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Abstract— In this paper, a new method, named optimum 
innovation data association (OI-DA), is proposed to give the nearest 
neighbor data association the ability to track maneuvering multi- 
target in dense clutter environment. Using the measurements of two 
successive scan and depending on the basic principle of moving 
target indicator (MTI) filter, the proposed algorithm avoids 
measurements in the gate size of predicted target position that are not 
originated from the target and detects the candidate measurement 
with the lowest probability of error. The finding of optimum 
innovation corresponding to the candidate valid measurement 
increases the data association performance compared to nearest 
neighbor (NN) filter. Simulation results show the effectiveness and 
better performance when compared to conventional algorithms as 
Nearest Neighbor Kaman Filter (NNKF), Joint Probabilistic Data 
Association Algorithm (JPDA). 
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I. INTRODUCTION 

Multiple-target tracking (MTT) is an essential component 

of surveillance systems. Real-world sensors; e.g., radar, sonar, 
and infrared (IR) sensors often report more than one 
measurement that may be from a given target. These may be 
either measurements of the desired target or Clutter 
measurements. Clutter refers to detections or returns from 
nearby objects, clouds, electromagnetic interference, acoustic 
anomalies, false alarms, etc. A general formulation of the 
problem assumes an unknown and varying number of targets 

that are continuously moving in a given region. The states of 
these targets and the noisy measurements that are sampled by 
the sensor at regular time intervals (scan periods) are provided 
to the tracking system. When tracking a target in clutter, it is 
possible to have more than one measurement at any time since 
a measurement may have originated from either the target, 
clutter, or some other source. It is impossible to associate the 
target with a measurement perfectly. The performance of a 
tracking filter, however, relies heavily on the use of the 
correct measurement. In addition to the detection probability 
is not perfect and the targets may go undetected at some 
sampling intervals. A primary task of the MTT system is data 
association that is responsible for deciding on each scan which 
of the received multiple measurements that lie in the specified 
gate size of the predicted target position should update with 
the existing tracking target. The secondary goal is estimation 
of the number of targets and their position (states) based on 
the measurements originating from the targets of interest. In 
general, data association between measurements and targets is 
needed, but this is difficult to realize because of measurement 
error, false alarms, and missed targets. Due to the data 
association result is crucial for overall tracking process; a 
gating process is used to reduce the number of candidate 
measurements to be considered. In data association process, 
the gating technique [1] in tracking a maneuvering target in 
clutter is essential to make the subsequent algorithm efficient 
but it suffers from problems since the gate size itself 
determines the number of valid included measurements. 
Another problem in case of tracking multiple targets, data 
association becomes more difficult because one measurement 
can be validated by multiple tracks in addition to a track 
validating multiple measurements as in the single target case. 
To solve these problems, the important of an alternative 
approaches known as nearest neighbor data association 
(NNDA) [2-5], probabilistic data association (PDA) [6,7], 
joint probabilistic data association (JPDA) [7,8], and multiple 
hypothesis Tracking (MHT) [9], etc. has been used to track 
multiple targets by evaluating the measurement to track 
association probabilities with different methods to find the 
state estimate [10-12]. NNDA that depends only on choosing 
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the nearest valid measurement to the predicted target position, 
has been used in real work widely because of its low 
calculation cost, but it readily miss-tracks in dense cluttered 
environment. PDA, JPDA and MHT need prior knowledge 
and some of them have large calculation amount [13-16]. We 
propose here an extended algorithm applied to conventional 
NNDA to be able to track the multi-target in dense clutter 
environment. This proposed algorithm is more accurate to 
choose the true measurement originated from the target with 
lower probability of error and less sensitivity to false alarm 
targets in the gate region size than NNDA algorithm. 
Depending on the basic principle of moving target indicator 
(MTI) filter used in radar signal processing [16-20] which get 
rid from the fixed targets and the targets that moving with 
lower velocity and their moving distance lower than specified 
certain threshold value, the proposed algorithm reduces the 
number of candidate measurements in the gate by MTI 
filtering method that compares the moving distance measure 
for each measurement in the current gate at the update step to 
all previous measurement in the same gate at the predicted 
step and then avoids any measurement in the current gate 
moves a distance less than the threshold value due to 
comparison. Thus, decreasing the number of candidate 
measurements in the current gate lead to decreasing the 
probability of error in data association process. The main key 
to detect the moving or fixed false target is the innovation 
parameter that measure the moving distance between the 
current measurement and the predicted target position. By 
calculating this parameter for all measurement in the current 
gate compared with the scanned previous measurement in the 
same gate, the optimum innovation of the candidate 
measurement is obtained. This is called optimum innovation 
data association (OI-DA) method which is combined with 
NNDA algorithm to apply the proposed algorithm in multi 
tracking targets in presence of various clutter densities. 
Simulation results showed better performance when compared 
to the two conventional NNKF, JPDA algorithm. 

