
 

 

  

    Abstract—Controllability and observability of a class of matrix 

Differential Algebraic Equation (DAEs) are studied in this paper.  

The structure of a closed-form solution for the system is sought via 

two one-sided sub-systems.  The solution is then used to derive 

necessary and sufficient conditions for the controllability and 

observability of the time-varying matrix DAE systems.  More 

straightforward conditions on the controllability and observability of 

linear time-invariant matrix DAE systems that only depend on the 

state matrices are also obtained. 
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I. INTRODUCTION 

ANY engineering systems, such as mechanical system, 

electrical circuits and chemical reaction kinetics, are 

modeled by coupled differential and algebraic equations 

(DAEs) that cannot be transformed into ordinary differential 

equations.  Such DAEs also referred to as singular systems 

have been studied extensively in the view of numerical 

simulation.  The most commonly studied linear differential 

algebraic equations are the vector DAEs like the following, 

 

                ( ) ( ) ( ) ( ) ( )E t x t A t x t f t+ =ɺ                  (1.1) 

 

where 
n

x ∈ℝ , ( )E t is singular for all t in the associated time 

interval, ,
n n

E A
×∈ℝ , and 

n
f ∈ ℝ .  A characterization of 

solvability for (1.1) and a general canonical form 

representation for solvable DAEs in the form of (1.1) can be 

found in [1].  The DAE system (1.1) is called linear time-

invariant (LTI) if E and A are constant matrices. For such LTI 

systems, the problems of feedback pole placement [2] and 

optimal control [3] through state feedback have been studied.  

The analysis and control results for linear time-invariant 

systems have also been generalized to time-varying [4] and 

discrete-time [5] systems. 

Controllability and observability are of important and 

fundamental properties of control systems.  In [6], the 

controllability and observability Gramians are devised in the  

 
 

 

 

frequency domain for controller reduction design.  The 

controllability and observability properties are required for 

minimal realization, such as the multidimensional hybrid 

systems introduced in [7].  Structural properties of generalized 

linear systems are studied in [8] using the Perron-Stieltjes 

integral to obtain the input-output map.  Necessary and 

sufficient conditions are derived for complete controllability 

and observability.  Different control methods are applicable to 

control systems that meet the controllability and observability 

criteria for state feedback and output feedback designs, such as 

the thermosyphon system in [9]. 

The controllability, observability and realizability of first-

order matrix Lyapunov systems are first introduced in [10].  In 

this paper, we study the differential algebraic matrix Lyapunov 

systems over its solvability and control perspectives.  The rest 

of the paper is organized as follows.  A closed form solution 

for the proposed matrix DAE system is presented in section 2. 

This solution is used to derive necessary and sufficient criteria 

for controllability and observability of the matrix DAE system 

for both linear time-varying and linear time-invariant systems, 

all presented in section 3.  Conclusion and remarks on future 

work are found in section 4. 

 

II. CLOSED FORM SOLUTION OF THE MATRIX DAE SYSTEMS 

 

    The class of matrix differential algebraic equation system 

considered in this paper with input and output structures is 

defined as 

 

              EX AX EXB DU= + +ɺ , 0 0( )X t X=                (2.1) 

 

and 

                                   Y FX=                                            (2.2) 

 

where 
dX

X
dt

=ɺ , the state coefficient matrices , ,
n n

E A B
×∈ ℝ , 

the input structure matrix 
n m

D
×∈ ℝ , the control input 

m n
U

×∈ ℝ , and the output structure matrix 
q n

F
×∈ℝ .  It is 

also considered that the state coefficient matrices as well as the 

input/output structure matrices are time-dependent.  If that is 

the case, we assume the matrix functions are continuously 

differentiable over 0 1[ , ]t tℑ = .  Moreover, E is singular for all 
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t ∈ℑ .  In this section, our main objective is to obtain a 

general form of solution for (2.1).  The closed-form solution 

plays an important role in deriving the conditions on the 

controllability of (2.1), and observability of (2.1) and (2.2) in 

section 3. 

    The solution of (2.1) is constructed via the solution of two 

one-sided subsystems of (2.1).  To set the stage, we begin with 

some basic definitions associated with the solutions of linear 

first-order matrix differential equations. 

 

Definition 2.1 A matrix function ( )
n n

Z t
×∈ℝ  is a 

fundamental solution of a linear first-order matrix differential 

equation  

 

                  1 2( , , , ,... )rL X X A A A DU=ɺ , t ∈ℑ                  (2.3) 

 

where , 1, 2,...,
n n

iA i r
×∈ =ℝ ,

n m
D

×∈ℝ  known as the input 

structure matrix, and 
m n

U
×∈ℝ  is the input matrix, if 

Z satisfies (2.3) with 0D= , det( ( )) 0Z t ≠ for all t ∈ℑ , and 

every solution to (2.3) can be written as h pX Z X= ϒ + , 

where ϒ is an arbitrary n by n constant matrix and pX is a 

particular solution to (2.3). 

Obviously, the matrix differential algebraic equation (2.1) is 

a special case of (2.3). The concept of state transition matrix 

associated with a system of ordinary differential equations was 

introduced in [11].  We extend the state transition matrix to 

(2.3) via the fundamental solution of (2.3).  First, rewrite (2.3) 

as an initial value problem, 

 

          1 2( , , , ,... ) 0rL X X A A A =ɺ , 0 0( )X t X= , t ∈ℑ         (2.4) 

 

According to Definition 2.1, the unique solution to (2.4) is  

 

                  
1

0 0 0 0( ) ( ) ( , )X Z t Z t X t t X
−= =Φ                    (2.5) 

 

The matrix function 0( , )t tΦ  can be generalized as 

1
( , ) ( ) ( )t s Z t Z s

−Φ = , which is known as the state transition 

matrix associated with (2.4).  

