
 

 

 

Abstract—In the following paper we examine the influence of the 

perceptual speech quality on the performance of the text-independent 

automated speaker recognition system (ASRS). The perceptual 

speech quality was objectively measured using Perceptual Evaluation 

of Speech Quality method (PESQ). The speech quality was degraded 

under various conditions as imposed in Voice over Wireless Local 

Area Network (VoWLAN), GSM and PSTN telephony. The ASRS 

error rates of this evaluation are presented by means of detection 

error tradeoff (DET) curves. The results show the correlations 

between PESQ MOS and ASRS equal error rate (EER) and promise 

the objective speech quality measurements can be used for the 

prediction of ASRS performance.  

 

Keywords— DET, MOS, PESQ, Speaker Recognition System, 

Speech quality.  

I. INTRODUCTION 

PEECH degradations as imposed by various telephone 

networks have been proven to have large effects on the 

performance of the automated speaker recognition systems 

(ASRS) [1]. Moreover, the employment of various handsets, 

codecs and recording devices influences the performance of an 

ASRS. Performance degradation due to so-called channel 

variability has been already demonstrated during the past few 

evaluations conduced by the National Institute of Standards 

and Technology [2]. However, by the knowledge of the 

authors, there has not been substantial investigation of the 

correlations between ASRS error rates and measured speech 

quality of various transmission channels. The challenge is 

weather the perceptual quality can be used as a measure for 

predicting the error rates of ASRS.  

Speech, as the medium of human communication conveys 

many types of information. Beside the message encoded in the 

language, the speaker also shares the information about its 

emotional and social state, health and other personal 

identifying characteristics such are: gender, age, dialect, voice, 

range of pitch, loudness and others [3]. Human voice combines 

physiological and behavioral characteristics of a certain 

speaker, which make it possible to distinguish one speaker 

from another. The characteristics of a certain speaker can be 
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extracted and measured, which enables the automated speaker 

recognition system (ASRS) to decide whether two given 

speech recordings belong to the same speaker [4]. 

Any ASRS inevitably fail in certain amount of decisions 

which is commonly defined as the error rate. Error rates in 

ASRS occur due to changes in health, emotional state, age and 

other sources of variability of human voice. The fact that the 

same speaker recorded over different telephone networks, 

handsets or microphones sound differently is commonly 

referred as channel variability. As the channel variability is 

affecting ASRS performance, different telephone networks 

comprise different distortions, errors, noises, filtering, delay, 

jitter and others, commonly referred as the telephone-speech 

quality [5]. Moreover, the effect of noise-in-speech on the 

performance of a speaker recognition and speech recognition 

systems remains a challenging issue in the current research [6]. 

The telephony-speech quality can be evaluated subjectively by 

the listeners [7], or it can be objectively measured using 

Perceptual Evaluation of Speech Quality method (PESQ) [8]. 

As the main task of the ASRS is the correct decision in the 

process of identity verification of a certain speaker and we are 

not primarily interested in the transmitted message itself, on 

the other hand, the main attribute of the speech quality in the 

telephony is the intelligibility of the speech, and we are not 

primarily interested in the identity of the speaker.  

The evaluations of ASRS usually require large amounts of 

speech recorded over various channels and conditions, 

extensive testing and analysis of such systems [2]. 

In the following paper we present an experimental 

evaluation of the ASRS performance and its relationship to the 

degradations of speech recordings transmitted over VoIP in 

wireless local area networks (VoWLAN), mobile telephony 

(GSM) and landline analogue telephony (PSTN). The speech 

quality degradations were objectively measured using PESQ 

method. The analysis show the correlations between PESQ 

mean option score (MOS) and ASRS error rates. The results of 

the experiment promise the objective speech quality 

measurements could be effectively used in the prediction of 

ASRS performance. 

