
 

 

  
Abstract— Cardiovascular diseases are the biggest cause of 

deaths worldwide. Heart auscultation based on stethoscope is a 
noninvasive and a very low cost investigation approach that 
physician uses to evaluate diseases. To improve auscultation and 
diagnosis capabilities, a digital stethoscope and a set of digital audio 
signal processing algorithms have been developed to process 
adaptively sounds acquired from a couple of microphones embedded 
in the stethoscope head. Hard computing methods have been applied 
to the captured digital audio signal to detect cardiovascular diseases. 
Soft computing inference, such as fuzzy logic, is then proposed to 
reduce the computational burden of the automatic diseases 
identification process and to extend the method to the automatic 
detection of the physiological status of the subject. Finally 
multimodality and data fusion have been evaluated as methods to 
improve the diagnostic and identification of the system’s capability. 
 

Keywords— Noise cancellation, Automatic diagnosis, Cardiac 
diseases, Fuzzy classification, Phonocardiogram. 

I. INTRODUCTION 
ealthcare became more and more important in the last 
years due to economic impact that, mainly cardiovascular 
diseases, produce on the public medical care system. 

Early detection of incoming diseases is the best approach to 
prevent them. Physicians are able to execute a valid prevention 
of cardiovascular diseases by means of auscultation and 
interpretation of heart sounds. These capabilities are very 
effective for a huge number of cardiovascular diseases, and not 
exhaustive.  
Electronic systems can improve the ability of the physician in 
the detection of cardiac pathologies and shorten the diagnostic 
procedures. Digitalization of the signals that heart activity 
generates enables a huge extension of the subjective abilities 
of the physician to an early detection of an incoming 
cardiovascular disease.  
Many methods have been investigated to extract information 
from heart activity in order to diagnose cardiovascular 
pathologies. Some of these are invasive and require very 
expensive devices while  other methods are noninvasive and 
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cheap. 
The visual analysis of cardiac cycle is effective but expensive. 
The Magnetic Resonance Imaging, the Cardiac Computed 
Tomography or the Echocardiogram give an image 
representation of the whole heart activities [1]-[6]. The devices 
required to carry out  such measurements are complex and 
require expert physicians to operate with. 
Electrocardiogram (ECG) signal acquisition and processing 
[7]-[8] is not expensive and it is only partially invasive. The 
results are immediate and the cost is very limited compared to 
the visual analysis. 
Phonocardiogram (PCG) is an alternative to ECG that offers 
almost equivalent diagnostic capabilities at a very low cost. 
The basic diagnostic device is the stethoscope, an instrument 
that every physician owns. The skills of the physician play a 
key role for a successful diagnosis.  Only heart sounds are 
captured and amplified to the physician’ s hearing level, but no 
information is extracted from such sounds. All the diagnostic 
capabilities rely mainly on the physician’s skills and their 
nature is linguistic rather than crisp. 
The recent development of electronic stethoscopes [9]-[15] has 
enabled audio signal recording and processing of the heart and 
the pulmonary sounds. These new capabilities open a huge 
spectrum of diagnostic possibilities and potentially overcome 
the limitations due to the subjective nature of PCG-based 
diagnosis: automatic and/or assisted diagnosis can be more 
effective than any other methods and overcome the limitations 
of the physician’s skills. 
A key issue to build up a PCG-based automated diagnosis 
system concerns the acquisition of the heart sound signal and 
the extraction of  an optimal set of features from it. To perform 
this task the correlation of the audio features to pathologies 
needs to be achieved. Several relevant approaches are 
highlighted in the literature, [16]-[20]. 
The difficulty to perform accurate pathology detection based 
on the PCG is due to the complexity of the cardiac signal and 
the acoustic context in which such information occur. Human’s 
heart is like a four chambers pump. The two upper chambers 
(i.e. atrias) collect blood from veins and the two lower 
ventricles pump blood into arteries. Two sets of valves prevent 
the blood from flowing backwards (atria-ventricular/tricuspid 
and semi-lunar). There are two types of Cardiac sounds: 