  

Definition 2.2 The state transition matrix associated with (2.4) 

is defined as 

 

                          
1

( , ) ( ) ( )t s Z t Z s
−Φ =                                (2.6) 

 

where ( )Z t is a fundamental solution of (2.4). 

 

It is easy to check that Φ  satisfies the matrix differential 

equation (2.4) in t, and it satisfies the following three 

properties: 

 

Lemma 2.1 The state transition matrix satisfies the following 

properties 

 

 (i)  ( , )t t IΦ = , t ∈ℑ  

 (ii) 1 2 2 3 1 3( , ) ( , ) ( , )t t t t t tΦ Φ =Φ , 1 2 3, ,t t t ∈ℑ  

 (iii) 
1

1 2 2 1( , ) ( , )t t t t
−Φ =Φ , 1 2,t t ∈ℑ  

 

We will explore two special linear matrix differential 

equations of (2.3), which lead to the solution of (2.1).  The 

first one is the standard linear matrix differential equation as 

follows, 

                                      X AX=ɺ                                       (2.7) 

 

where ,
n n

A X
×∈ ℝ , and (2.7) is a linear time-invariant (LTI) 

matrix differential system if A is a constant matrix; otherwise, 

it is known as linear time-varying (LTV) system.  If (2.7) is 

LTI, the fundamental solution of (2.7) is ( )
tA

Z t e= .  The 

matrix exponential 
tA
e  is formally defined by the convergent 

power series, 

 
2

2
... ...

2! !

n
tA nt t
e I tA A A

n
= + + + + +  

 

There are many numerical methods available for computing 

tAe .  A nice tutorial review can be found in [12].  The state 

transition matrix associated with (2.7) is  

 

1 ( )
( , ) ( ) ( )

t s A
t s Z t Z s e

− −Φ = =  

 

This is because 
tA
e  and 

sA
e
−

 commute with each other and 

1
( )

sA sA
e e

− −= . 

 

The solution to (2.7) is more complicated if it is LTV.  It is 

written as an initial value problem, 

 

                    ( )X A t X=ɺ , 0 0( )X t X= , t ∈ℑ                    (2.8) 

 

The general solution of (2.8) is of the form 

 

                           0 0( ) ( , ) ( )X t t t X t=Φ                             (2.9) 

 

where Φ  is the state transition matrix associated with (2.8).  In 

the time-varying case, the state transition matrix Φ  has an 

analogous form similar to the LTI case, i.e.  

 

                               0

( )

0( , )

t

t
A d

t t e
τ τ

Φ =
∫

                          (2.10) 
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if ( )A t  and 
0

( )
t

t
A dτ τ∫  commute.  Otherwise, the matrix 

exponential (2.10) is generalized to the so-called Peano-Baker 

formula as an extension to the power series expansion for Φ , 

 

1

0 0 0

1 1

0 0 0

0 1 1 1 2 2 1

1 2 1

( , ) ( ) ( ) ( )

... ... ( ) ( )... ( ) ... ...
n

t t

t t t

t

n nt t t

t t I A d A A d d

A A A d d

τ

τ τ

τ τ τ τ τ τ

τ τ τ τ τ
−

Φ = + +

+ + +

∫ ∫ ∫

∫ ∫ ∫
 

 

In spite of the lack of closed-form expressions for Φ  from 

time-varying systems, the state transition matrix is a useful tool 

for studying the properties of solutions of (2.1), which leads to 

the exploration of controllability and observability properties 

of the matrix DAE system.  

The second class of matrix differential equation off (2.3) to 

be considered here is the so-called matrix differential algebraic 

equation as follows 

 

             ( )EX AX DU t= +ɺ , 0 0( )X t X= , t ∈ℑ           (2.11) 

 

Recall that E is a singular matrix.  When system (2.11) is time-

invariant, i.e. E, A and D are constant matrices, the solution of 

(2.11) can be determined by the associated matrix pencil, 

sE A− , as a result of Laplace transform. 

 

Definition 2.3 A matrix pencil sE A−  is regular if 

det( ) 0sE A− ≠  for some s ∈ℂ . 
 

The matrix DAE (2.11) is solvable if and only if the pencil 

sE A−  is regular, which is analogous to the result from [13].  

In order to obtain an explicit form of solution for (2.11), one 

needs to transform (2.11) into a canonical form.  To be more 

specific, suppose the rank of matrix E satisfies ( )r E r n= < , 

and det( )sE A−  is a nonzero polynomial of degree m, 

0 m r≤ ≤ , then there exist non-singular matrices, 

,
n n

P Q
×∈ℂ , such that (2.11) is transformed into the following 

canonical form by premultiplying (2.11) by P and a coordinate 

change with Q,  

 

 

1 1 1 1X A X D U= +ɺɶ ɶ  

                                 2 2 2 ( )NX X D U t= +ɺɶ ɶ                       (2.12) 

 

where 1
m n

X
×∈ɶ ℂ ,

( )
2

n m n
X

− ×∈ɶ ℂ ,
1

2

X
QX

X
=

 
 
  

ɶ

ɶ
, and N is an 

( ) ( )n m n m− × − matrix of nilpotency index κ , which 

means 0
i

N ≠  for i κ<  and 0N
κ = .  An algorithm for 

constructing the similarity transformation matrices P and Q is 

developed in [14]. In the case of m r= , matrix N is 

identically zero, and the second equation in (2.12) becomes an 

algebraic matrix equation.  Meanwhile, if m r< , matrix N is 

in the Jordan canonical form with zeros on the main diagonal.  

