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Abstract—The pole-zero analysis is generally known to be very
sensitive to the numerical precision of the computer arithmetics. In the
paper, various methods are suggested for solving that problem. First,
an optimal pivoting strategy of the algorithm that reduces the general
eigenvalue problem to the standard one is presented for both full-
and sparse-matrix procedures. The algorithm increases the precision
of the semisymbolic analysis, especially for the large-scale radio-
frequency circuits. A novel technique is also incorporated recognizing
multiple poles or zeros, which are often computed inaccurately by
standard algorithms. A new type of this procedure called secondary
root polishing is described in the paper. The accuracy is furthermore
increased using longer numerical data. First, the long double precision
is utilized. Further, a novel application of a suitable multiple-precision
arithmetic library is suggested. Finally, using the longer numerical
data to eliminate possible imprecision of the multiple eigenvalues
is evaluated. The algorithm is demonstrated in both low- and high-
frequency domains. In the low-frequency domain, necessity of using
the longer numerical data is demonstrated by a power operational
amplifier with poles and zeros located in both hertz and gigahertz
ranges, which are often computed inaccurately by the standard algo-
rithms. In the high-frequency domain, the algorithm is demonstrated
by estimating the frequency of a distributed microwave oscillator, and
by estimating the bandwidth of a distributed microwave amplifier.

Keywords—Eigenvalues and eigenfunctions, poles and zeros, res-
onant or large-scale electronic circuits, sparse matrices, variable-
length arithmetic, cascade filters, transmission lines, power amplifiers,
distributed microwave amplifiers, distributed microwave oscillators.

I. INTRODUCTION

THE POLE-ZERO analysis belongs indisputably to the
most important parts of the design of electronic circuits.

However, the analysis is known to be very sensitive to the
numerical precision of algebraic operations during the pro-
cess [1]–[6]. Consequently, many of the theoretically exact
methods fail, especially for the large-scale radio-frequency and
microwave circuits.

Four major types of improvements to these methods are
proposed here:

• the first one consists in a meticulous algorithm design
regarding the choice of pivots during the reduction to the
standard eigenvalue problem,

• the second one suggests the primary or secondary root
polishing for a substantial improvement of the results of
both reduction and QR algorithm,

• the third one is based on using longer numerical data
types together with more precise arithmetic for the sparse-
matrix reduction – either as fully utilizing the given
hardware capabilities or by applying a suitable multiple-
precision software arithmetic library,

This paper has been supported by the Grant Agency of the Czech Republic,
grant No 102/08/0784.

Fig. 1. Final position of the nonzero matrix elements after the reduction. The
matrices P11 and Q22 are diagonal, the matrix Q11 is of arbitrary structure.

• and the fourth one suggests the longer numerical data
to be used for the QR algorithm to eliminate expected
imprecision of the multiple eigenvalues (the imprecision
of unequal eigenvalues with the same absolute value is
resolved using the shift of algorithm’s origin).

II. PRINCIPLE OF THE REDUCTION ALGORITHM

A system of linear circuit equations (or equations that are
linearized around an operating point) can be written by means
of the Laplace transformation

(sP + Q)X = Y , (1)

where s marks the Laplace operator, P /Q are the matrices as-
sociated with the dynamic/static parts of the model derivatives,
respectively, X is the vector of the Laplace representation of
circuit variables, and Y is the vector of external sources.

The poles of all the transfer functions and the zeros of a
transfer function “jth circuit variable divided by ith external
source” can be computed by solving the equations

det
(
sP + Q

)
= 0 for poles,

det
(
sP (0j) + Q(ij)

)
= 0 for zeros,

(2)

where the matrices P (0j) and Q(ij) arise from the original
ones – the first by zeroing jth column, and the second by
replacing jth column by Y with all its elements zeroed with
the exception of the one corresponding to ith source.

