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Abstract— The development of ubiquitous sensing strate-
gies in home environments underpins the promise of adaptive
architectural design, assistive robotics, and services which
would support a person’s ability to live independently as
they age. In particular, the ability to infer the actions and
behavioral patterns of an individual from sensor data is key
to effective design of such components for aging in place.
Frequently, activity recognition is accomplished using vision
based sensors. The method employed in this paper makes use
of self similarities in a video motion sequence to construct
a descriptor of the activity in the form of a Histogram of
Oriented Gradients (HOG). Descriptors are used as exemplars
for classification and are shown to accurately identify motion
video recorded from other views. Three candidate motions
were performed using a PUMA robot (for repeatability). Video
of each motion was recorded from an array of vantage points
on the surface of a virtual sphere surrounding the workspace of
the robot. This method is then extended to non-video motion
sensor data collected from the same set of points. Results
show that mean HOGs generated from Self Similarity Matrices
may serve as effective exemplars to classify motions in both
video and non-video formats. Video data provides superior
classification results. However, motion sensor data offers a
less intrusive option with promising accuracy especially when
multiple sensors outputs are fused to form aggregate readings.

Keywords— Activities of daily living, Activity recognition,
Aging in place, Sensor placement, Self similarity

I. INTRODUCTION

A. Motivation

MObility decreases as we age. Such reduction,
whether gradual or sudden, may ultimately

impair one’s ability to perform essential Activities
of Daily Living (ADLs). Often, it is vital to ensure
that older adults have the ability to perform ADLs
independently [26]. For those wishing to age in
place, a reduced capacity to conduct ADLs may be
associated with diminished quality of life, decreased
independence, the need for higher caregiver burden,
or even institutionalization [6]. This paper discusses
an innovative effort to sense and characterize user

activity through active sensor placement. Successful
application of these results could form the basis
of a comprehensive system of adaptive robotic and
architectural components to support independent
living for individuals whose capabilities and needs
are changing over potentially long periods of time.

The loss of dexterity in the hand is a key factor
affecting performance of certain ADLs including
precision and grip tasks. Further, decreased manual
dexterity is often coupled with pathological condi-
tions such as osteoporosis and Parkinson’s disease,
making this an interesting area of research [3]. For
the current study a selection of representative tasks
were examined: reaching (e.g., for a cup), grabbing
(e.g., the bed rail) and pressing (e.g., a call button).
These are all hand functions that have been used in
studies exploring hand and finger mobility in aging
adults [12],[21].

Architects and environmental designers attempt to
accommodate those with reduced mobility through
the use of Universal Design Principles (UDP) and
smart home technologies. UDPs ensure that the en-
vironment does not confound an individual’s efforts
to complete tasks. UDPs make the environment
safe, clean, legible and barrier-free [11],[14],[23]
for all occupants, regardless of ability. These strate-
gies facilitate resident mobility and independence.
However, the majority of current implementations
are static and of low fidelity, with accommodation
solely the result of the form and placement of
furniture and fixtures.

Smart homes extend awareness, increase control
over systems, and enhance the security, health-
fulness and safety of the environment through
sensing, inference, communication technologies,
decision-making algorithms and appliance control
[5],[10],[13],[19]. These efforts are mostly focused
on building systems because the real-time process-
ing of occupant activity is expensive and often relies
on technologies considered intrusive of people’s
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privacy. As a result, most occupant sensing in smart
homes remains low fidelity. Smart home technology
would benefit greatly from the capacity to sense
motion with high fidelity. In particular, this would
facilitate development of robotic components to
actively support user need while preserving privacy.

Such robotic components would allow for learned
inference of user action and intention through per-
sistent monitoring. Further, degradation in the abil-
ities of the user could be tracked over time so
as to adaptively inform the robot’s assistive ac-
tion plans. For example, a robotic bedside table
might keep inventory of personal items, provide
automated reminders, control lighting and music,
or provide critical care alerts to medical personnel.
With knowledge of typical user motion patterns the
robot could respond to gestured commands or detect
infrequent needs such as assistance with reach,
weight transference, or ambulation.