In any event, the ODE subsystem in 1X
ɶ  is totally decoupled 

from the DAE subsystem in 2X
ɶ , and they can be solved 

separately.  The solutions are given as follows, 

 

 

   1 0 1

0

( ) ( )

1 1 0 1( ) ( ) ( )
tA t t A t

t
X t e X t e DU d

τ
τ τ

− −
= + ∫ɶ , t ∈ℑ     (2.13) 

                                                              

and 

 

                  
1

( )
2 2

0

( ) ( )
i i

i

X t N D U t
κ−

=

=−∑ɶ , t ∈ℑ                  (2.14) 

       

where 
( )
( )

i
U t  denotes the ith derivative of the input matrix 

function ( )U t .  The DAE system (2.11) has smooth solutions 

if the initial condition 2 0( )X tɶ  satisfies (2.14).  Furthermore, if 

the nilpotency index κ  is greater than one, then the input 
matrix function ( )U t  is continuously differentiable up to the 

order of 1κ− . 

For linear time-varying DAEs, we rewrite (2.11) as 

 

         ( ) ( ) ( )E t X A t X G t= +ɺ , 0 0( )X t X= , t ∈ℑ          (2.15) 

  

where ( ) ( ) ( )G t D t U t= .  The necessary and sufficient 

conditions for the solution of (2.15) can be deduced from [1].  

First, for any t̂ ∈ℑ , we obtain Taylor series of the matrix 

functions, E, A, G and X.  Due to their similarity in Taylor 

series expansions, we use the following expression 

 

( ) ( )
k

k
k

H t H t t= −∑
⌢

 

 

where 

( )
( )

!

k

k

H t
H

k
=

⌢

, , , , andH E A G X= .  The Taylor 

series expansions are substituted in (2.15), then for each 0j> , 

but less than the order of smoothness of E, A, G and X, and 

t ∈ℑ , the DAE (2.15) is transformed into a system of 

algebraic equations, 

 

                                 0j j j jX gψ ζ ϕ= +                          (2.16) 

 

where 

 

0

1 0 0

2 1 1 0 0

1 2 2 3 0

0 ... 0

2 ... .

2 3 ... .

2 ...

j

j j j j

E

E A E

E A E A E

E A E A jE

ψ

− − − −

−

+ −=

− −

 
 
 
 
 
 
 
 
 
  

⋮ ⋮ ⋮
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1

2

j

j

X

X

X

ζ =

 
 
 
 
 
 
 
  

⋮
, 

0

1

1

j

j

A

A

A

ϕ

−

=

 
 
 
 
 
 
 
  

⋮
, and 

0

1

1

j

j

G

G
g

G −

=

 
 
 
 
 
 
 
  

⋮
. 

 

Definition 2.4 The matrix jψ is called smoothly 1-full if there 

exists a smooth non-singular matrix function ( )P t  on ℑ  such 

that 

 

0
( ) ( )

0 ( )

n n

j

I
P t t

R t
ψ

×=
 
 
  

. 

 

With 0 ( ) ( )X t X t= , the algebraic system can be used to 

derive an equation for ( )X tɺ  explicitly when jψ  is 1-full, i.e. 

( ) ( ) ( ) ( )X t A t X t G t= +ɺ ɶ ɶ , which can be solved accordingly. 

 

Theorem 2.1 The system (2.15) with E, A real analytic is 

solvable if and only if there is an integer [1, 1]n∈ +ℓ  such 

that (i) ( )r ψ
ℓ
is constant on ℑ ; (ii) ψℓ is 1-full on ℑ ; and (iii) 

( ) ( )
jn

ψ ϕℜ +ℜ =
ℓ ℓ

ℝ  on ℑ , where ( )ℜ ⋅  is the column space 
of the matrix. 

 

The proof of Theorem 2.1 is similar to the one in [1], as such 

omitted here. 

In what follows, we assume solvability for each of the two 

one-sided matrix differential equations based on the previous 

discussions.  Our goal is to construct a closed-form solution 

for (2.1).  Let X+ be the fundamental matrix solution of right-

side differential algebraic system EX AX=ɺ  and X−  be the 

fundamental solution of the left-side system 
T

X B X=ɺ .  We 

have the following result. 

 

Theorem 2.2 The complementary solution of the 

homogeneous equation 

 

                               EX AX EXB= +ɺ                              (2.17) 

 

has the unique form 
*

X X CX+ −= , where * represents the 

operation of complex conjugate transpose and C is an n by n 

constant matrix. 

 

Proof:  Notice that 
* *

X X B− −=ɺ  since B is a real matrix.  