Solving the general eigenvalue problems defined by (2) is
more difficult than solving the standard ones. Therefore, a
systematic reduction is applied during the transformation of
(2) to the standard form, which is shown in Fig. 1 – it is an
alternative of the method in [7]. After the transformation, the
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determinant can be computed in a classical way:

det
(
sP + Q

)
=

(−1)nexch

n∏
i=m+1

Q22ii det
(
P11P−1

11

(
sP11 + Q11

))
=

(−1)nexch

m∏
i=1

P11ii

n∏
i=m+1

Q22ii det
(
s1 + P−1

11 Q11

)
,

(3)

where nexch is the total number of row and column exchanges
during the reduction, and 1 is the unity matrix. The operations
that transform the matrix sP +Q to the form shown in Fig. 1
are certain modifications of the Gauss elimination method.
The only exception occurs when the matrix P11 contains a
nondiagonal element that is not reducible by the diagonal
elements of this matrix. In such cases, it is necessary to
multiply a row from the lower part of the matrix by the s
operator, which is equivalent to moving a row of the Q22

matrix left. The nondiagonal element of the P11 matrix can
then be reduced by means of the transferred row. Note that the
two products in the equation (3) could be extremely big for
the large-scale RF circuits and, therefore, only their signs and
logarithms may be stored in the computer memory.

Note that for a general efficiency of the reduction algorithm
(3), utilizing matrix sparsities is necessary. Various methods
of exploiting the sparsity of matrices are described in [7]–[9].

The final step for determining the poles or zeros of the trans-
fer function is naturally the computation of the eigenvalues of
the matrix (i.e., solving the standard eigenvalue problem, for
which the QR algorithm with a shift of origin is mostly used)

Q′ = −P−1
11 Q11. (4)

III. ENHANCING THE ACCURACY OF THE REDUCTION

A. Optimal Pivoting for the Reduction Algorithms
The reduction process is very difficult from the point of view

of numerical precision, especially in the case of the large-scale
systems. The matrices often contain elements of very different
magnitudes. Therefore, a full pivoting should be used for the
choice of the kth key element:

Pkk := max
k6i6n
k6j6n

|Pij |, k = 1, . . . , n. (5)

However, the key element determined in the above stated way
is regarded to be zero if it is too small in comparison with the
maximum element of the kth column:

if |Pkk| 6 εeigen max
16i<k

|Pik|, then Pkk := 0. (6)

εeigen is an important parameter of the algorithm. An inap-
propriately large value of the parameter causes ignoring some
(real, in fact) poles or zeros, inappropriately small value causes
computing superfluous (spurious) poles or zeros.

The key elements determined in the upper and lower parts of
the matrices are used for the reduction of remaining elements
of the matrices if they are not too small:

if |Pi′j′ | 6 εround max
k6i6n
k6j6n

|Pij |, then Pi′j′ := 0,

k = 1, . . . , n− 1, i′ > k ∧ j′ > k, (7a)
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Fig. 2. Cascade of two 2nd-order building blocks. The application of
secondary root polishing is necessary for precise analysis.

if |Qi′j′ | 6 εround max
m<i6k
m<j6k

|Qij |, then Qi′j′ := 0,

k = n, . . . ,m + 1, m < i′ 6 k ∧m < j′ 6 k. (7b)

εround is a second parameter of the algorithm. It prevents the
reduction of tiny elements that can arise due to roundoff errors.

The reduction algorithm should be implemented to use the
sparsity of matrices P and Q. These matrices are sparse
enough for not too complicated tasks. However, the application
of the full pivoting is then difficult from the programming point
of view. Therefore, only partial pivoting must be used here –
the kth key element is chosen from the rest of the kth column
of a reduced matrix:

Pkk := max
k6i6n

|Pik|, k = 1, . . . , n. (8)

However, the key element determined in the above stated way
is regarded to be zero if it is too small in comparison with the
maximum element of the kth row:

if |Pkk| 6 ε max
k<j6n

|Pkj |, then Pkk := 0, (9)

where ε is a parallel to εeigen.
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TABLE I
COMPARISON OF THE POLE-ZERO ANALYSES OF THE CASCADE FILTER

Without Secondary Root Polishing (rads/sec)
Zeros ±7.98953027764×105j, ±2.54050871091×105j

Poles −5.61813401118×104−2.94208471184×10−25j

−5.61797752547×104+1.62558164422j

−5.61797752525×104−1.56365534119j

−5.61780942729×104

With Secondary Root Polishing (rads/sec)
Zeros ±7.98953027764×105j, ±2.54050871091×105j

Poles Quadruple −5.61797462230×104

V
In

p
u
t

VOutput

L1 L2 L14 L15R

C1 C2 C14 C15

Fig. 3. Modeling a circuit with the transmission line which generates 10 ns
impulse after applying voltage Vinput across the input terminals. R = 75 Ω,
L1 = L2 = · · · = L15 = 25 nH, and C1 = C2 = · · · = C15 = 4.444 pF.