The reminder of this paper is organized as follows. After 

speech quality assessment methods presented in section 2, we 

introduce speaker recognition basics in section 3. We continue 

with short description of the ASRS performance measures in 
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section 4. The evaluation framework with ASRS experimental 

setup and PESQ speech quality test-bed for GSM, PSTN and 

VoWLAN is presented in section 5. In section 6 we present 

and discuss the results of ASRS evaluations and correlations 

with PESQ MOS. Finally, we conclude the paper in section 7. 

II. SPEECH QUALITY ASSESSMENT 

A. Speech quality assessment methods 

Speech quality assessment methods could be generally 

divided into two main groups: subjective methods carried 

out by human listeners who perceptually evaluate the 

quality of speech under judgment and objective methods 

for speech quality assessment, carried out generally by 

machines [9]. The speech quality can be assessed from user 

perspective "perceived – subjective" or "objectively 

measured" with the parameters like delay, jitter and packet 

loss. 

The traditional method for subject measurement of speech 

quality is to calculate a MOS defined in ITU-T 

Recommendation P.800.1 [7], whereas the objective 

measurements are specified in ITU-T Recommendation P.862 

defining "Perceptual evaluation speech quality (PESQ)" [8]. 

MOS is defined as a statistical average of qualitative ratings 

of test sentences heard over the phone as perceived by a panel 

of test listeners. The MOS score ranges from 1 for ―bad‖ to 5 

for ―excellent‖ with respect to commonly specified criteria. 

This method of voice quality assessment is highly subjective, 

labor intensive and inadequate for frequent voice quality 

testing. To overcome the deficiencies of subjective MOS 

scoring and to computerize the said deficiencies, the 

Perceptual Evaluation Speech Quality (PESQ) algorithm was 

developed and standardized. The algorithm is based on a 

measurement of distortions of voice signal passed through a 

communications system under testing.  

There exist many professional tools for metrics-based 

objective measurements. They can be classified in the 

following two classes: hardware/software test instruments and 

software-only test packages. The hardware/software test 

instruments provide a very efficient way of speech quality 

assessment. They contain modules for testing traditional phone 

networks and VoIP telephony, but their high cost makes them 

unattractive for the use in academic research. 

There exist two basic approaches in software-only test 

packages. In the first approach, the speech quality is extracted 

from the analogue voice signals, while in the second one the 

voice packages are extracted directly on IP level, which 

enables more accurate measurement and analysis of 

communication parameters like IP timing, etc. An example of 

analogue software test package is the Opticom Opera Test 

Suite [10] and for digital speech quality measurements the 

WireShark open source software package. 

B. The PESQ method 

The PESQ method evaluates the quality of the speech signal 

by comparing the reference signal with the degraded signal. 

The PESQ algorithm models the human perception of the 

speech signal and thus enables the prediction of speech quality 

comparable to the subjective assessment as it would be 

performed by the human audience. 

The structure of the PESQ method is presented in Fig. 1. 

PESQ consists of several signal processing stages: level 

aligning and filtering, time alignment, auditory transform, 

cognitive modeling and prediction of speech quality.   

First, the reference and the degraded signal are level aligned 

to a standard listening level and filtered to model a standard 

telephone handset. Next, the signals are aligned in time. 

The time alignment techniques are based on the assumption 

that the delay of the system is constant in time for a given 

section of signal i.e. piecewise constant. The piecewise 

constant delay assumption appears to be valid for many 

applications, including common variable delay 

communications systems such as VoIP [11]. The time 

alignment procedure consists of the next steps. Both signals 

are narrowband filtered in order to emphasize perceptually 

important parts. Next, the reference signal is divided into 

utterances of at least 300 ms duration, containing no silent 

period longer than 200 ms. Silent periods of the reference 

signal are identified by a voice activity detector with an 

adaptive threshold to make the speech/non-speech decision 

robust to noise. After the signal division, a crude delay 

estimate is calculated across the entire signals using the 

envelope correlation method. After eliminating this delay, fine 

delay and confidence estimation is performed by applying the 

weighted histogram method. Finally, each utterance is divided 

in two and each section is processed through the same 

crude/fine delay estimation stages as before. This is repeated at 

a large number of division points, until there is no evidence for 

a delay change 4 ms or greater. These give a delay estimate for 

each utterance, which is used to find the frame-by-frame delay 

for use in the auditory transform.  