II.  BACKGROUND 

A.      Kalman Filter Theory 
Based on Kalman filter estimation [21], we list the filter 
model. The dynamic state and measurement model of target t 
can be represented as follows  

( ) ( ) ( ) TtktwktxkAtktx ,...,2,1)1(11 =−+−−=          (1) 

( ) ( ) ( ) ( ) TtktvktxkH tktz ...2,1=+=                       (2) 

Where is the n x 1 target state vector. This state can 
include the position and velocity of the target in space 

, The initial target state,  for t = 1,2, ..., T 

, is assumed to be Gaussian With mean  and known 

covariance matrix . Where the unobserved signal (hidden 

states) 
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process of transition probability  and 

initial distribution  . is 

the m x 1 measurement vector,  denotes state 

transition matrix,  denotes measurement matrix, 

 and  are mutually independent white 
Gaussian noise with zero mean, and with covariance matrix 
Q(k-1) and R(k), respectively.  
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The innovation mean (residual error) of measurement  
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where 
( ) ( ) ( )km tkH tkz t =ˆ  

and the predicted state mean and covariance is defined as 
( ) ( ) ( )1−= kmtkAtkm t  and 

( ) ( ) ( ) At ( ) QkkptkAtkp t +′−= 1                                    (4) 
 
Then, we can update state by 

)()()()( kV optkK tkmtkmt +=                                         (5) 

 

where is the selected innovation mean from  

corresponding to the choosing measurement as a result of data 
association process ,  denotes gain matrix calculated by 

state error covariance  and innovation covariance 

, their recursive equations can be represented as 
follows 

V opt )(kV t
i

)(kK t

)(kpt

)(KSt

)()()()()( ′−= kK tKStkK tkptkpt                                 (7)    

)()()()()( KRkH tkptkH tKSt +′=                              (8) 
1)()()()( −−= KStKH tkptkK t                                      (9) 

 
When multiple target tracking begins, we get for each target t 
measurements within correlation gate (gate size) as candidate 
measurements when ( )kzi  satisfies condition 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) γ≤−−′
− kmtkH tkzikS tkmtkH tkzi

1
   (10) 

where γ  denotes correlation gate. If there is only one 
measurement, this can be used for track update directly; 
otherwise if there is more than one measurement, we need to 
calculate the equivalent measurement. 
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 323



B.     Nearest Neighbor Kalman Filter 
The NNKF is theoretically the most simple single-scan 
recursive tracking algorithm. The NNKF consists of a 
discrete-time Kalman filter (KF) together with a measurement 
selection rule. The NNKF takes the KF’s state estimate xˆ(k-1 
| k-1) and its error covariance P(k-1 | k-1) at time k-1 and 
linearly predicts them to time k. The prediction is then used to 
determine a validation gate in the measurement space based 

on the measurement prediction  and its 

covariance S(k) . When more than one measurement 

( 1|ˆ −kkzt )
( )kzi  fall 

inside the gate, the closest one to the prediction is used to 
update the filter. The metric used is the chi-squared distance: 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) γ