B. Using the Primary and Secondary Root Polishing

Nevertheless, in some cases, the procedures (5)–(9) would
not be accurate enough and, therefore, they can generate inad-
missible errors. To decrease these errors, special techniques are
often used [10], [11], which are the methods of an iterative root
improvement. They sometimes enable the error to be decreased
to the level which is given by the processor roundoff error.
These methods are called root polishing [10]. With respect to
the following text, let us call them primary root polishing.

However, the primary root polishing should be comple-
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Fig. 4. Simulated step response of the circuit in Fig. 3 without and with the
secondary root polishing (SRP).

mented by another step. Let us assume that instead of a correct
couple of poles [−1,−1] we get [−1,−0.999999999999] after
the primary polishing. This tiny error (10−10 %) causes an
incorrect identification of two different poles instead of one
twofold. For instance, the equation of the step response will
be of quite a different structure than that in the correct case.
The above example is a typical illustration of an error which
can be eliminated by the so-called secondary root polishing.

Systematic procedural steps of the secondary root polishing
are defined in a detailed way in [12], [13]. The system consists
of the four procedures:

• Zeroing the negligible components. This procedure re-
moves the numerical inaccuracy by zeroing poles or zeros
with “too small” absolute values. A detailed algorithm for
all the possible circumstances is defined in [12].

• Identification of multiple roots. This procedure is neces-
sary for the partial fraction expansion of the s-domain
circuit function, and for the subsequent inverse Laplace
transform for finding equations of the transient and im-
pulse responses. First, all roots are sorted into groups with
“almost the same” values. Second, the “coincide test” is
performed inside each group. If the roots are identified as
identical, their real and imaginary parts are replaced by
the mean values. The procedure is sensitive to the control
parameter which must be neither too large nor too small.
For a large value, two different roots can be identified
as multiple. For a small value, multiple roots can be
identified as different. This can be dangerous especially
for the complex roots, when the algorithm needs not find
their conjugate counterparts.

• Polishing chains of zeros and nines. This procedure tests
the root’s mantissa, whether a longer string of zeros is
present on the right side of the decimal point. If it is
found, all numbers to the right of this string are replaced
by zeros. The longer the string of zeros the greater the
probability that the subsequent nonzero numbers are due
to rounding errors. Similarly, it is tested whether a longer
string of nines is present on the right of the decimal point.
If it is found, this string is replaced by zeros including all
subsequent numbers, and a prospective order transfer is
performed to the left-side. The longer the string of nines
the greater the probability that it is due to rounding errors.

• Zeros and poles cancellation. If this “cancellation” is
active, the procedure will try to cancel identical pairs of
zeros and poles. The roots are considered to be identical,
if both their real and imaginary parts are identical in the
frame of the relative error given by the control parameter.

Let us demonstrate the procedures by two typical examples.
First, consider a cascade of two 2nd-order building blocks in
Fig. 2. This filter is designed with the aim to reach so-called
FIR-BL approximation of frequency response with excellent
group delay [14]. Considering ideal operational amplifiers and
the equalities

C11 = C21 = C31 = C12 = C22 = C32 = C,

R11 = R21 = R31 = R41 = R21 = R22 = R32 = R42 = R,

R51 = R52 = 4R21 = 4R22,
(10)
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the quality factor of both blocks is 0.5 and the natural
frequency is set to the value ω0 = 1

2RC . The transfer function
of each block is given by the equation

Ki(s) = ai
s2 + ω2

zi

(s + ω0)2
, i = 1, 2, (11)

where

ai =
R4i

R6i
, ωzi =

1
RC

√
R6i

R
= 2ω0

√
R6i

R
, i = 1, 2. (12)

That is why the transfer function VOutput/VInput of the filter
in Fig. 2 has two double zeros

±jωz1 = ±j7.98953027764× 105 rads/sec,

±jωz2 = ±j2.54050871091× 105 rads/sec,
(13)

and one quadruple pole

−ω0 = ±j5.61797752809× 104 rads/sec. (14)

The results of the analysis are shown in Table I. Without the
secondary root polishing, only the zeros are found correctly.
Instead of the real quadruple pole, four different poles were
found. After enabling the root polishing, the algorithm found
a correct quadruple pole. This example of filters with identical
zeros or poles in a cascade is a typical representative of the
circuits with multiple roots.