The auditory transform is a frame-by-frame representation 

of perceived loudness in time and frequency on modified Bark 

scale. A Fast Fourier Transform (FFT) with a Hamming 

window is used to calculate the instantaneous power spectrum 

in each frame, for 50% overlapping frames of 32 ms duration. 

After frequency and gain variation equalization of the 

reference and the degraded signal the Bark spectrum is 

mapped to (Sone) loudness, including a frequency-dependent 

threshold and exponent. This gives the perceived loudness in 

each time-frequency cell.   

Since the time alignment in certain cases may fail to 

correctly identify a delay change, it can result in large errors 

for each section with incorrect delay. Each bad section is then 

realigned and the disturbance recalculated.  

Disturbance processing and cognitive modeling is the final 

stage of the PESQ method. The measure of audible error is 

calculated from the absolute difference between the degraded 

and the reference signals. A non-linear average result over 

time and frequency is calculated after omitting the 

disturbances which are inaudible.  
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Fig. 1: The structure of the PESQ method [8]. 
 

 

After the aggregation of disturbances in frequency and time, 

finally, the prediction of perceived speech quality is 

calculated. The range of the PESQ MOS score is 0.5 for bad to 

4.5 for no distortion, although for most cases the output range 

will be a score between 1.0 and 4.5. 

III. SPEAKER RECOGNITION SYSTEM 

A. Speaker recognition tasks 

Speaker recognition can be formulated like the process of 

deciding whether two given speech recordings belong to the 

same speaker. The use of a machine for speaker recognition is 

the automatic speaker recognition (ASR) [12]. The ASR is a 

computing task using speaker voice as personal identifying 

characteristic. The personal identifying characteristic can be 

extracted from speaker voice and measured. Measurements in 

ASR are performed on low-level acoustic features and high-

level linguistic features of the speaker. Measurable physical or 

physiological characteristics are commonly referred as the 

biometrics. Human beings have many unique personal identity 

characteristics that make it possible to distinguish one person 

from another. Many personal identifying characteristics are 

based on physiological properties, others on behavior, and 

some combine physiological and behavior properties. Some 

properties can be perceived very readily such as facial features 

and behavior. Others, such as fingerprints, iris patterns, and 

DNA structure are not readily perceived and require 

biometrics to capture distinguishing characteristics. Speaker's 

voice is an example of biometric that combines physiological 

and behavioral characteristics. 

The automated process of recognizing a person from his 

voice includes three different tasks: automatic speaker 

identification (ASI), automatic speaker verification (ASV) and 

automatic speaker detection (ASD). The ASI refers to the 

ability of a machine to uniquely distinguish a person from a 

larger set of voice samples stored in a voice database without a 

priori identity claim from that person. On the other hand ASV 

is the ability of a machine to decide if a speaker is who he 

claims to be. The third possible task of ASR is the ASD.  In 

the ASD an unknown voice sample is provided and the task is 

to determine weather or not the one of specified set of known 

speakers is present in the sample. ASD has been defined in 

recent years in the NIST speaker recognition evaluations [2]. 

ASR can be further categorized according to the kind of 

speech that is input for recognition. If the recognition is 

performed on the known spoken text at the input and speaker 

modeling during training has been made for this text, the input 

mode is text dependent (TD). If, on the contrary, the modeling 

has been made for unspecified text, the input mode is text 

independent (TI). 

B. Text-dependent vs. text independent speaker recognition 

There is important classification between TD and TI 

speaker recognition [13]. TD speaker recognition utilizes same 

set of words used during the testing phase and the enrollment 

phase. In contrast to TD speaker recognition, the TI speaker 

recognition utilizes any uttered word during enrollment and 

testing. In other words, TD only models the speaker for a 

limited set of words in a known context. When the sequence of 

spoken words is unknown, the problem becomes more difficult 

and error rates increase.  