γ

≤⎟
⎠
⎞

⎜
⎝
⎛ −−

′
⎟
⎠
⎞

⎜
⎝
⎛ −=

≤−′
=

kztkzikStkztkzi

V t
ikStV t

iD ti

ˆ1ˆ

12

   (11) 

The update corrects the state prediction by a time-varying gain 
multiplying the difference between the prediction and the 
actual measurement. The error covariance is also updated (see 
[22] for further details). This filter is only mean-square 
optimal when there are no false alarms and a single target is 
present. 

C. 2-D Assignment Algorithm 
When multiple targets are present, the nearest neighbor rule 
can be modified to take target multiplicity into account. 
Suppose there are T tracks and M validated measurements 
between them. The single-scan measurement-to-track 
association problem may be posed as a 2-D assignment 
problem [23] in which the assignment cost between 
measurements i and track t is taken as the negative logarithm 
of: 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

−′
−
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The resulting assignment problem may be solved by the 
algorithms based on shortest augmenting paths [24]. The 
algorithm yields associations that enable tracks to be updated 
with their assigned measurement. Tracks not receiving a 
measurement are predicted but not updated. 
 
 
  
 

III Optimum Innovation Data Association 
 

The NNKF suffers from tracking in dense clutter environment 
and its performance is degraded with many loss-tracks 
accordingly, a new suboptimal algorithm optimum innovation 
data association (OI-DA) is introduced to increase the tracking 
performance and to be able to track maneuvering targets in 
heavy clutter. The main idea based on detecting or 
distinguishing between the clutter measurements in the gate of 

the predicted target and the measurement originated from the 
moving target using two successive scan. The measurements 
at time k-1 that lie in the gate of the predicted target position 
(predict to time k) is processed by the following method with 
the measurements at time k that lie in the same gate to obtain 
the optimum innovation corresponding to distance metric 
between true target measurement and the predicted target 
position. To obtain the optimum innovation we have three 
models that are processed individually, where the NN 
algorithm is used as one of them. In this section as shown in 
Fig 1, we introduce a new algorithm. 
 In the prediction step, Let 

( ) ( ) ( ) ( ){ }1,....12,111 −−−=− kzwnkzkzkZ  be a set of points 

in the 2-D Euclidean space at time k-1  where  is the 

number of points at time scan  and let 

w n
tΔ ( )kztˆ  be a predicted 

position of the  tracked target at time k. according to 
distance metric measure and gate size, let 

tht

( ) ( ) ( ) ( ){ }1,..1,..111 −−−=− kzmikzikzkZ t  be a set of 

the candidate points detected in the gate tht ( )1−kGt  of 

predicted position ( )kztˆ  whose elements are  a subset  from 
the set ( )1−kZ  where i =1 to mi ( number of detected points  

in gate ( )1−kGt  at time k-1) and ( 1−kZ t )  be a set of all valid 

points ( )1−kzi  that satisfy the  distance measure condition  
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γ  is threshold value that determines the 
gate size and l =1 to , i =1 to mi, i. e for each target t, i is 
initialized by 1 and is increased by  i = i +1 after each valid 
point is detected up to last mi detected points.  

w n

 
In the updating step, let ( ) ( ) ( ) ( ){ }kzwckzkzkZ ,....2,1=  be a 

set of points in the 2-D Euclidean space at time k where  
is the number of points at time scan . The candidate points 
detected in the same gate as 

w c
tΔ

( )kGt ( )1−kGt  of the 

predicted position  be a subset tht ( )kztˆ

( ) ( ) ( ) ( ){ }kzmjkz jkzkZ t ,..,..1=  from the set ( )kZ   where 

j =1 to mj (number of detected points in tht gate at time k) and 
( )kZ t  set of all valid points z j that satisfy the 

distance measure condition 

  for each 

target t where l =1 to , j=1 to mj for j=j+1 after each 
valid point is detected.  To distinguish between the detected 
measurements in 

be a  ( )k  
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Fig. 1 Schematic diagram of the proposed OI-DA algorithm 