Further, as a demonstration of the efficiency of the secondary
root polishing in the RF and microwave domains, consider a
cascade of 15 LC cells in Fig. 3, modeling a transmission line
for generating the 10 ns pulse after applying a constant voltage
VInput across the input terminals. The solution of this transient
process by means of semisymbolic computations represents the
following: finding 30 zeros and 30 poles of a VOutput/VInput

transfer function, the partial fraction expansion (PFE) of this
transfer function, and assigning the corresponding time-domain
formulas. Numerically, the PFE of a ratio of polynomials
represents an ill-posed problem [15]. The transfer function
poles are the important input data of this procedure. Their
small changes, especially in case of multiple roots, can make
arbitrarily large changes in the resulting residues or can lead
to absolutely different expansion formulas.

The analysis of the above circuit has been performed via
the SNAP (Symbolic Network Analysis Program) [16]. The
program finds 30 zeros and 30 poles within 15 digits of the
mantissa. Without a secondary root polishing, eight complex
conjugate couples of zeros and 10 complex conjugate couples
of poles were not found with exactly identical real and imag-
inary parts. The resulting waveform in Fig. 4 is affected by a
large error due to the failure of the PFE (see the waveform
“Without SRP”). After enabling internal algorithms of the
secondary root polishing, the poles are well polished and the
PFE operates well (see the waveform “With SRP”).

The last example shows that sometimes a small error in
the pole-zero analysis can cause fatal errors, and that the root
polishing can reliably prevent this failure.

C. Implementation of the Variable-Length Arithmetic

An additional improvement can be achieved using the long
double precision (usually 10 (on PC) or 16 bytes) instead of
the standard double (usually 8 bytes). However, only using
the variable-length arithmetic can be considered the ultimate
solution to the problem. A brief description of fundamental
ideas of the variable-length arithmetic has been performed in
[17]. In this subsection, a complete set of created procedures is
defined, and its efficiency is demonstrated in next subsections.

The arbitrary precision (variable-length) arithmetic routines
have been implemented in the Pascal language. Since the
design was made with portability in mind, the ISO 7185
standard was strictly obeyed. In addition, only a subset of
the language common with Borland Pascal/Delphi was used.
Simplicity and clarity of the design encouraged by the chosen
programming language are considered to be major virtues.
The variable-length natural numbers representing the mantissa
parts are implemented by means of dynamically allocated
linked lists rather than arrays. This eliminates the danger of
undesirable heap fragmentation, which could otherwise cause
allocation failure before all available memory has been used.
Only the classical general algorithms described in [18], [19]
have been employed for the four basic arithmetic operations.
Since the results of floating point operations are by principle
approximate (no matter how long the mantissa has been
chosen), an optional mechanism has been added maintaining
upper estimations of the cumulated roundoff errors for each
variable. This can be useful whenever the information about
the guaranteed accuracy of obtained results is needed (note that
alternative packages do not provide such accuracy estimations).
No special optimization to enhance the execution speed has yet
been performed. This is supposed to be part of the prospective
next stage of development, finally resulting in partial or com-
plete conversion of the routines into the assembly language,
utilizing all technical capabilities of the given hardware.

