denominator of the transfer function for the 

system with input nu  and output ,y  the linear system with 

input v  and output y  is described by equation  

 

.)( ε++λ−= ZbYy TTr   (10) 

 

 

If ,0=p  then 0bbv,Z ==  and the previous equation 

becomes 

 

.0
)( ε++λ−= vbYy Tr   (11) 

 

In the particular case ,)()( rr yy =  one obtains  

 

( ) .
1 )(

0

Yy
b

v Tr
r λ+=   (12) 

 

The compensator may be described by state equations 
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where ς  has at least dimension ( ),1−r  
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The state equation of the linear subsystem with input ( )ε+v  

and output y  is 
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where 
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The stable state ( )0=ε== vxx ɺ  verifies equation 0=xA  

and, taking into account (15), leads to the equation of the error 

vector ,~ xxxe −=≡  

 

( ) .ε−−+−= vvbbvAee apd
ɺ  (17) 

 

With notations 
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where I  is the identity matrix, one obtains 

 

( )
;

,

ECz

vvbEAE a

=

ε−−+=ɺ
  (19) 

 

cccc dcbA ,,,  from (13) are calculated so that A  is a Hurwitz 

matrix.  

For the estimation of the vector E  one uses a linear state 

observer of order ( )12 −r  described by equations 
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with the gain matrix L  calculated so that matrix 

( )CLAA −=
~

 is stable.  

Considering −w  the sensor measure error, −my  the mea- 

sured value of ,y  then wyyyy mm +=−= ~~  and the com-

pensator’s equations become 
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with [ ] [ ].,01 cc
TT bbdGH −==   

If state ς  of the compensator is known, one uses a reduced 

order observer for estimation of vector e  
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The gain matrix rL  is obtained so that matrix ( )cLAA r−=
~

 

is stable. With vectors ê  and ς  vector [ ]ς= eET ˆˆ  is obta-

ined. The signal bPEE Tˆ=  is used for neural network’s 

adapting; the weights Ŵ  and V̂  are obtained with equations 
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where the role of B  is played by .b  In (23) σ  is the sigmoid 

function 
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 the solutions of the Liapunov equations 
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for ( ) ( ) .1
~

,1,0
~

, minmin >λ>λ> QQQQ ( )Qminλ  and ( )Q
~

minλ  

are the minimum eigenvalues of the matrices Q  and Q
~

. 

The structure of the neural network is the one from fig. 2 

[5], [13] 

 

Fig. 2. The neural network 

The input - output relationship for the neural network is 
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where 
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321 ,, nnn  are respectively the input nodes’ number, hidden 

layer nodes’ number and output layer nodes’ number. The 

sigmoid function is 
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σ  is a vector with the elements ( ) ,zjσ  ja  is the activation 

potential having a distinct value for every neuron. The 

matrices V̂  and Ŵ  are respectively 
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One defines a new sigmoid vector 

 

( ) ( ) ( )[ ] ;zzz)z(ˆ
2n21

T
wb σσσ=σ ⋯  (30) 

 

0≥wb  allows to the threshold 
wθ  to be included in the matrix 

.Ŵ  Also, one defines the vector 
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0≥vb  is the bias which allows to the threshold vθ  to be 

included in matrix .V̂  Thus, 
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The derivative of the sigmoid vector ( )zσ̂  is 
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Conform to (36) there is a set of weights 
*

W  and 
*V  that 

leads the output 
a
v  of 

cNN  in a domain −D  the   

neighborhood of the inversion error ;εεεε  the neighborhood has 

the maximum dimension .
*µ  The matrices 

*
W  and 

*V  are the 

matrices W  and V that minimizes ,*µ  value that can be made 

small by choosing of a sufficient number of neurons in the 

hidden layer ( )2n  [14]. 

P  from the signal used for the neural network’s adapting 

is the solution of first equation (25) with ( ).bcdAA c−=  

Second output of the compensator ( )ay~  is used for obtaining 

of an error signal that is useful for adapting of the neural 

network’s weights (fig. 3). 