A significant body of work exists in the area of
automated recognition of human activities. Clearly,
detection of user activity and inference of user con-
text and intention are central to action planning by
system software and robotic components. Despite
the development of many promising techniques, the
goal of robust activity recognition remains elusive.
Due to such factors as changes in lighting and
camera position, variations in anthropometry, and
speed of execution, the problem remains largely
unsolved [2],[16],[24].

Frequently, activity recognition research revolves
around the use of visual images to analyze the
behavior of human participants through tracking
and kinematic analysis of physical geometry (limb
dimensions, joint angles, etc.) [2]. However, it has
been seen that many users find the presence of
cameras to be intrusive in certain situations [1],[9].
Hence, this paper explores an non-structural ap-
proach previously applied to video surveillance for
its applicability to non-vision based sensing. Also,
the claim that the perception of human motion is
invariant to changes in viewing angle [16],[24] is
examined. The analysis discussed here first validates
results from video data and then applies the same
method to IR motion sensor data. These sensors
were selected to allow for greater user privacy while
also being insensitive to variations in lighting.

B. Related Work

Toward the determination of user activity con-
text, two approaches have been widely used. Most
broadly (on a household scale), observations and
sensing of a user’s interactions with the objects in
their environment have been used to quantify dis-
crete events such as entry or exit of rooms, appliance
actuation, eating, drinking, toileting activities, etc.
Such events are often sensed through the use of
binary (switched) sensing devices [4],[25],[27] or
wearable (accelerometer or RFID) sensors [20],[22].

Less broadly and of close application to the
current study, the motions comprising actions them-
selves may be analyzed. Research in this area can
be roughly divided into two main components. First,
a representation of the motion in some compact
form is computed. The representation is then sub-
jected to a pattern classification technique so that
it may be assigned to one of a known gallery of
activities. Representations may be further broken
down into feature-based (parametric) versus holistic
(nonparametric) forms. Parametric representations
extract features related to the physical geometry
and kinematics of the actor. Classification may take
advantage of known characteristics of motion to
improve accuracy. Holistic representations utilize
image statistics of the motion performed in (x, y, t)
space. Hence, with regard to the frequently em-
ployed visual images of motion, these can also be
characterized as pixel-based representations [2]. In
this paper, a holistic representation is used. How-
ever, our analysis is performed with both visual and
non-visual motion data.

Karahoca et al. [18] utilize Motion History Im-
ages (MHI) along with Hu moments to reduce the
dimension of image sequence data while remaining
scale and translation invariant. Histograms of Ori-
ented Gradients (HOGs) are used in [8] to generate
regional descriptors of still images for human detec-
tion. Using this technique, object appearance may be
characterized by the distribution of image intensity
gradients without specific information of where the
gradients or image edges occur. For this method, an
image is divided into cells. A normalized histogram
of gradient directions for pixels in each cell is
constructed. Concatenating the histograms over the
collection of cells forms an image representation
which may be used for classification. Gradients are
computed using the Prewitt operator which has been
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seen to yield favorable results over other kernels.
Smoothing was shown to decrease discriminative
performance.

It has been shown that periodic motions such as
walking or running may be recognizable solely from
the movement of lighted feature points placed on
the actor’s body [15]. This phenomenon is exploited
by Benabdelkader et al. [2], and Cutler and Davis
[7] through the concept of self-similarity. In this
approach, the locations of features in an image
sequence are seen to generate a repeating pattern
from which a motion descriptor may be generated.
The set of features is tracked through the course
of an image sequence. The summed distances of
features between image pairs is computed. Perform-
ing this summation exhaustively across all image
pairs forms a Self-Similarity Matrix (SSM). The
main diagonal of the SSM is composed of zeros
(since the entries represent image distances from
themselves). Diagonals which are parallel to the
main diagonal represent periodicity of motion, while
diagonals which are perpendicular to the main diag-
onal represent symmetrical patterns in the observed
motion (e.g. key body poses while walking) [7].
With the SSM, the periodic motion of a moving
person is observable across image sequences as in
Figure 1.

(a) (b)

Fig. 1. Walking action (a) and the associated SSM showing
periodicity (b) [7].