•    sounds (or tones): short lived burst of vibratory energy; 
•    murmurs: turbulences and ebbs of blood through atria 

and ventricular valves. 
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Sounds are generated  by contractions of cardiac valves and by 
potential  cardiac action . Murmurs are caused by defect at 
birth or acquired impediments.  
Two primary sounds, named S1 and S2, are audible in all 
subjects (Fig. 1). The first (S1) is generated by the 
deceleration of blood during heart contraction (systole). It is a 
complex sound which consists of four distinct components: 
 

•   a low frequency vibrations originated by muscular 
contraction of the left ventricle; 

•   a high frequency vibration at the closure of mitral valves 
(M1); 

•   a high frequency vibration due to tricuspid valve closure 
(T1); 

•   a low frequency and low intensity vibration caused by 
the ejection of blood. 

 

 
Fig. 1  S1 and S2 tones in the PCG trace of a normal subject. 

 
The second tone (S2) is generated by the decontraction of the 
heart (diastole). It is a complex sound that consists of two 
components namely the aortic (A2) sound and the pulmonary 
(P2) sound. The time delay between these two sounds is less 
than 50 ms.  A2 and P2 have the same frequency content but 
differ in amplitude. A third tone (S3) is generated when the 
ventricular pressure is lower than the atria pressure during the 
diastole. A fourth tone (S4) is generated at the end of diastole 
when atria contractions make the blood to flow into relaxed 
ventricles. S1 and S2 are normal tones whereas S3 and S4 are 
pathologic tones. 
Murmurs are classified as: 
 

• systolic 
• diastolic 
• continuous 

 
These are described in terms of intensity, duration, and 
placement in the cardiac cycle. Each class includes a deeper 
classification level related to the time when they occur. 

Murmurs are sounds due to turbulences that modify the normal 
(laminar) flow of the blood that occurs when some cardiac 
diseases affect the subject. Such kind of sounds is like 
vibrations with frequency spectrum in the range 10 to 1500 
Hz. 

Cardiac sound frequencies are audible and they range from 
20 to 1000 Hz. These frequencies are audible but the 
background noise and audio artifacts limit the intelligibility. 
Then, background noise reduction is very important for the 
development of a reliable cardiac sounds recording. 

II. METHODS 
To develop a system for capturing and processing 

phonocardiogram signal targeted to the automatic diagnosis of 
cardiovascular diseases and/or to support the physician in the 
auscultation activity, a number of tasks need to be carried out, 
which are;: 
 

• cardiac sounds capturing and noise reduction 
• automatic signal quality estimation 
• automatic audio feature extraction and processing 
• automatic pathologies diagnosis by inference 

 
The frequency range of the cardiac signal is limited below 1 
kHz [11] as shown in Fig. 2. In this frequency range, adaptive 
methods for noise reduction can be very effective. 

 

 
Fig. 2         Fig. 2 Frequency range of the main cardiac sounds are all under 1 

kHz: S1 and S2 are under 100 Hz, 
  very close to low frequency audibility threshold. 

  
 

A. Cardiac sound capture and noise reduction 
The captured sound in the acoustic sensor in the head of a 

traditional stethoscope is a combination of the heart sound and  
the noise convolved by the band-pass filtering action of the 
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head. The signal processing model (Fig. 3) of this process is 
 

y = xh × hb + xn × hb, (1) 
where, 
 

xh is the heart sound signal, 
xn is the noise 
hb is the impulse response of the band-pass filter. 

 

 
 

Fig. 3 Signal and noise add and convolution in the head of a traditional 
stethoscope. 

 
 

The simpler filtering solutions would work if most part of 
the energy of the background noise is associated with high 
frequencies. Optimum filtering techniques must be considered 
(Fig. 4).  

 

 
Fig. 4  Filtering scheme for noise reduction at stethoscope head level. 