     At time k  

Two cases will be occurring: 

when one of mI measurement that has δ>Δvx j  , 

δ>Δvy j (not originated from clutter measurement) 
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Fig. 2 The current and previous targets position of x,y coordinate in a gate  
 
measurement of x and y component in ( )kGt to its 
corresponding measurement in is calculated and to 
observe the distance measure between each measurement in 

and its nearest value. Then we consider that the 
measurement in  is originated from clutter in case its 
nearest measure not exceed a threshold value which represent 
fixed or false moving target (clutter). This is based on 
calculation of the innovation mean for all detected points 

, of x and y component as follow; 
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Each point j in  has nearest point i in ( )kGt ( )1−kGt by 
calculating the minimum absolute difference value 

and its index  between the 

calculated innovation means for all point i at each point j as 
follow;  
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Depending on the clutter point has very small change 
compared to the change in target point of x and y component 
at two successive scan in each gate its center is the prediction 
target position. For simplicity, if we assume as shown in 
Fig.(2), the gate includes measurements {z1,z2,z3,z4,z5}at 

time k and time k-1 in x,y coordinate, it is clear that 
z1(k),z2(k),z3(k),z5(k) are measurements originated from 
clutter while z4(k) is a measurement originated from the target 
, we found that the considering of clutter point has high 
probability when index I j is the same  as or (e l 

to) vyI j  while the considering of target point has high 

probability when index vxI j is different (not equal 

to) vyI j , according to the above consideration we detect  how 

many points mI represent a clutter point (i.e the corresponding 
measurements j are not valid and are avoided from data 
association process) and how many point mV represent  a 
target point (i.e  corresponding measurements j are valid and 
one of them has the optimum index that is found by  data 
association process) .The on process take in 
consideration the optimum innovation mean 

),( vyoptvxopt directly in case that the number of detected 

points mV is  one, whi

 qua

or 
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aining points represent a clutter(invalid 
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Another case that data association process take in 

hout tering in calculation model of innovation mean 
process. i.e. the calculated number of detected point mj is one 
in 

consideration the optimum innovation mean 
),( vyoptvxopt directly when existing target with no clutter  

wit en
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              , where j=1 

Two special cases may be occurring according to the scenario 
in the following application assignment:- 
The first case, gate  than one moving target and 
mV>1 as 
innovati

 contain more
a result of data association process. The optimum 

on mean is calculated by NNDA as 

follow; 
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e calculated 
to
m

e target in the gate b
change in distance is still higher than the threshold value that 

Where j
*

is the index of selected measurement from mV valid 
point that has the minimum distance from the predicted target 
position. 
The second case, all measurements in the gate ar

 be invalid as result of data association process  i.e  mV=0 , 
I = mj. in this case we have two consideration:- 
- The target may be exist and moves small distance when 
decreasing its velocity due to maneuvering and takes invalid 
consideration as the remaining fals ut the 
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detect the target as clutter i.e δ>Δvx j , δ>Δvy j . The 

optimum innovation mean ),( vyoptvxopt is calculated by 

selecting the measuremen  t um changet t he max  in 
distance under condition  

hat has im
δ>Δvx j , δ>Δvy j  as follow, 

toj
j Δ+Δ

=
=                          (21) 

* kvx jvxopt =

d target position 

vxopt
 .                                                                (22)  

ted from the target 
 improve the data association process.  