The implementation of the variable-length floating point
(VLFloatingPoint) arithmetic is part of a more extensive
library of routines, covering a hierarchy of other variable-
length numerical types: natural (or nonnegative integer) VL-
Natural, integer VLInteger, rational VLRational and com-
plex VLComplex. All these types adopt the same philosophy
of use: every variable of a particular type X (standing for any
of N, I, R, or F) has first to be allocated by the VLXNew
procedure. If it is to be used as an input to an arithmetic
operation (VLXAdd, VLXSub, VLXMul, or VLXDiv), it needs
to be initialized by VLXInit. By the end of a computation,
all used variables should be deallocated by VLXDispose.
Values can be converted from/into the standard real type by
VLXFromReal and VLXToReal, and read from/written to text
files by VLXRead and VLXWrite, respectively. For the pro-
grammers convenience, all arithmetic procedures are designed
to allow for variables to be given simultaneously as input as
well as output parameters.

Calling Pascal procedures from inside C code has been made
possible using the GNU family of compilers, for GNU Pascal
has types and calling conventions compatible with those of
GNU C.
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Fig. 5. AB-class power operational amplifier with wide spread poles and zeros (in both hertz and gigahertz bands) on which all the reduction techniques have
been compared.

TABLE II
COMPARISON OF THE TRANSFER FUNCTION CRUCIAL ELEMENTS OBTAINED USING FIXED- (UPPER PART) AND VARIABLE-LENGTH (LOWER PART)

COMPILER’S ARITHMETIC PROCEDURES

Crucial elements of transfer

function regarding precision

Full-matrix algorithm,

ε εeigen round= =
− −10 1015 20,

�Sparse-matrix algorithm,

double, ε= −10 19

�Sparse-matrix algorithm,

long double, ε= −10 23

Zero which should be 0 Hz �−0.986035 × 10−6 Hz �0 Hz �0 Hz

Minimum pole by magnitude �−1.76518 Hz �−1.76518 Hz �−1.76518 Hz

Maximum pole by magnitude �−7.31331 × 1010 Hz �−7.31330 × 1010 Hz �−7.31331 × 1010 Hz

2nd minimum zero by magnitude �−0.0847816 Hz �−0.0847825 Hz �−0.0847825 Hz

Maximum zero by magnitude �−6.99856 × 1010 Hz �−7.04891 × 1010 Hz �−6.99916 × 1010 Hz

Constant of transfer function �0.988898 �1.04496 �0.988968

The same observed elements 64bit mantissa, ε= −10 23 128bit mantissa, ε= −10 23 256bit mantissa, ε= −10 23

Zero which should be 0 Hz �0 Hz �0 Hz �0 Hz

Minimum pole by magnitude �−1.76518 Hz �−1.76518 Hz �−1.76518 Hz

Maximum pole by magnitude �−7.31331 × 1010 Hz �−7.31331 × 1010 Hz �−7.31331 × 1010 Hz

2nd minimum zero by magnitude �−0.0847825 Hz �−0.0847825 Hz �−0.0847825 Hz

Maximum zero by magnitude �−6.99775 × 1010 Hz �−6.99856 × 1010 Hz �−6.99856 × 1010 Hz

Constant of transfer function �0.988965 �0.988898 �0.988898

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 5, 2011 232



50

100p

50

1
0
0
p

20n

100p
20n

w=1.5,l=10

w=1.5,l=10

w=0.3,l=0.3

w
=

0
.0

5
,l
=

1
2

w
=

2
,l
=

2
.5

w
=

0
.4

5
,l
=

2
.9

w=0.4,l=1.5w=0.14,l=4

w=2,l=1.5w=0.1,l=4
1p

w
=

0
.6

7
,l
=

1
.8

1p

100p

5.1k

d

s
Atf35376

w
=

0
.1

,w
=

1
.8

20p

1p
w=0.33,l=8

w=0.36,l=8

w=0.37,l=8

w
=

0
.8

,l
=

1
.8

d

s
Atf35376

100p

0.5p

5.1k

w
=

0
.8

5
,l
=

1
.8

100p

5.1k

w=0.27,l=8
2x20p

0.5p

w
=

0
.8

5
,l
=

1
.8

w
=

0
.8

5
,l
=

1
.8

w
=

0
.8

5
,l
=

1
.8

d

s

100p

5.1k

1p

20p

w
=

0
.1

,l
=

1
.8

d

sg g g g
2xAtf35376

w
=

0
.6

,l
=

8
Vds

VOutput

Vgs Vgs″ Vgs″′Vgs′

Fig. 6. Tunable distributed microwave oscillator with the frequency controlled by the gate-source voltages Vgs, V ′
gs, V ′′

gs, and V ′′′
gs .