Error rates of current speaker recognition systems under 

controlled conditions are low. However, in practical 

applications many negative factors are encountered including 

mismatched channel for training and testing, limited training 

data, unbalanced text, background noise and non-cooperative 

users [14]. Since the TD speaker recognition systems are 

mainly used by cooperative users, many of above factors can 

be avoided. On the other hand, the TI speaker recognition 

systems are usually subject to non-cooperative users, in fact, 

sometimes users are even not aware of the fact that they are 

included in the process of  recognizing their identity from their 

voice, e.g. in forensic applications [15].  

The channel variability is one of the most challenging topics 

in the research of TI speaker recognition techniques [1]. 

Therefore, for the purpose of this work, we opted for the 

experiments with employment of TI speaker recognition 

system. 
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Fig. 2: Blok diagram of a speaker recognition system [4].

 

C.  Speaker recognition process 

The process of ASR includes training and recognition 

phases. The training consists of acquisition of several 

utterances of known speakers, extracting most representative 

speaker features, constructing speaker models and storing them 

in voice pattern database. The training process is also termed 

as enrolment of the users to the system [16]. A block diagram 

of a speaker recognition system is shown in Fig. 2. During the 

recognition phase a sample of speech from the unknown 

speaker is the input to the system. In case of speaker 

verification an identity claim is also the input. After the speech 

sample is recorded and digitized it is prepared for extracting 

speaker features. Feature extraction is typically some kind of 

short-term spectral analysis such as filter bank analysis and 

linear predictive coding (LPC) analysis. During a pattern 

matching process features of the unknown speaker are 

compared with the features of known speakers. Finally, the 

matching score is compared with a predetermined threshold to 

decide weather two given speech samples belong to the same 

speaker. 

IV. ASRS PERFORMANCE MEASURES 

A. Verification and identification 

Speaker recognition systems usually comprise verification 

and identification [16]. Speaker verification is the process of 

accepting or rejecting the identity claim of a speaker from his 

voice utterance. In speaker identification, there is no a priori 

identity claim, and the system determines which speaker 

provides a given voice utterance from amongst a set of known 

speakers. In this work the ASRS system performance 

measurements are based on the speaker verification. 

B. Error rates 

As any classification system, ASRS also fails in certain 

number of decisions. There are two types of failed decisions. 

False acceptance (FA) occurs when the system falsely decides 

that two speech samples from different speakers belong to the 

same speaker. As opposite to the FA, false rejection (FR) 

occurs when the system falsely decides that two speech 

samples from the same speaker do not belong to the same 

speaker. ASRS performance is commonly represented as a 

probability of FA and FR decisions known as false acceptance 

rate (FAR) and false rejection rate (FRR). Due to practical 

reasons the use of an equal error rate (EER) as a single number 

has been established as a good indicator of performance. EER 

can be found at the operating point where both error rates are 

equal. However, a single performance number is inadequate to 

represent the capabilities of an ASRS system in specific 

applications. Such a system has many operating points, and is 

best represented by a performance curve [2].  

C. DET curves 

A tradeoff between FAR and FRR is involved when 

evaluating the ASRS system. The trade-off between FAR and 

FRR can be intuitively presented in the form of detection error 

trade-off (DET) plot [17]. Examples of the DET plot are 

presented on the Fig. 8 and Fig. 9. In the DET plot we plot 

error rates on both axes, giving uniform treatment to both 

types of error. The use of a nonlinear scale for both axes 

spreads out the plot and better distinguishes different well 

performing systems and usually produces plots that are close 

to linear. This scale transforms the error probability by 

mapping it to its corresponding Gaussian deviate. Thus DET 

curves are straight lines when the underlying distributions are 

Gaussian. This makes DET plots more intuitive and visually 

meaningful.  