Hence, it is straightforward to show that 
*

X X CX+ −=  is a 

general solution.  To show every solution of the homogeneous 

solution is of the form 
*

X X CX+ −= .  Let ( )Z t  be a solution 

and
*

( )Z t YX−= .  Insert 
* *

Z YX YX− −= +ɺ ɺ ɺ  in (2.17), one has  

 

* * * *
EZ EYX EYX B AYX EYX B− − − −= + = +ɺ ɺ  

 

Since ( )Z t is a solution, it requires EY AY=ɺ .  Also, because 

X+  is a fundamental solution of the right-side system, we 

have Y X C+= , where C is an arbitrary constant matrix (n by 

n).  This leads to 
*

( )Z t X CX+ −= , hence the uniqueness .                                           

                                                                                                � 

 

    Our next step is to construct a solution for the non-

homogeneous system (2.1). 

 

Theorem 2.3 Every solution of (2.1) is of the form of 

*
( ) pX t X CX X+ −= + , where pX is a particular solution of 

(2.1). 

 

Proof:  It is straightforward to show that  

*
( ) pX t X CX X+ −= +  is a solution of (2.1).  It is also easy to 

see that pX X− satisfies the homogeneous equation (2.17).  

Therefore, pX X− can only be written as 
*

X CX+ −  according 

to Theorem 2.2. 
� 

 

Similar to solving non-homogeneous ODEs, the particular 

solution pX can be found via variation of parameters. 

Assume
*

pX X CX+ −= ,  where C depends on t .  Then, 

 

* * *
pX X CX X CX X CX+ − + − + −= + +ɺɺ ɺ ɺ  

 

after substituting in (2.1), one has 

 
* * *

* *

EX CX EX CX EX CX

AX CX EX CX B DU

+ − + − + −

+ − + −

+ + =

+ +

ɺɺ ɺ

 

 

Hence, 
*

EX CX DU+ − =ɺ .  Consider EP DU= , let DΩ  

represent the set of all m by n matrices such that for any 

DU ∈Ω , the columns of DU is in the column space of E, i.e. 

( )Eℜ .  Since U is a control input matrix, and with the 

assumption of solvability of (2.1), DΩ  is non-empty. The set 

DΩ  is indeed guaranteed to be non-empty if ( ) ( )E Dℜ ⊇ℜ . 

However, this condition is not necessary. Therefore, 

P E DU
+= , where E

+
 is the pseudo-inverse of E .  Now, 

we obtain an explicit equation for Cɺ  as follows, 

 
1

1 *
C X E DUX

−− +
+ −=ɺ . 
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After integrating the equation over ℑ , and applying ( )C t  in 

pX , we obtain the expression for the particular solution of 

(2.1), 

 

         
1

0

1 * *
( ) ( ) ( )

t

p t
X t X t X E DUX d X tτ

−− +
+ + − −=  

  ∫         (2.18) 

 

The final solution of (2.1) with an initial condition over ℑ  is 

summarized in the following theorem. 

 

Theorem 2.4 The solution of (2.1) with initial condition 

0 0( )X t X=  is given by 

 

0

* *
0 0 0( ) ( , ) ( , ) ( , ) ( , )

t

t
X t t t X t t t E DU t dτ τ τ

+
+ − + −=Φ Φ + Φ Φ∫             

                                                                                          (2.19) 

 

where +Φ  and −Φ are state transition matrices associated with 

the right-side and left-side subsystems, respectively. 

 

Proof:  According to Theorem 2.3, the general solution of the 

matrix DAE (2.1) is given by, 
*

( ) pX t X CX X+ −= + , where 

pX is given by (2.18).  It is obvious 0( ) 0pX t = .  Therefore, 

after using the initial condition, the solution of the IVP (2.1) is 

 
1

1

0

1 * *
0 0 0

1 * *

( ) ( ) ( ) ( ) ( )

( ) ( )
t

t

X t X t X t X X t X t

X t X E DUX d X tτ

−

−

−
+ + − −

− +
+ + − −

= +

 
  ∫

. 

 

Hence the result (2.19).                                                          � 

                                                                                                  

Since the state transition matrices satisfy Lemma 2.1, the 

solution can also be written in an alternative form, 

 

0

*
0 0 0

* *
0 0 0 0

( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
t

t

X t t t X t t

t t t E DU t d t tτ τ τ

+ −

+
+ + − −

=Φ Φ +

Φ Φ Φ Φ∫
 

                                                                                      (2.20) 

 

which will be used when we explore the controllability 

properties of (2.1). 

III. CONTROLLABILITY AND OBSERVABILITY OF 

MATRIX DAE SYSTEMS 

In this section, we explore the controllability and 

observability properties of the matrix DAE system (2.1) and 

(2.2), while (2.2) is considered when the observability is 

concerned.  In the case of time-varying systems, the 

controllability and observability are examined over the time 

intervalℑ . 

When working with control systems, the first step is to 

determine whether a prescribed control objective can be 

achieved by manipulating the control input.  A direct approach 

is to construct a control input that will drive the system state 

trajectory to the desired state.  More convenient criteria can 

also be obtained to test the controllability of the system as 

shown in this section.  

 

Definition 3.1 The matrix DAE system (2.1) and (2.2) is said 

to be completely controllable if for any 0t , any arbitrary initial 

state 0 0( )X t X= , and any arbitrary final state eX , there 

exists a finite time interval 0 1[ , ]t tℑ =  and a control ( )U t , 

t ∈ℑ , such that 1( ) eX t X= . 

 

    The controllability property is important for a control 

system.  If the system is not controllable, a control ( )U t  may 

not exist to achieve the control objective.  There are other 

types of controllability.  Complete state controllability only 

requires (2.1); on the other hand, complete output 

controllability requires attainment of arbitrary output, where 

(2.2) has to be considered.  The control input ( )U t  can be 

piecewise continuous over ℑ . 