In [16], motion descriptors are constructed from
the HOG of the SSM. The authors argue that
SSMs are approximately stable in appearance at
varying camera angles (view invariant), and thus,
their HOGs may be used as robust classifiers. The
intuition of this approach centers around the idea
that image features in a periodic sequence will attain
a similar spatial orientation regardless of placement
of the camera. The experimentation described in the
following sections builds upon [28] and makes use
of this approach to classify certain selected motions
from video sequences. However, none of the ap-

proaches described above examines the possibility
that the sensors need not be cameras. Hence, the key
innovation in this paper is to also apply the above
procedure to motion sensor data to assess whether
classification remains viable.

II. METHOD

This section describes the laboratory fixture used
to collect both video and motion sensor data as
well as the analysis technique used to generate de-
scriptors and classify motions. Data were collected
for three activities which were chosen for their
fundamental importance to a person lying in bed,
as in a healthcare setting. These activities included:

1) (Reach) Bringing a cup to the mouth.
2) (Press) Pressing a nurse call button.
3) (Grab) Grabbing the bed rail.

A. Data Collection
Data sets were collected at 17 Hz over seven

second intervals using both a camera and a Pana-
sonic AMN23112 analog IR motion sensor. For
repeatability, the motions were performed by a
PUMA robot acting as a stand-in for the human arm.
Sensor data were recorded from an array of points
over the surface of a virtual sphere surrounding the
workspace of the robot. A mock up of the scenario
as it might exist a hospital environment is shown in
Figure 2. Building on the work of [17], we envision
a conformable sensor contour that would be capable
of assuming an optimal vantage point geometry
about the resident based upon learned patterns of
activity.

Fig. 2. Hospital room scenario with continuum sensor surface.

A rotating arc fixture was constructed to sweep
the surface of the sphere in order to facilitate precise
positioning of sensors (Figure 3).
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Fig. 3. PUMA robot with fixture for spherical sensor positioning.

Sensor vantage points (r, θ, φ) were selected such
that r = 30”, θ ∈ {0◦, 30◦, 60◦, . . . , 180◦} and φ ∈
{0◦, 30◦, 60◦, . . . , 240◦}. For our purposes, the angle
θ is measured downward from 0◦ at the vertical axis.
This array of 63 points is depicted in Figure 4. In
the descriptions which follow, images for video data
are analogous to individual motion sensor readings
with a sampling rate equal to the frame rate of the
camera. This discussion holds for both data types.

Fig. 4. Sensor vantage points at 30◦ increments.

B. Descriptor Calculation
The Self Similarity Matrix S(I) for each image

sequence I = {I1, I2, . . . , IN} is calculated using
(1)

S(I) =


0 d12 d13 . . . d1N
d21 0 d23 . . . d2N

...
...

...
...

dN1 dN2 dN3 . . . 0

 (1)

where elements of S(I) represent the Euclidean
distance measure between image pairs in I such that

di,j = ||Ii − Ij||2 (2)

Assumptions implicit in the distance calculation of
(2) are that, for a given sequence, the sensor does
not move and that the background does not change.
Hence, any change in the intensity of a given image
pixel denotes movement of a feature point. Thus, the
total movement of all features can be represented as
the difference between the image pairs.

A local (overlapping) HOG descriptor is cal-
culated for each point i = 1 . . . N on the main
diagonal of S(I) where N = 116 for both video and
motion data. The descriptor consists of a histogram
of m = 8 gradient direction bins for each of j = 11
log-polar cells as shown in Figure 5. Gradients are
computed using the Prewitt operator as suggested
in [8]. Bin entries are weighted by the associated
gradient magnitudes. Since S(I) is symmetric, only
the entries above the diagonal are included in the
descriptor computation. Descriptors for all points
are concatenated to form a composite descriptor H
for the action sequence. Hence, for our data set, H
is an (8× 11)× 116 = 8× 1276 matrix.

Fig. 5. HOG descriptor format [16].

C. Action Classification
Class exemplars for each of the three candidate

actions were calculated as the mean HOGs for a
specified percentage of the available data. These
HOGs were selected randomly and constituted the
training data. The remainder of the data points were
used as test data. Each test data HOG was compared
with each of the exemplars and classified by the
exemplar to which it was nearest according to (3)

i = argmin
j
DE(Htest, H

j
train) (3)
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where Htest is a test data point, Hj
train is one of

j = 3 candidate action classes, DE is the distance to
the exemplar using the Frobenius norm, and i is the
classification. The percentages of data points used
as training data were varied from a single vantage
point up to 50%, at 10% increments. In this way,
it was possible to determine whether a descriptor
from any given vantage point resembled that of its
class exemplar so as to validate/invalidate the claim
that the stability of the SSM allowed for robust view
invariance.