From (4) and (6) one yields 

 

,)()( ε++−+= vvvyy apd
rr  (34) 

 

equivalent with the dynamic error’s equation 

 

.~ )( ε−−+−= vvvy apd
r   (35) 

 

Error ε  may be approximated with the output of a linear 

neural network NN [8] 

 

( ) ( ) ,, *µ<µηµ+ηΦ=ε TW  (36) 

 

where W  is the weights’ matrix for the connections between 

layer 2 and layer 3 (NN has 2 layers), ( ) −ηµ  the recon-

struction error of the function and −η  the input vector of NN 
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with  nn ≥1  and avd ;0>  is projected so that 

 

( ) ,ˆ ηΦ= T
a Wv   (39) 

 

where Ŵ  is the estimation of .W  

The actuators’ characteristics (time delays, nonlinearities 

with saturation zone) lead to neural network‘s adapting 

difficulties. This is why a block “PCH” is introduced; it limits 

the adaptive pseudo-control av  and v  by the mean of one 

component which represents an estimation of the actuator’s 

dynamic (PCH – Pseudo control Hedging). PCH “moves back 

the reference model” introducing a correction of the reference 
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Fig. 3. Automat control system with non-linear adaptive controller 

position [6], [12]. Because the dependence between δ  and cδ  

is expressed by a non-linear function ,ah  one yields 

 

;)ˆ,(ˆ),(ˆ δ≠δ xhxh rcr   (40) 

 

it results a difference between the two functions 

 

( ) .)ˆ,(ˆ,ˆ δ−δ= xhxhv rcrh   (41) 

 

Taking into account that 
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function (41) becomes 
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This signal is introduced in the reference model as an 

additional input [6]; one compares it with )(ry  inside of the 

reference model and, after integration, it leads to the modify of 

the signals y  and .~y  

The existence and uniqueness of av  is guaranteed by the 

following hypothesis [11], [15]: Conform to equations (2), (5), 

(6) and (8) one gets 
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condition that is equivalent with the following one 
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Conform to (35) and to the block diagram from fig. 3, one 

obtains the block diagram of the dynamic error’s model (fig. 

4); the equation of the compensator with the input y~ and the 

outputs pdv  and ay~  is 
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Fig. 4. Block diagram of the dynamic error’s model 

 

The equation (46) is equivalent with 
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The polynomial )s(aM  doesn’t affect the stability of the 

system from fig. 4. For the stability the next condition must 

be fulfilled  

 

( ) ( ) .1sgradsgrad −≥≥= rMLq
pdpd

                     (48) 

 

The transfer function )s(
~

a
H  is built so that it is strictly 

po-sitive real (SPR). From equations (47), (36) and (39) one 

gets 
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where ( )WWW −= ˆ~
 is the error of the matrix’s weights. If 

( )s
~

,1 aHr >  one can obtain a SPR using a filter with the 

operator )s(T  and the degree ;)1( −r the resulted SPR 

function (conform to (47)) is 
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Using the notations  
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the equation (49) becomes 
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The polynomial ( ) ( )ss TM a  from the nominator of the 

transfer function ( )sG  is chosen so that ( )sG  is a SPR. For 

this, first one expresses ( )sG  as 
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where ( )( ).sgrd; pdLqqrp =+=  The system with the 

transfer function ( ) ,sG  having the input ( )ε−av  and the 

output ,)s(~
ay  may be described using the state equations in 

the canonical form 
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( )sG  is SPR only if the conditions from the lemma Lefschetz 

– Kalman – Yakubovici (LKY) are fulfilled; that means 

0>∃ cQ  so that cP  is the solution of the Liapunov equation 
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T
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Because ( )sG  is a Hurwitz polynomial one results that 

( )sT  and ( )saM  are Hurwitz polynomials too.  

The filter with the transfer operator ( )s1−T  may be 

described by the state equations 
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where fz is the state vector of the filter. Also, the equation of 

the positive matrix fP   
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corresponds to the equation (58). 

The signal 
f

Φ  is used in the adapting law of cNN  [9] 
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where F  and 
w

λ  are adapting positive coefficients. 

 
Fig. 5. Block diagram of the adaptive subsystem from din fig. 3 

III. ADAPTIVE SYSTEM FOR THE COMMAND                                  

OF THE AIRCRAFTS’ ROLL ANGLE 

One considers the nonlinear model of the roll movement 

described by equations [16] 
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The system (61) is equivalent with equation 
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where ϕ  is the aircraft roll angle and −δ= eu  the ailerons 

deflection. From (63) it results the relative grade of system 

( )2=r  and the transfer function ( )sdH  
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One chooses the reference model described by equation  
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Equation (35) becomes  
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with pdv  of form [7] 
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Implicit the dynamic equation of the error ϕ−ϕ=ϕ~  is  
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with .10 =b  One chooses ( )rad/s1,1 0
2
010 =ωω==λ=λ pk   

and ( ) .7.02 0 =ξξω=dk  

One considers [ ] [ ] eyzcCT ====ϕϕ== ~,01,~~ ɺeE  

and -ez Ê;ˆˆ =  the observer state (20) The gain matrix of the 

observer L  is obtained so that matrix ( )LCAA −=
~

 is stable; 