    The controllability of a control system usually boils down to 

checking whether a set of functions associated with the state 

transition matrix and the input structure matrix are linearly 

independent over ℑ .  A well-know and more convenient test 

for linear independence of a set of functions is by way of the 

Gramian matrix [11]. 

 

Definition 3.2 The Gramian matrix associated with a set of 

functions { }
1

( )
n

i i
f t

=
over ℑ  is defined as ijG g=  

  , where  
 

( ) ( )ij i jg f f dτ τ τ
ℑ

= ∫ . 

 

As such, a set of functions{ }
1

( )
n

i i
f t

=
are linearly independent 

over ℑ  if the Gramian matrix G  is non-singular or positive 

definite since G  is a non-negative Hermitian matrix. 

 

Theorem 3.1 The matrix DAE system (2.1) is completely state 

controllable onℑ  if and only if the controllability Gramian 

matrix 

 

       
*

0 1 0 0( , ) ( , ) ( , )
T T

c t t t E DD E t dτ τ τ
+ +

+ +ℑ
ℵ = Φ Φ∫      (3.1) 

 

is positive definite. 

 

Proof:  Suppose 0 1( , )c t tℵ  is positive definite.  Let 

0 0( )X t X=  and 1( ) eX t X=  be two arbitrary initial and final 

state over the interval 0 1[ , ]t tℑ = .  Need to show that there is 

a control input ( )U t  over ℑ  that will drive 0X  to eX  in ℑ .  

We choose 
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* 1
0 0 1 0 0 1

* *
0 1 0

( ) ( , ) ( , )[ ( , )

( , )] ( , )

T T
c

e

U t D E t t t t X t t

X t t t t

+ −
+ +

− −

=− Φ ℵ −Φ

Φ Φ
 

            (3.2) 

 

It suffices to show that the right-side of (2.20) yields eX  if 

1t t=  and substitute (3.2) for U  in (2.20), using Lemma 2.1 

to simplify the expressions involving the state-transition 

matrix, 

 

*
1 0 0 1 0 1 0( , ) ( , ) ( , )t t X t t t t+ − +Φ Φ +Φ ⋅  

* *
0 0 1 0( , ) ( ) ( , ) ( , )t E DU t d t tτ τ τ τ

+
+ − −ℑ

Φ Φ Φ∫  

 

*
1 0 0 1 0 1 0( , ) ( , ) ( , )t t X t t t t+ − +=Φ Φ −Φ ⋅  

*
0 0( , ) ( , )

T T
t E DD E t dτ τ τ

+ +
+ +ℑ

Φ Φ ⋅∫  

1 *
0 1 0 1 0 1 0( , ) ( , ) ( , )c t t X t t t t

−
− +ℵ Φ +Φ ⋅  

*
0 0( , ) ( , )

T T
t E DD E t dτ τ τ

+ +
+ +ℑ

Φ Φ ⋅∫  

1 * *
0 1 0 1 0 1 1 0( , ) ( , ) ( , ) ( , )c et t t t X t t t t

−
+ − −ℵ Φ Φ Φ  

 

eX=  

 

Therefore, the matrix DAE system (2.1) is completely state 

controllable on ℑ . 

Conversely, assume the system (2.1) is completely state 

controllable on ℑ , we need to show that the controllability 

Gramian 0 1( , )c t tℵ  is positive definite.  It is obvious that the 

matrix 0 1( , )c t tℵ  is symmetric and non-negative, all we need 

to show is that the matrix is invertible.  Assume the matrix 

0 1( , )c t tℵ  is not invertible, or equivalently, its null space is 

non-empty. As such, there exists a non-zero vector 
n

θ ∈ℝ  

such that  

 

*
0 1 0 0( , ) ( , ) ( , )

T T T T
c t t t E DD E t dθ θ θ τ τ θ τ

+ +
+ +ℑ

ℵ = Φ Φ∫  

2

0( , ) 0
T

t E D dθ τ τ
+

+ℑ
= Φ =∫  

 

Hence, 

 

                  0( , ) ( ) ( ) 0
T

t t E t D tθ
+

+Φ ≡ , t ∈ℑ                    (3.3) 

 

It is known that the system (2.1) is completely state 

controllable.  Therefore, there exists a control U  such that the 

initial state 0( )
T

X t θθ= is driven to the final state 1( ) 0X t = .  

Hence, from (2.20), 

 

1

0

*
1 0 1 0

* *
1 0 0 0 1 0

0 ( , ) ( , )

( , ) ( , ) ( , ) ( , )

T

t

t

t t t t

t t t E DU t d t t

θθ

τ τ τ

+ −

+
+ + − −

=Φ Φ +

Φ Φ Φ Φ∫
 

 

which can be simplified as 

 

1

0

*
0 0( , ) ( , )

tT

t
t E DU t dθθ τ τ τ

+
+ −=− Φ Φ∫  

 

Pre-multiply both sides by 
T
θ , one has 

 

1

0

2 *
0 0( , ) ( , ) 0

tT T

t
t E DU t dθ θ θ τ τ τ

+
+ −=− Φ Φ =∫  

 

due to (3.3), which implies 0θ = , hence the contradiction.                     
� 

 

From the proof of Theorem 3.1, the controllability of matrix 

DAE system from an arbitrary initial state to an arbitrary final 

state is equivalent to the controllability from an arbitrary initial 

state to the origin.   