V. EVALUATION FRAMEWORK 

The experimental setup for the evaluation of the the 

influence of a telephony speech quality on the ASRS 

performance is presented in Fig. 3. The experimental setup 

contains two main parts: first, the telephony speech quality 

test-bed and second, the ASRS with selected speech 

recordings. The main property of the setup is to enable 

measurements in two steps. First step is to transmit the selected 

speech recordings over various telephone networks and 

measure the speech quality degradations for each of the 

selected telephone networks under various conditions. Second 

step is to test the ASRS performance with employment of the 

degraded speech recordings from the first step. In this section 

we will describe the evaluation procedure on the speech 

quality test bed and ASRS with selected speech 

recordings.
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Fig. 3: Evaluation test-bed. 

A. Speech quality test- bed 

The speech quality test-bed consists of PSTN, GSM and 

VoWLAN telephony systems and of-line speech quality 

assessment environment. As opposite to the GSM and PSTN 

telephony tests, which are performed over live public 

telephony networks, the VoWLAN setup is built and tested in 

the laboratory. This enables us to perform VoWLAN testing 

under different conditions. The speech transmitted over 

WLAN is degraded by impairments introduced on air and also 

by the background traffic competing for the same 

communication medium (for example, IP data terminal and 

VoIP over WLAN telephone). 

Ideally, speech quality testing of the VoWLAN should be 

carried out with so-called ―open-air‖ measurements at the 

locations of actual VoWLAN systems. This, however, is not 

feasible in practice, due to a number of technical and 

economical reasons such as uncontrollable RF interference and 

high workload for test execution. Repeatable VoWLAN test 

results can only be achieved in an environment with tightly 

controlled RF emission, propagation and reflection. Therefore, 

the VoWLAN voice-quality testing is usually carried out in 

RF-shielded chambers with employment of RF signal 

attenuators, background traffic generator and access points 

with extra external antennas. Due to limited resources we 

opted for the simulations of the real-life traffic and limited 

VoWLAN setups in the open air conditions.   

To simulate the real-life traffic and open air conditions we 

opted for speech quality testing over a range of background 

bursts in the form of encapsulated RTP traffic and at various 

distances between wireless access point and clients thus 

initiating different RF signal attenuation at the tested 

VoWLAN telephone. The test bed has been partly employed 

from our previous work [18]. 

The VoWLAN setup with background RTP traffic is shown 

in Fig. 4. The single WLAN 802.11b AP is used for the VoIP 

test connection and the background RTP traffic. The RTP 

traffic is being transmitted between clients PC#2 and PC#3. 

For transmitting of the RTP packet streams we used RTP 

Tools [19]. The automated command line batch procedures 

controlled by PC#4 initiated the different number of 

simultaneous RTP streams for each separate test. For the 

purpose of this work we opted for 4 scenarios, namely 5, 10, 

15 and 20 simultaneous RTP streams over the same WLAN 

channel. 

For the speech quality assessments we opted for the PESQ 

method mainly from two reasons. First, since the PESQ 

impairment model is very generic and already includes the 

effects of both packet level impairments (loss, jitter) and signal 

related impairments such as noise, clipping and distortions 

caused by coding processes, it is independent from the 

telephony applications and networks. And second, the PESQ 

method is standardized and verified in various commercial 

applications [10]. 

The speech quality test bed with employment of the PESQ 

method used in our experimental framework is presented in 

Fig. 3. The analogue reference voice signal is fed to the 

telephone handset (T1) and transmitted over the tested 

telephone network with telephone handset (T2) at the other 

end of the telephone connection. The degraded voice signal is 

then digitized together with the reference voice signal at the 

PC audio card for the off-line PESQ processing, and as we 

describe in next section, also for ASRS evaluation. 

In PESQ processing the analogue reference voice signal 

from the originating side of the voice connection, represented 

in standard digital WAV format, is compared to the digitized 

test voice signal from the other side of this connection and the 

final PESQ MOS is calculated from this comparison.  