III. EXPERIMENTAL RESULTS

The stability of SSM appearance for the video
data set can be seen in Figure 6. The figure shows
SSMs taken from orthogonal views for each mo-
tion class: (r, θ, φ) = (30”, 90◦, 0◦) for column 1,
(30”, 90◦, 90◦) for column 2, and (30”, 180◦, 0◦) for
column 3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. SSMs for video sequences taken from orthogonal views:
reach (a,b,c), press (d,e,f) and grab (g,h,i).

A. Video Data Classification
Classification results for the video sequences are

given by Table I. Because exemplars were cal-
culated using a percentage of the available data
points selected at random, any individual execution
of the classifier could be expected to yield wide
ranging results. To mitigate this effect, all statistics
shown in the table have been averaged over twenty

TABLE I

VIDEO CLASSIFICATION RESULTS.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 84.11 77.82 90.24
10% 95.70 90.96 100.00
20% 96.18 93.43 99.90
30% 96.00 93.11 100.00
40% 96.05 94.21 100.00
50% 96.41 92.50 100.00

classification runs. Results were very favorable (>
90% accuracy) when multiple data points (10%
and higher) were used to calculate the exemplars.
Further, they show continued improvement as more
data points are used to compute exemplars. It is
notable that, when a single data point was used as
a class exemplar, over 77% classification accuracy
was still achieved. This result lends credibility to
the assertion by [16] that the stability of SSMs is
independent of vantage point and that the method
does support view invariant activity recognition.
Also, since the grab motion is kinematically distinct
from either reach or press, classification accuracy is
generally highest for this class.

B. Motion Sensor Data Classification
SSMs for motion sensor data readings taken from

the vantage points used above are given in Figure
7. It can be seen that, although there is a nominal
resemblance between SSMs for a given class, the
similarity is clearly less than that for video SSMs.

Classification results for the motion sensor read-
ings are given by Table II. Results are poor when
only a single view is used to generate exemplars -
no better than random guess. Again, the grab mo-
tion shows greatest accuracy, owing to its inherent
dissimilarity from the other motion classes. Results
improve as the percentage of data used to train the
classifier is increased (reaching 65% - 70%), though,
not to a level that can be considered reliable.

Clearly, motion sensor data does not carry the
richness of information found in video data. How-
ever, results with motion sensor data are promising.
To increase the amount of information available
for activity classification through motion sensing,
two approaches are attempted. First, as suggested
in [27] increasing the number of sensors offers an
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. SSMs for motion sensor input taken from orthogonal views:
reach (a,b,c), press (d,e,f) and grab (g,h,i).

TABLE II

MOTION SENSOR CLASSIFICATION RESULTS.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 25.08 24.68 86.45
10% 50.79 56.32 88.60
20% 56.27 63.04 93.73
30% 61.89 61.78 94.78
40% 60.39 73.68 96.97
50% 65.63 70.16 96.56

intuitive method for increasing available informa-
tion. To this end, the density of vantage points
for motion sensing was increased to 15◦ incre-
ments over the sphere such that points (r, θ, φ)
were r = 30”, θ ∈ {0◦, 15◦, 30◦, . . . , 180◦} and
φ ∈ {0◦, 15◦, 30◦, . . . , 255◦}. This constellation of
sensors effectively quadruples the original motion
sensor data set to 234 points. Classification accuracy
for this scenario improved by, typically, 5%-15% as
can be seen in Table III. Still, however, such results
do not practically approach the results available
through video sensing.

Second, a surface contour encompassing an array
of sensor vantage points is envisioned. Such a
contour may be emulated by fusing sensor inputs
by averaging readings over regional subsets of the
virtual sphere. Table IV shows several scenarios for

TABLE III

MOTION SENSOR CLASSIFICATION RESULTS FOR SENSORS AT 15◦

INCREMENTS.

Classification Accuracy (%)
Training Reach Press Grab
Points

1 37.50 35.82 88.60
10% 65.73 65.90 97.16
20% 72.39 73.30 98.99
30% 75.00 75.40 98.84
40% 75.04 74.18 99.08
50% 74.87 76.37 98.93

TABLE IV

MOTION SENSOR ARRAY CLASSIFICATION RESULTS.