    It is usually cumbersome to establish controllability of a 

control system through the controllability Gramian.  Our next 

step is to develop an alternative criterion for testing 

controllability without integration.  We would assume 

differentiability of the matrix coefficient functions in (2.1).  

Eventually, this new criterion will be applied to test the 

controllability of linear time-invariant matrix DAEs. 

 

Definition 3.3 Consider the matrix DAE system (2.1), with the 

assumption that all coefficient matrices in  (2.1) are 

differentiable, a sequence of n n×  matrix functions ( )kP t  

over ℑ  are defined recursively as follows, 

 

   (i) 0 ( ) ( ) ( )
T

P t E D t D t
+=                                                  (3.4) 

                       

  (ii) 1 1 1( ) ( ) ( ) ( ) ( ) ( )k k k kP t P t E A t P t P t B t
+

− − −= + +ɺ  

             1,2,...k =                                                   (3.5) 

   

                                                                             

The following lemmas will be used to prove a derivative 

formula involving the matrix functions ( )kP t  and state-

transition matrix functions +Φ  and −Φ . 

 

Lemma 3.1 Let ( )X t  be an invertible matrix function over 

ℑ .  Then,  

 

                      
1 1 1
( ) ( ) ( ) ( )X t X t X t X t

− − −=−ɺ ɺ                    (3.6) 

 

Proof:  Since 
1

( ) ( )X t X t I
− = , differentiate both sides with 

respect to  t  to get 
1 1

( ) ( ) ( ) ( ) 0X t X t X t X t
− −+ =ɺ ɺ .             � 
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Lemma 3.2 The following holds for all ,t s ∈ℑ  

 

* *
0( , ) ( ) ( , ) ( , ) ( ) ( , )

k

kk
t s P s t s t s P s t s

s
+ − + −

∂
Φ Φ =Φ Φ

∂
 
   , 1, 2,...k =       (3.7) 

 

Proof: Use mathematical induction. With 1k = , 

 

* * *
0 0 0( , ) ( ) ( , ) ( ) ( )t s P s t s P P s

s s
+ − + − + −

∂ ∂
Φ Φ = Φ Φ +Φ Φ

∂ ∂
 
  

ɺ  

*
0 ( )P

s
+ −

∂
+Φ Φ

∂
                                                  

                                                                                            (3.8) 

Recall that 
1

( , ) ( ) ( )t s X t X s
−

+ + +Φ = , where X+  is the 

fundamental matrix of the right-side subsystem EX AX=ɺ .  

According to Lemma 3.1, ( , ) ( , )t s t s E A
s

+
+ +

∂
Φ =−Φ

∂
.  On 

the other hand, 
1

* * *
( , ) ( ) ( )t s X s X t

−

− − −Φ = , where X−  is the 

fundamental matrix of the left-side subsystem 
*

X B X=ɺ .  

According to Lemma 3.1, it is easy to see 

 
1 1 1

* * * *
( ) ( ) ( ) ( )X s X s X s X s

− − −

− − − −=−ɺ ɺ  

 

Hence, 
* *
( , ) ( , )t s B t s

s
− −

∂
Φ =− Φ

∂
. After substituting these 

expressions in (3.8), one has 

 

*
0 0 0 0( , ) ( ) ( , ) [ ]t s P s t s E AP P P B

s

+
+ − + −

∂
Φ Φ =Φ − + − Φ

∂
 
  

ɺ  

*
1( , ) ( ) ( , )t s P s t s+ −=Φ Φ  

 

from (3.5).  Now, assume 

 
 

* *
0 

( , ) ( ) ( , ) ( , ) ( ) ( , )
 

n

nn
t s P s t s t s P s t s

s
+ − + −

∂
Φ Φ =Φ Φ

∂
 
    

 

Continue to differentiate both sides, 

 
1

* *
01

( , ) ( ) ( , ) [ ( , ) ( ) ( , )]

n

nn
t s P s t s t s P s t s

ss

+

+ − + −+

∂ ∂
Φ Φ = Φ Φ

∂∂
 
    

* * *
( ) ( ) ( )n n nP P s P

s s
+ − + − + −

∂ ∂
= Φ Φ +Φ Φ +Φ Φ

∂ ∂
ɺ  

[ ]n n nE AP P P B
+

+ −=Φ − + − Φɺ  

*
1( , ) ( ) ( , )nt s P s t s+ + −=Φ Φ  

 

due to  (3.5) with 1k n= + .                                                 � 

 

    The matrices ( )
k
P t  introduced in Definition 3.3 are useful 

for finding alternative criterion for state controllability of (2.1) 

along with additional smoothness condition on the system 

matrices all due to Lemma 3.2 and Definition 3.3. 

                                                                      

Theorem 3.2 Suppose the matrix functions in the linear time-

varying matrix DAE system (2.1) satisfy the smoothness 

condition, i.e., let ℓ be a positive integer, 
1

( ), ( )A t B t C
−

ℑ∈ ℓ
 

and ( ), ( )D t E t C
+

ℑ∈ ℓ
. Then, system (2.1) is completely state 

controllable if there exists tα ∈ℑ  such that the controllability 

matrix 

 

                0 1( ) [ ( ) ( ) ... ( )]c t P t P t P tα α α αΩ =
ℓ

            (3.9) 

 

is full row rank, i.e. ( ( ))cr t nαΩ = . 