TABLE III
COMPARISON OF THE OSCILLATION FREQUENCIES OBTAINED WITH THE POLE-ZERO (PZ) AND STEADY-STATE (SS) ALGORITHMS

Vgs (V) V ′
gs, V

′′
gs, V

′′′
gs (V) f (PZ)

osc (GHz) f (SS)
osc (GHz)

(
f (PZ)
osc − f (SS)

osc

)/
f (SS)
osc (%)

-0.14 -1.4 3.1835 3.2308 -1.46
-0.15 -1.5 3.2582 3.367 -3.23
-0.16 -1.6 3.2922 3.1862 3.33
-0.17 -1.7 3.5040 3.276 6.96
-0.2 -2 3.3398 3.2916 1.46
-0.25 -2.5 3.1916 3.2733 -2.5

D. Enhancing the Accuracy of the QR Algorithm

As known, the QR algorithm may have problem with
accuracy in case of multiple eigenvalues. However, implement-
ing the longer numerical data can solve this problem. As a
convenient demonstrating example, let us consider the matrix

Q′ =

 3 −3 1
1 0 0
0 1 0

 . (15)

This matrix has a triplicate eigenvalue, which is (exactly) equal
to 1. If we use the simplest classical Givens method in the QR
algorithm, we obtain the inaccurate eigenvalues

λ1 = 1.004, λ2 = 0.999988, λ3 = 0.996012. (16)

Utilizing the more complicated, but more efficient Householder
method, we obtain the more accurate eigenvalues

λ′1 = 0.999993, λ′2,3 = 1.000004± 0.000006j. (17)

According to the above advisements, better results can be
obtained using the same (Householder) method, but with the
long double precision instead of (standard) double preci-
sion:

λ′′1 = 1.00000032, λ′′2,3 = 0.99999984± 0.00000027j. (18)

The best results can be obtained using the variable-length
arithmetic. With the 256-bit mantissa, the results have more
than 25 digits correct (Householder method was used again):

λ′′′1 = 0.9999999999999999999999999518544,
λ′′′2,3 = 1.000000000000000000000000024073

±4.16953× 10−26j,

(19)

which clearly demonstrates the absolute precedence of the
variable-length arithmetic. Let us emphasize that even for
using the 256-bit mantissa, the secondary root polishing (see
the chains of zeros and nines in (19)) has also to be used.
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IV. SOLVING MORE COMPLEX APPLICATION EXAMPLES

A. Analyzing a Power Operational Amplifier With Poles and
Zeros in Both Hertz and Gigahertz Bands

1) Improvement with the long double arithmetic: Let us
discuss an AB-class power operational amplifier in Fig. 5.
Let us also emphasize that although the amplifier itself is
an LF device, it has majority of the poles and zeros of a
VOutput/VInput transfer function located in the gigahertz band
due to many parasitic capacitances of the diodes and bipolar
junction transistors.

In general, the (inefficient) full-matrix version of the re-
duction algorithm seems to work sufficiently. However, the
numerical precision is still inadequate for a certain class of
tasks solved by the efficient sparse-matrix one. In Table II
(upper part), a comparison between sparse-matrix double
and sparse-matrix long double (10 bytes) reductions is per-
formed (experiments with the long double precision were
performed in [20], especially for digital filters analyzed using
the Z-transformation). Considering the results for 1024bit-
mantissa variable-length arithmetic (see the following subsec-
tion) to be correct, the incorrect digits are underlined. As
observed, the poles have been computed quite precisely. How-
ever, the precision of the computation of zeros is considerably
worse – it is caused by the difference between the smallest and
largest pole/zero magnitudes, respectively. For the multiplying
constant of transfer function, the inaccuracy is similar.

2) Improvement with the variable-length arithmetic: The
results obtained with the sparse-matrix reduction algorithm
rewritten to call the variable-length arithmetic routines are pre-
sented in Tab. II (lower part). The parameter ε was chosen to
be 10−23, i.e., the same as in the long double computation,
to allow a comparison of the corresponding results.