Classification Accuracy (%)
Array Reach Press Grab
Size
1×1 56.27 63.04 93.73
1×2 76.18 75.78 98.63
2×2 86.76 86.18 100.00
3×3 94.90 95.39 100.00

such arrays. The table assumes 20% of data points
were used to calculate class exemplars. Using this
scheme, motion sensor data approaches the accuracy
found using video data for arrays of 2×2 and larger.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the use of SSMs to generate HOG
classifiers for activity recognition has been explored.
It has been shown that video recordings of basic
motions can be classified by this method with a high
degree of accuracy.

Further, and most interestingly, we have used
non-video motion data to evaluate whether a holistic
activity model might be useful in privacy sensitive
applications. It has been shown that motion sensor
readings of basic actions can be classified by this
method with a promising accuracy. Where single
sensor inputs are used as class exemplars, classifica-
tion accuracy is poor and highly sensitive to vantage
point. Where multiple descriptors are averaged to
produce exemplars, classification improves but is
still subject to the choice of vantage point for best
outcomes. Coupled with our robust classification for
video, we interpret these findings as supportive of
sensor view invariance in that the appearance of
SSMs for a given class is stable enough over the
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range of vantage points to collectively form a useful
discriminant.

Experimentation with single motion sensor inputs
(test data) also yielded poor results. However, when
multiple sensor views are combined into a single
average reading for a small contour surrounding a
vantage point, results improve significantly. Hence,
the use of motion sensor data for the purpose of
activity recognition appears to be a viable area
for continued exploration. Future work is foreseen
in the addition of new motion classes with more
complex kinematics and the use of HOGs to predict
optimal vantage points for hard-to-recognize action
classes.

Because the classification technique used com-
putes a distance to a mean HOG exemplar, the
vantage point whose distance to the exemplar is
shortest can be considered the optimal vantage point
for a given action. The prospect of an optimal
vantage point gives rise to the notion that relocation
of sensors to an optimal view might yield improved
classification. Since human motions begin and end
at arbitrary times and at varying speeds, we hypoth-
esize a moving temporal window of action which
might need to be sensed and classified continuously.
Consequently, the problem formulation for our on-
going work in this area is to determine active sensor
positioning which best captures an unfolding scene
in the course of everyday life.
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Action Recognition from Temporal Self-Similarities. European
Conference on Computer Vision–ECCV 2008, pages 293–306,
2008.

[17] A.D. Kapadia, I.D. Walker, D.M. Dawson, and E. Tatlicioglu.
A model-based sliding mode controller for extensible contin-
uum robots. In Proceedings of the 9th WSEAS International
Conference on Signal Processing, Robotics and Automation,
pages 113–120. World Scientific and Engineering Academy and
Society (WSEAS), 2010.

[18] A. Karahoca and M. Nurullahoglu. Human motion analysis and
action recognition. In Proceedings of the 1st WSEAS Interna-
tional Conference on Multivariate Analysis and its Application
in Science and Engineering, pages 156–161. World Scientific
and Engineering Academy and Society (WSEAS), 2008.

[19] C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson, I.A. Essa,
B. MacIntyre, E. Mynatt, T.E. Starner, W. Newstetter, et al. The
Aware Home: A Living Laboratory for Ubiquitous Computing
Research. Lecture Notes in Computer Science, pages 191–198,
1999.

[20] R. Muscillo, S. Conforto, M. Schmod, and T. D-Alessio. A
hierarchical classifier to monitor ADL through dynamic pro-
gramming on dual-axis accelerometer data. In Proceedings of

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 5, 2011 285



the 3rd WSEAS International Conference on Remote Sensing,
pages 63–67. World Scientific and Engineering Academy and
Society (WSEAS), 2007.

[21] H.B. Olafsdottir, V.M. Zatsiorsky, and M.L. Latash. The effects
of strength training on finger strength and hand dexterity in
healthy elderly individuals. Journal of Applied Physiology,
105(4):1166, 2008.

[22] M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson,
D. Fox, H. Kautz, and D. Hähnel. Inferring Activities from
Interactions with Objects. IEEE Pervasive Computing, pages
50–57, 2004.