 OI-DA using Kalman filter is represented in 

 using Kalman filter 

2. Do prediction step, 
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- The target not detected in the gate (missed) and all 
measurements are considered to be false target. In this case, 
the updated target is assigned to the predicte

)(

and no innovation mean value is required i.e 

 
vyopt 0

0

=
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w  
Finally, we obtain the optimum innovation mean that is related 
to the true selected target with decreasing the probability of 
error and is used in updating target to the correct position. 
Reducing the number of valid points in the tht gate by 
detecting the false measurement to be invalid (i.e not include 
in the data association process), this increase the probability 

 choosing the true measurement originafor
and
    

III. I O I DMPLEMENTATION OF PTIMUM NNOVATION ATA 
ASSOCIATION (OI-DA) USING THE KALMAN FILTER. 

We propose an algorithm which depends on the history of 
observation for one scan and uses innovation mean calculation 
with a fixed threshold to obtain the optimum innovation mean 
that is related to the association pairing between the choosing 
measurement and track (predicted target) and is used in update 
state estimation of the target. In conventional data association 
approaches with a fixed threshold, all observations lying 
inside the reconstructed gate are considered in association. 
The gate may has a large number of observations due to heavy 
clutter, this leading to; increasing in association process since 
the probability of error to associate target-originated 
measurements may be increased. In our proposed algorithm 
detecting moving target indicator (MTI) filter is used to 
provide the possibility to decrease the number of observations 
in the gate by dividing the state of observations into valid 
represent moving targets and invalid represent the fixed or 
false targets that only the valid are considered in association. 

he proposedT
algorithm 1.  
 
Algorithm 1 OI-DA
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5. Calculate invalid mI measurement (false target) in case 
 and mV measurement (true moving target) in case 
 

vyI jvxI j =

vyI jvxI j ≠

     - Calculate directly the optimum innovation                  .                              
in case (mV = 1, j = index(mV))   or ( 

mj = 1,  j = 1) 

),( ′= vyoptvxoptvopt

            
)(

)(

kvy jvyopt

kvx jvxopt
=

=

     - Choose NN of mV valid measurement to be the    .       .  
optimum innovation in case . . . . . .   

(mV > 1, j = index(mV))   .                     

),( ′= vyoptvxoptvopt
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*

kvy jkvx j
mVtoj

j +
=
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=

=
 

    - Choose the measurement to be the optimum innovation 
that has the maximum change in 

distance under condition  

),( ′= vyoptvxoptvopt
δ>Δvx j , in case mV = 

0, mI = mj, j=index(mI) as follow, 

δ>Δvy j

{ }22max
1

arg
*

vy jvx j
mItoj

j Δ+Δ
=

=  

       
)(

)(

*

*

kvy jvyopt

kvx jvxopt
=

=

      - Otherwise the above condition, the optimum will be set 
as  

         
0

0

=

=

vyopt

vxopt

6- end 

IV. SIMULATION RESULTS  
Simulation results have been carried out to monitor the 
performance of the proposed OI-DA algorithm compared to 
the conventional NNKF and JPDA filter. To highlight the 
performance of the proposed algorithm, we used a synthetic 
dataset to track three maneuvering targets which are continues 
from the first frame to the last frame in varying clutter density. 
The initial mean  for the initial 

distribution   is set to = [17.7, 9.16, 0, 0], 

= [13.3, 8.8, 0, 0], = [14.4, 11.7, 0, 0], and 

covariance = diag ([400, 400, 100, 100]), t = 1,2,3. The 

row and column sizes of the volume (V=  ). We 
initiate the other parameters as: ,V=20x20 , the sampling time 
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Given a fixed threshold (  ), we showed that at high 
signal to noise ratio with low clutter density (

10 4−=γ
λ = 

0.0005 ), the three algorithms appear to perform as 
expected. Fig. 3(a),(b),(c) shows the estimated target tracks 
using the NNKF, JPDAF and the OI-DA filters respectively at 
low clutter density. The figures show that the three filters 
were effectively able to track the targets at high SNR. At low 
signal to noise ratios the corrupted target track in a uniform 
clutter with high varying clutter density (