Prior to the PESQ MOS calculations the speech recordings 

from the test data set had to be shortened in order to avoid 

averaging effect by the PESQ algorithm. Therefore we 

trimmed each of the recordings in duration of 5 minutes to 5 

sections in the duration of 1 minute. 

Finally, the analysis of the results and correlations between 

PESQ MOS and error rates of the ASRS can be observed in 

the analysis section of the experimental framework. 
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Fig. 4: VoWLAN with encapsulated RTP background traffic. 

 

B. ASRS and selected testing data 

The basic platform for evaluating the error rates consists of 

the ASRS and a dedicated audio corpus of speech recordings. 

While the ASRS was chosen on the commercial of the shelf 

market [20], the selected audio corpus was extracted out of the 

NIST 2008 speech database [2]. 

The primary purpose of the tested ASRS is the speaker 

detection on the large number of concurrent telephone calls in 

text-independent speaker recognition mode. As described in 

chapter 3, text-independent speaker recognition as oppose to 

the text-dependent is designed for operation independently of 

the spoken text, for example ordinary telephone conversation.  

NIST 2008 speech database contain large amount of 

recorded speech in different data sets. Different data sets 

include various conditions and circumstances for the collected 

data such are different recording channels (microphone, 

telephone), different types of speech (conversational speech, 

interview) different speaker populations (gender, spoken 

language) and different lengths of recorded samples. Different 

data sets are usually combined in various tests in order to 

evaluate systems for different purposes and data conditions. 

Typically, each data set selected for the ASRS evaluation 

contains three separate subsets containing training data, testing 

data and calibration data. Training and testing data should 

contain enough audio for training voice signatures and for 

testing. Additionally, the calibration data should contain 

enough audio of general speakers not included in test or audio 

data. 

For the purpose of this work we selected 540 English 

spoken females recorded during conversation over the 

telephone connection. The training and testing population 

consists 280 speakers, and the calibration population consists 

of remaining 260 speakers. The amount of audio for 

calibration is in duration of 5 minutes of recorded speech for 

each of the speakers. The training data consist of different 

amount of data for each speaker. All the selected recordings in 

the data set are in duration of 5 minutes. The amount of audio 

for testing is one recording per speaker. The training data 

consist of different number of recordings for the speakers as 

follows: 168 speakers with 2 recordings, 103 speakers with 3 

recordings,  43 speakers with  4 recordings,  41 speakers with 

5 recordings, 3 speakers with 7 recordings, 3 speakers, each 

with 9, 10 and 28 recordings separately. 

C. The ASRS performance evaluation procedure 

The ASRS performance evaluation procedure includes 

preparation of data, the background model creation, 

enrollment (training voice prints for all client speakers), testing 

and analysis. 

In this work we used data selected as described in previous 

section. All the recordings from the test data set were 

previously degraded in the telephony systems as described in 

section 5.  

For the creation of background model we opted for the the 

GMM algorithm since it has been proven it gives best results 

for text-independent ASRS [21]. Since background model 

comprises the features of the target population as they appear 

in the test data set, it is an important part of an ASRS. 

Therefore the speech recordings for the background model 

have to be as much as possible selected out of population with 

the same spoken language, channel, type of speech etc. 

In the testing phase of the ASRS we determined the FAR 

and FRR of the system for the selected data set. This has been 

done by comparing the voice-prints created during the 

enrollment phase to two sets of voice recordings, the authentic 

(clients) and the non-authentic (impostors). The FRR was 

determined by observing the system response when comparing 

the voice prints of the clients to authentic speech recordings.   

The FAR was determined by observing the system response 

when comparing the voice prints of the clients to non-authentic 

recordings (impostors). In our case we combined the impostor 

tests out of the test data by comparing the voice prints of the 

clients to all the recordings from test data set of other clients 

except for their authentic recordings. This gives us more than 

60.000 impostor tests and provides enough statistical 

significance for the resulting error rates. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we represent the experimental results for (a) 
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the speech quality assessments of the tested telephony systems 

and (b) the error rates of ASRS and their correlations by 

means of DET curves. 