With mantissa length limited to 64 bits, which is the same
length as in the long double type (extended precision
of IEEE 754), the achieved precision of results is basically
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Fig. 8. Frequency response of the distributed microwave amplifier (the result
of the AC analysis for the linearized circuit at the amplifier operating point).

the same as with long double. A slight tendency towards
the correct values is already visible in the variable-length case
due to more correct rounding strategy used. All the poles and
zeros obtained with 128-bit mantissa are already correct to
6 decimal digits. The file of results for the 128-bit mantissa
length differs from the ones for longer mantissas (256, 512
and 1024 bits were tried) only in the ordering of zeros done
by the procedure solving the standard eigenvalue problem. All
the poles and zeros for 256 bits and more came out the same
to 6 decimal digits and in the same order of listing in the file
of results. The duration of the computations by 3 GHz PC
did not exceed approximately 1 minute even for the 1024-bit
mantissa length.

Changing the ε value was also tried for mantissas of 256
and 1024 bits. For 256 bits, e.g., it turned out to be possible
to use its value as tiny as 10−150 without any change in the
highest six digits and order in the results file. With 1024 bits,
this limit even drops below 10−320.

Experiments with the rational “unlimited-precision” arith-
metic were also carried out; the computing complexity, how-
ever, turned out to be too high for the present example.
The poles computation was interrupted after several hours,
when only about a half of the approximate total of 200,000
arithmetic operations had been finished. Since the duration of
multiplications and divisions increases with about the square
of operand length, it is virtually impossible to estimate the time
needed for the second hundred thousand arithmetic operations.

B. Estimating the Frequency of a Distributed Oscillator

Consider a distributed microwave oscillator in Fig. 6 [21].
Let us emphasize that the oscillator is tunable – therefore
a number of analyses had to be carried out. As shown in
Fig. 7, the transient of the oscillator is very complicated.
Therefore, achieving the steady state had to be accelerated
by the extrapolation algorithm. However, even the accelerated
method needs more than 15 minutes (again, on the PC with
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Fig. 9. Distributed microwave amplifier (“active transmission line”) with constant amplification VOutput/VInput over several decades.

3 GHz Pentium 4) to determine a period of the steady state – it
is caused by hundreds of internal nodes, which are necessary
to model the microstrip lines accurately. For this reason, a
fast estimation of the frequency of the oscillations using poles
should be very useful.

The results are summarized in Table III (for Vds = 2.5 V) –
the pole-zero (PZ) estimation is based on the imaginary part of
the smallest pole with a positive real part, the accurate steady-
state (SS) value is based on the ε-algorithm results. The results
show that the error of the pole-zero estimation is mostly of the
percentage order.

C. Estimating the Bandwidth of a Distributed Amplifier

Consider a distributed microwave amplifier in Fig. 9 [22].
The frequency response of the amplifier is shown in Fig. 8.
The 3-dB band begins approximately at 100 kHz, and ends
approximately at 5 GHz, i.e., the amplification computed as
20 log |VOutput/VInput| is constant over several decades.

In this circuit, only eight GaAsFETs have been used.
However, to cover higher frequencies, the number of circuit
elements could be big and the AC analysis may be too time-
consuming. For this reason, a fast estimation of the bandwidth
using the poles-zeros analysis is useful. Here, only the two
zeros are located in the interval

〈
2π × 105, 2π × 109

〉
:

z1 = −2π × 1.161386× 105 rads/sec,

z2 = −2π × 9.577553× 108 rads/sec.
(20)

Remaining poles and zeros are located outside this interval.
As the two zeros (20) are very near the border of the interval,
the amplification must be approximately constant inside it.

V. CONCLUSIONS

Several methods substantially enhancing the precision of the
pole-zero analysis have been suggested including sophisticated
pivoting strategy, primary and secondary root polishing, and
utilizing the variable-length arithmetic for both sparse-matrix
reduction and the QR algorithm. A combination of these
procedures seems to be the possible solution of the frequent
and serious problems with the accuracy of the pole-zero
analysis. The algorithms are demonstrated by several typical
circuits, and in an unusual way by estimating a distributed
oscillator frequency and a distributed amplifier bandwidth.
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