 

Proof: Assume the DAE system (2.1) is not completely state 

controllable.  According to Theorem 3.1, the associated 

controllability Gramian 0 1( , )c t tℵ  must be singular.  Hence, 

there exists a non-zero constant vector  
n

υ ∈ℝ , such that 

0 1( , ) 0
T

c t tυ υℵ = , where 0 1( , )c t tℵ  is given by (3.1), which 

implies that 0( , ) ( ) ( ) 0
T

t t E t D tυ
+

+Φ =  for all t ∈ℑ .  Hence, 

*
0 0( , ) ( , ) 0

T T
t t E DD t tυ

+
+ −Φ Φ = , or from (3.4), 

 

                     
*

0 0 0( , ) ( ) ( , ) 0
T

t t P t t tυ + −Φ Φ = , t ∈ℑ          (3.10) 

 

Take k-derivatives of both sides of (3.10) with respect to t, 

according to Lemma 3.2, we have 

 

     
*

0 0( , ) ( ) ( , ) 0
T

kt t P t t tυ + −Φ Φ = , t ∈ℑ , 1,2,...,k = ℓ     (3.11) 

 

Let tβ  be an arbitrary point in ℑ , i.e. 0 1t t tβ< <  , due to 

Lemma 2.1, (3.10) and (3.11) can be combined as 

 

   
*

0( , ) ( ) ( , ) 0
T

ku t t P t t tβ+ −Φ Φ = , t ∈ℑ , 0,1, 2,...,k = ℓ   (3.12) 

 

where 0( , )
T T

u t tβυ += Φ . u  is a non-zero vector because 

0υ≠  and 0( , )t tβ+Φ  is invertible.  Now, substitute t tβ=  in 

(3.12) to get 
*

0( ) ( , ) 0
T

ku P t t tβ β−Φ =  or, since 
*

0( , )t tβ−Φ  is 

non-singular, ( ) 0,T
ku P tβ =  0,1,...,k = ℓ .  This is written as  

 

0 1[ ( ) ( ) ... ( )] ( ) 0
T T

cu P t P t P t u tβ β β β= Ω =
ℓ
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which implies that ( )c tβΩ  cannot be full row rank, i.e. 

( ( ))cr t nβΩ < , which contradicts the rank condition of the 

controllability matrix cΩ .                                                      �                            

                                                                          

Theorem 3.2 can be used to derive controllability criterion for 

linear time-invariant (LTI) matrix DAEs (2.1), in which all 

coefficient matrices are constant matrices.  To this end, an 

explicit formula is derived for the kP  matrices from the 

recursive relation (3.4) and (3.5) as follows, 

 

0

( 1) ( )
k

k k i T i
k

i

k
P E A E DD B

i

+ − +

=

= −
    

∑ , 0,1,2...k =  

                                                                                          (3.13)   

with the understanding that 
0

A I= , the identity matrix.  After 

kP  being substituted in the controllability matrix (3.9), with 

the help of elementary column block operations on cΩ , we 

obtain a controllability test for the LTI matrix DAE (2.1) in the 

following theorem. 

 

Theorem 3.3 The linear time-invariant matrix DAE system 

 

EX AX EXB DU= + +ɺ , 0 0( )X t X=  

 

is completely state controllable over ℑ  if either of the 

following controllability matrices is full rank, i.e. ( )lcr nΩ =  

or ( )rcr nΩ = , where 

  

1
... ( )

T T n T
lc DD E AE DD E A E DD

+ + + − +Ω =  
  

 

 

1
...

T T T n
rc DD E DD B E DD B

+ + −Ω =  
  

. 

                                                                                          (3.14) 

 

The observability of a control system is often considered as 

a dual problem of controllability for linear ODE systems. 

However, this may not be true for DAEs [16].  Observability is 

important for a control system because, if the system is 

observable, the outputs of the system can completely 

determine the states of the system.  On the other hand, if a 

system is not observable, it means some of the current states 

cannot be determined by the measurement of the outputs 

through sensors.  As such, a controller constructed based on 

these outputs do not fulfill the control specifications related to 

those unobservable states.  A formal definition for 

observability is given below. 

 

Definition 3.4 The matrix DAE systems (2.1) and (2.2) is said 

to be completely observable if for any 0t  and any initial state 

0 0( )X t X= , there exists a finite time 1 0t t>  such that, let 

0 1[ , ]t tℑ = , the control ( )U t  and output ( )Y t  for t ∈ℑ  

suffice to determine the initial state 0X . 

Without loss of generality, it can be assumed that the control 

( )U t  is identically zero throughout the time interval ℑ  [15].  

We have the following result on the observability of matrix 

DAE (2.1) and (2.2), with zero control input, via the 

observability Gramian matrix. 

 

Theorem 3.4 The matrix DAE system (2.1) and (2.2) is 

completely observable on ℑ  if and only if the observability 

Gramian matrix 

 

      
*

0 1 0 0( , ) ( , ) ( ) ( ) ( , )
T

o t t t F F t dτ τ τ τ τ+ +ℑ
ℵ = Φ Φ∫       (3.15) 

 

is positive definite. 

 

Proof:  Assume the observability Gramian matrix is positive 

definite, consider (2.1) and (2.2) with ( ) 0U t =  overℑ .  

According to (2.20), 
*

0 0 0( ) ( , ) ( , )X t t t X t t+ −=Φ Φ  over ℑ .  

Then, the output 
*

0 0 0( ) ( ) ( , ) ( , )Y t F t t t X t t+ −= Φ Φ .  Since 

1
* *

0 0( , ) ( , )t t t t
−

− −Φ =Φ , one has 

 

*
0 0 0( ) ( , ) ( ) ( , )F t t t X Y t t t+ −Φ = Φ . 