A  is the matrix of system from equation (70) with .10 =b  

 

Fig. 6. Block diagram of the system for the control of aircrafts’ roll angle 

The component av  is calculated using the equation 

 

( ),ˆˆ ηηηηTT
a VW σ=v   (71) 

 

−P  the solution of the Liapunov equation (25) and ;2IQ =  

one chooses 5,10,8 ==Γ=Γ kWV  and activation potentials 

between 0.1 and 1 [7]. The input vector η  has the form (37) 

with components (38); ;05.0,21 === dnn  

 

[ ].)()()3()2()()(1 dtytydtvdtvdtvtvT −−−−=η  (72) 

 

For the calculus of component v  one uses (7), where  

.30,8.0,6.0 === Zkk vz  

The block diagram of the system for the control of 

aircrafts’ roll angle is presented in fig. 6, while the block 

diagram of the reference model is the one from fig. 7 with 

,, ccyy ϕ=ϕ=  ηϕ= ,y  of form (45), )(sHd  of form (64) 

and ε  obtained with (67). One has chosen the initial values 

,grd20)0( =ϕ  .grd/s100)0( =ϕɺ  

In fig. 8, the Matlab/Simulink model for the structure from 

fig. 6 is presented. The four subsystems (“NEURAL NET-
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WORK r=2”, “Reference model r=2”, “Forming subsystem for 

vector deltaec (r=2)” and “Calculus subsystem for eps (r=2))” 

are presented in figures 9-12. 

 

 

Fig. 7. The block diagram of the reference model 

For [ ] [ ],10;01;4 ===ϕ T
c bc�  one obtains  

 









=








=

0.710.50

0.501.41
,

0.11

0.13-
PL   (73) 

 

and matrices W  and V  after the neural network training are  

 

 

.

0.580.340.230.180.160.140.12

0.470.250.140.110.090.070.06

0.400.190.090.060.040.030.02

0.08-0.24-0.32-0.31-0.30-0.29-0.27-

0.030.030.020.020.020.010.01

0.020.010.010.010.0100

0.080.040.020.020.010.010.01

,6.4364]-  6.1923-  5.9634-  6.8664-  8.8042-   1.7557-   3.7136-  [-20.7035





























=

=

V

W T

 

 

Fig. 8. Matlab/Simulink model for the structure from fig.6 

 

Fig. 9. Matlab/Simulink model for “NEURAL NETWORK r=2” 

 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 5, 2011 26



 

 

 

Fig. 10. Matlab/Simulink model for “Refecence model r=2” 

 

Fig. 11. Matlab/Simulink model of “Forming subsystem  

for vector deltaec (r=2)” 

 

Fig. 12. Matlab/Simulink model of “Calculus  

subsystem for eps (r=2)” 

 

Fig. 13. Time characteristics in the case of linear actuator’s use 

In fig. 13 the functions )(),(ˆ),(ˆ),(),(),( tttvttt eea δδεϕϕ  

and )(tv  ( −δεϕ e
ˆ,,  with blue color, continuous line and 

eav δϕ ,ˆ,  with red color, dashed line) are presented.  

If the actuator is non-linear one obtains the charac-

teristics from fig. 14; additionally, characteristics )(tvh  and 

( )ϕϕɺ  appear. When 0=hv  the actuator is in the saturation 

state and it works in the linear zone when .0≠hv  The 

characteristic ( )ϕϕɺ  (phase portrait of the system) shows that 

the non-linear system tends to a stable limit cycle. 

 

Fig. 14. Time characteristics in the case of non-linear actuator’s use 
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IV. CONCLUSIONS 

The aim of the adaptive command is to compensate 

the dynamic inversion error. Thus, the command law has 

two components: the command given by the linear dynamic 

compensator and the adaptive command given by the neural 

network. As control system one chooses the non-linear 

model of aircrafts’ dynamics in longitudinal plain. The 

reference model is linear. One obtains the structure of the 

adaptive control system of the roll angle and Matlab/ 

Simulink models of the adaptive command system’s subsys-

tems. Using these, some characteristics families are obta-

ined; these describe the adaptive command system’s dyna-

mics with linear or non-linear actuator. The system is a 

stable one and has very good dynamic characteristics. 
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