A. Speech quality results 

The PESQ average results with average, minimum and 

maximum MOS as obtained from several thousand 

measurements for each of the telephone networks are 

presented in Table I.  As expected, the PSTN outperforms all 

other telephone networks. For the VoWLAN we observe 

variations of the MOS from 1.04 to 4.35. As we have shown in 

our previous work [18], due to the increasing number of 

background RTP streams, one can observe gradual 

degradation of average PESQ and at the same time larger 

spread of PESQ results. The spread of the results for the 

VoWLAN with excellent signal is clearly visible on the Fig. 5. 

The variations of the MOS at the lower RF signal for the 

VoWLAN are presented in the Fig. 6. In the Fig. 7 we observe 

variations of the MOS for the PSTN which are, as expected, 

much lower than variations at the VoWLAN. 

The variations of the MOS can be attributed to the 

variations in the speech samples and, for the GSM, slight 

interference in the local mobile-to-landline interface used in 

our experimental setup. 

 

Table I: The PESQ results: average, minimum and maximum MOS 

 Avg. MOS Max. MOS Min. MOS 

VoWLAN SE 3.75 4.35 1.04 

VoWLAN SL 3.57 4.28 1.11 

PSTN 3.95 4.42 2.47 

GSM (1 min) 3.18 3.65 2.62 

 

 
Fig. 5: The PESQ MOS variations for the VoWLAN with excellent 

signal. 

 

 
Fig. 6: The PESQ MOS variations for the VoWLAN with lower (-

35dB) attenuated signal. 

 

 
Fig. 7: The PESQ MOS variations for the PSTN. 

 

B. ASRS error rates and MOS 

Fig. 8 shows the error rates for the evaluation of the ASRS 

for the VoWLAN. Due to relatively small differences for the 

error rates with different RTP background traffic we plotted 

the results from all the tests at 5, 10, 15 and 20 RTP 

background streams with excellent RF signal (VoWLAN SE) 

and all the tests with low RF signal (VoWLAN SL) with 

averaging the results on single plot for VoWLAN SE and 

VoWLAN SL separately as presented on the Fig. 9.  

Fig. 9 represents the error rates for the VoWLAN, GSM, 

PSTN and original speech recordings. As expected, the 

original (undegraded) speech recordings outperform the 

degraded recordings in all telephone networks with EER 

approximately at 15%. As opposed to PSTN with EER approx. 

at 18%, the GSM performs slightly worse with EER around 

22%. The VoWLAN performance is on average slightly better 

than the GSM performance. Additionally we observe the effect 

of signal attenuation on the WLAN with EER difference 

around 3% in favor of the VoWLAN SE. 

 

F

ig. 8: The error rates of the ASRS system for speech recordings 

impaired in VoWLAN with different RTP background traffic. 
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F

ig. 9: The error rates of the ASRS system for speech recordings 

impaired in various telephone networks represented in the form of 

DET curves.  

VII. CONCLUSIONS 

The influence of the speech quality degradations in the 

VoWLAN, GSM and PSTN telephony on the ASRS error 

rates has been investigated. The speech quality degradations 

were objectively measured using PESQ method and compared 

to the error rates of the ASRS. Our first results indicate that 

background traffic with up to 20 simultaneous RTP channels 

in WLAN on average does not impair the quality of the speech 

significantly. However, we observed large spread of variations 

of the MOS. As a consequence the 20 simultaneous RTP 

background streams do not influence the error rates of the 

ASRS significantly. However, we demonstrated the ASRS 

error rates correlate to the speech quality degradations in 

GSM, PSTN and VoWLAN as measured with PESQ 

algorithm. The predictions of the expected ASRS error rates 

with PESQ MOS in the telephony applications could be of 

great significance. The results show promising approach in 

order to potentially lower the costs of ASRS evaluations in end 

user environments. Further work will be oriented towards 

evaluations with larger data sets under different telephony 

conditions and employment of analytical tools for data analysis 

and predictive modeling.  
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