2−m

λ = 0.001  for 
medium clutter and 

2−m
λ = 0.01  for dense clutter ) is shown 

in Fig.4, where the NNKF and JPDA filters were not be able 
to track the targets. Fig. 5,6 show the estimated target tracks 
using the NNKF, the JPDAF, and the proposed OI-DA filters 
at the two different SNR as mentioned above where In this 
figures, the colored solid line represents the underlying truth 
targets of the trajectory (each target with different color) while 
the colored + symbol represents trajectory of the tracked 
targets. The figures shows that only the OI-DA as shown in 
Fig. 5,6 (c) is able to track the targets at two different heavy 
clutter density. The explanation of this behavior is due to the 
fact that, at low SNR the target- originated measurement may 
fall outside the validation gate when choosing the wrong valid 
measurements during data association process and as a result, 
the estimated target states will be clutter- originated. The OI-
DA has the advantage to increase the probability of choosing 
the correct candidate measurement. We also compared error 
root mean square value (RMSE) for the different three 
approaches each with three targets at our three cases in 

2−m
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different clutter as shown in Fig. 7. Our proposed algorithm 
has lower error, RMSE values than JPDAF over frame 
numbers and approximately the same as NNKF. 

V. CONCLUSIONS 
From the results obtained in the simulations for multi-target 
tracking, it can be seen that at low clutter density (high SNR), 
all the tracking algorithm (NNKF, JPDAF and OI-DA) are 
able to track the targets. However, at heavy varying clutter 
density (low SNR), NNKF and JPDA algorithm fail to track 
the targets, where the proposed OI-DA algorithm has the 
capability to maintain the tracked targets.  From the valid 
based measurement regions, The OI-DA algorithm 
distinguishes between the fixed or false targets to be 
considered as invalid targets and the moving true targets to be 
valid during data association process. The OI-DA algorithm 
overcome the NNKF problem of loss tracking the targets in 
dense clutter environment and has the advantage of low 
computational cost over JPDAF. By using this new approach, 
we can obtain smaller validated measurement regions with 
improving the performance of data association Process which 
have been shown to give targets the ability to continue 
tracking in dense clutter. 
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                                        (c) 
Fig. 3. X- and Y- trajectory show the state of successful tracking  to 
maneuvering multi-targets (3 target with + symbol for tracked target position 
and solid line for true target path) move in low clutter using 3 approaches 
algorithm (a) NNKF (b) JPDAF (c) OI-DA.  

             
                     (a)                                 (b) 

             
                         (c)                              (d)       

                                                
                           (e)                              (f)                 
Fig. 4. The state of tracking 3 targets  move in different clutter density using 3 
approaches algorithm NNKF as in (a),(b), JPDAF as in (c),(d) and OI-DA as 
in (e),(f). Images (a),(c),(e ) show tracking in medium clutter and images 
(b),(d),(f ) show tracking in dense clutter 
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                                       (c) 
Fig. 5 X- and Y- trajectory show the state of tracking 3 targets in medium 
clutter (+ symbol refer to tracked target position and solid line to true target 
path) using 3 approaches algorithm (a) NNKF and  (b) JPDAF  loss track 
while (c) OI-DA maintains tracks  
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                                         (c) 

Fig. 6 X- and Y- trajectory show the state of tracking 3 targets in dense  clutter 
(+ symbol and solid line refer to tracked target position and true target path 
respectively) using 3 approaches algorithm (a) NNKF and  (b) JPDAF  loss 
track while (c) OI-DA maintains tracks  
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                                                 (c) 
Fig. 7 The root mean square error[RMSE] for each  target (3 targets) 
separately over frame number (each frame take 4 sec / one scan) for the 3 
approaches algorithm as (a) with low clutter ,(b) with medium clutter and (c) 
with  dense clutter . From (b), (c) the RMSE  is maintained minimum for the 
proposed OI-DA  and less sensitivity to dense clutter.  
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