[23] W.F.E. Preiser and E. Ostroff. Universal Design Handbook.
McGraw-Hill Professional, 2001.

[24] C. Rao, A. Yilmaz, and M. Shah. View-Invariant Representation
and Recognition of Actions. International Journal of Computer
Vision, 50(2):203–226, 2002.

[25] E.M. Tapia, S.S. Intille, and K. Larson. Activity Recognition
in the Home Using Simple and Ubiquitous Sensors. Lecture
Notes in Computer Science, pages 158–175, 2004.

[26] J.M. Wiener, R.J. Hanley, R. Clark, and J.F. Van Nostrand.
Measuring the Activities of Daily Living: Comparisons Across
National Surveys. The Journal of Gerontology, 45(6):S229,
1990.

[27] D.H. Wilson and C. Atkeson. Simultaneous Tracking and
Activity Recognition (STAR) Using Many Anonymous Binary
Sensors. In The Third International Conference on Pervasive
Computing, pages 62–79. Springer, 2005.

[28] P.M. Yanik, J. Manganelli, L. Smolentzov, J. Merino, I.D.
Walker, J.O. Brooks, and K.E. Green. Toward active sen-
sor placement for activity recognition. In The 10th WSEAS
International Conference on Signal Processing, Robotics and
Automation (ISPRA ’11). World Scientific and Engineering
Academy and Society (WSEAS), 2011. (To appear).

Paul M. Yanik received the B.S.E.E. degree
and the M.S. degree in computer engineering
from North Carolina State University, Raleigh,
NC, in 1989 and 1995 respectively. He is cur-
rently a Ph.D. student in Computer Engineer-
ing at Clemson University, Clemson, SC. His
research interests include robotics, machine
learning and pattern recognition.

From 1990 through 2005, he was a hard-
ware design engineer specializing in ASIC design and verification
for telecommunications switching and microprocessor applications.
He is currently an Assistant Professor of Electrical and Computer
Engineering Technology at Western Carolina University, Cullowhee,
NC. He is a Senior Member of IEEE.

Jessica Merino earned the B.S.E.E. degree
from Clemson University, Clemson, SC. She
is currently a master’s degree student in Intel-
ligent Systems at Clemon University where she
is conducting research in continuum robotic
surfaces.

Joe Manganelli is a graduate student in archi-
tecture researching interactive environments.
Prior to graduate school, he spent six years
in architectural practice, focusing on K-12,
university buildings and industrial architecture.
He graduated from Auburn University with a
professional degree in architecture in 2002.

Linnea Smolentzov received the B.S. in psy-
chology from St. Lawrence University and
the M.S. in applied psychology from Clemson
University. She is currently a Ph.D. student in
the Human Factors Program at Clemson Uni-
versity, Clemson, SC. Her research interests
include aging, usability and physical function-
ing.

Ian D. Walker received the B.Sc. degree
in mathematics from the University of Hull,
Hull, U.K., and the M.S. and Ph.D. degrees
in electrical engineering from the University
of Texas at Austin, in 1983, 1985, and 1989,
respectively.

He is a Professor of Electrical and Computer
Engineering at Clemson University, Clemson,
SC. His research interests are in robotics, par-

ticularly kinematically redundant robots, robot reliability and fault
detection, and biologically inspired robots. He is a Fellow of IEEE.

Johnell O. Brooks, Ph.D. is an Assistant
Professor in the Department of Psychology at
Clemson University, Clemson, SC. She con-
ducts research in Human Factors and studies
aging drivers within the driving and living
environments.

Keith Evan Green received a B.A. in ex-
perimental Psychology and a Ph.D. in Archi-
tecture from the University of Pennsylvania,
and the Masters in Architecture degree from
the University of Illinois at Chicago. He is
a Professor of Architecture and Electrical and
Computer Engineering, and serves as Director
of the Clemson University Institute for Intel-
ligent Materials, Systems and Environments

[iMSE] (www.CU-iMSE.org), a novel research unit partnering Ar-
chitecture, Materials Science and Engineering, and Electrical and
Computer Engineering. His research involves developing, prototyping
and testing intelligent ”architectural robotics.” His is also an award-
winning practicing Architect.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 5, 2011 286