 

Pre-multiply both sides of the above equation by 

*
0( , ) ( )

T
t t F t+Φ  and integrate over ℑ , we have 

 

1 * *
0 0 1 0 0( , ) ( , ) ( ) ( ) ( , )

T
oX t t t F Y t dτ τ τ τ τ
−

+ −ℑ
= ℵ Φ Φ∫ . 

 

Therefore, the matrix DAE system (2.1) and (2.2) is 

completely observable. 

Conversely, assume the system is completely observable, we 

need to show that the observability Gramian matrix 0 1( , )o t tℵ  

is positive definite.  Obviously, 0 1( , )o t tℵ  is symmetric.  

Assume, however, 0 1( , )o t tℵ  is singular.  Then, there exists a 

non-zero vector 1
n

v ∈ℂ  such that 
*
1 0 1 1( , ) 0ov t t vℵ = .  From 

(3.15),  

 
2*

1 0 1 1 0 1( , ) ( ) ( , ) 0ov t t v F t v dτ τ τ+ℑ
ℵ = Φ =∫  

 

Hence, 0 1( ) ( , ) 0F t vτ τ+Φ ≡  over ℑ .  If we choose the initial 

condition 
*

0 1 1X v v= , which is a non-zero matrix.  The output 

is  

* *
0 1 1 0( ) ( ) ( , ) ( , ) 0Y t F t t t v v t t+ −= Φ Φ ≡  in ℑ . 

 

Hence, the initial state 
*

0 1 1X v v=  cannot be uniquely 

determined from the above equation.  This contradicts the 

condition that the system is completely observable.               � 
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Similar to the treatment of controllability, we will derive 

algebraic conditions on the observability of (2.1) and (2.2). 

 

Definition 3.5 A sequence of n n×  matrix functions ( )kQ t  

over ℑ  associated with the matrix DAE system (2.1) and (2.2) 

are defined recursively as follows, with the assumption that all 

coefficient matrices in  (2.1) and (2.2) are differentiable 

 

 (i) 0 ( ) ( ) ( )
T

Q t F t F t=                                                      (3.16) 

                       

 (ii) 1 1 1( ) ( ) ( ) ( ) ( ) ( )k k k kQ t Q t Q t E A t B t Q t
+

− − −= − −ɺ  

             1,2,...k =                                                 (3.17) 

      

Lemma 3.3 For all ,t s ∈ℑ , the following holds, 

 

* *
0( , ) ( ) ( , ) ( , ) ( ) ( , )

k

kk
t s Q t t s t s Q t t s

t
− + − +

∂
Φ Φ =Φ Φ

∂
 
   , 

    1,2,...k =                                                 (3.18) 

                                   

Notice that the recursive relation (3.16), (3.17) along with the 

derivative relation (3.18) are different from those for 

controllability, i.e. (3.4), (3.5), and (3.7).  The proof of Lemma 

3.3 is similar to that of Lemma 3.2 with the exception that 

Lemma 3.1 is not needed in the proof.   Lemma 3.3 can be 

used to prove the following observability theorem for time-

varying matrix DAE systems (2.1) and (2.2). 

 

Theorem 3.5 Suppose the matrix functions in the linear time-

varying matrix DAE system (2.1) and (2.2) satisfy the 

smoothness condition, i.e., 
1

( ), ( ), ( )A t B t E t C
+ −

ℑ∈ ℓ
 and 

( )F t Cℑ∈ ℓ
. Then, system (2.1) and (2.2) is completely 

observable if there exists tβ ∈ℑ  such that the observability 

matrix 

 

                                

0

1

( )

( )
( )

( )

o

l

Q t

Q t
t

Q t

β

β

β

β

Ω =

 
 
 
 
 
 
   

⋮
                            (3.19) 

                                                                          

is full column rank, i.e. ( ( ))or t nβΩ = . 

 

    For linear time-invariant DAE system (2.1) and (2.2), a 

binomial formula for mQ  is obtained from (3.16) and (3.17), 

 

0

( )
m

k T m k
m

k

m
Q B F F E A

k

+ −

=

=
    

∑ . 

 

Finally, we obtain the observability criteria for the LTI DAE 

system (2.1) and (2.2). 

 

Theorem 3.6 The linear time-invariant matrix DAE system 

with I/O structures is completely observable over ℑ  if either 

of the following observability matrices is full rank, i.e. 

( )lor nΩ =  or ( )ror nΩ = , where 

  

                

1
( )

T

T

lo

T n

F F

F FE A

F F E A

+

+ −

Ω =

 
 
 
 
 
 
 
 
 

⋮

   and  

1

T

T

ro

n T

F F

BF FE

B F FE
−

+

+

Ω =

 
 
 
 
 
 
 
 
 

⋮

.      

 

IV. CONCLUSION 

Controllability and observability criteria for the matrix 

differential algebraic systems (2.1) and (2.2) are derived for 

linear time-varying and linear time-invariant cases, 

respectively.  Due to the unique structure of the system, closed 

form solutions are obtained to construct the Gramians and 

recursive relations for the controllability and observability 

matrices.  The problem becomes more complicated if the 

descriptor matrix does not appear on the right side of (2.1) as a 

closed form solution may not be available for the new system.  

This is an ongoing research and our preliminary results 

indicate that certain systems can be transformed into the form 

of (2.1). 
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