 
These algorithms move the noise reduction problem to a 

dynamic identification problem, but methods like standard 
Wiener filtering technique [12] which is based on a single-
channel acquisition are not applicable here as the noise 
reduction is strictly linked with a signal distortion that makes 
the traditional diagnosis impossible. If hw is the impulse 
response of the optimum Wiener filter, the output signal is y = 
hw × (xh + xn) × hb. This differs from the expected signal xh × 
hb. The distortions could be reduced using a multiple-channel 
algorithm [13], but in both, single and multiple channels’ 
cases, the noise has to be estimated in the operative conditions, 
i.e. when the stethoscope head is applied on the patient's body, 
without detecting the heart beat. As this condition cannot be 
satisfied, standard and multi-channel Wiener filtering methods 
cannot be successfully applied. 

The approach proposed in [30] uses a stethoscope head 
equipped with two small pipes. The first pipe directly connects 
to the stethoscope head, the second is just beside, as shown in 
Fig. 5.   

 

 
Fig. 5 Double microphones modified head stethoscope. 

 
A microphone has been integrated at the end of each of the 

two pipes close to the stethoscope head, an inner one to sense 
sound and the outer one to sense noise (the audio level of the 
heart sound is considered negligible outside the head). This 
microphones placement does not allow the application of the 
direct difference filtering model (Fig. 6); the noise is not 
exactly the same at both microphone ends, due to head and to 
the interaction with the patient’s body. 

 

 
 

Fig. 6 Direct difference method for noise reduction. 
 
Physical system response hwd (Fig. 7) needs to be estimated, 

considering that its time-variant dynamics depends on: 
 
•    type of stethoscope head 
•    patient’s build and posture 
•    position and pressure of the head over the patient’s 

body 
•    possible presence of clothes 

 
Adaptive filtering is then needed to perform optimal noise 
reduction to capture noise free audio signal at stethoscope 
head level. The filtering model needs to minimize the 
equation: 
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2( )wd i o wdh : s s hΕ = − ×   (2) 
 

Where, 
 

si is the signal from the inner microphone, 
so is the signal from the outer microphone. 

 
 

 
Fig. 7 Weighted difference method. 

 
 

The discrete form of (2) is as follow: 
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where, 
 

n is the number of coefficients of the filter, 
m is the number of the processed incoming samples. 
 

The minimum of (3) is unique and is the solution of the linear 
system hwd⋅A=B where; 
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for i, j = [1, n] 

 
After the transfer function hwd is estimated, the noise reduction 
could be effectively executed with the processing model of 
Fig. 7. 
 

 
 

B. Audiosignal quality evaluation 
Audio noise reduction at stethoscope head level is a necessary 
step but not sufficient to ensure that the audio signal quality is 
good enough to accomplish optimally the feature extraction 
process. The ability to identify automatically the cardio 
vascular pathologies evaluating the phonocardiogram depends 
on the quality of the sound. Such ability can be significantly 
reduced by high levels of external noise [9]-[15]. 
The proposed procedure to evaluate the signal quality consists 
of long-term signal analysis; 5-10 seconds windowed segments 
of the audio signal coming from stethoscope head are 
processed to extract the following features: 
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Zero Crossing Rate (ZCR) 
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Silence Ratio (SR) 

 

   
J

SFSR =                                              (8) 

 
Where,  

 
x(n) is the nth sample of the input data; 
w(n) is a window of N samples; 
xj is the jth frame; 
SF is the number of silent frames. 

 
RMS provides information about the energy of the signal, 

Hence it is a reliable indicator of valid amplitude levels; ZCR 
gives the rate at which the signal crosses the null value and 
therefore it is an indirect indicator of energy distribution 
through frequencies; SR is calculated through SF that is the 
number of frames with root mean square value less than 10% 
of the max (RMS).  
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More features can concur to signal quality evaluation such 
as stethoscope head off the patient body, head rubbing against 
the patient’s skin, and short-time spikes (e.g. 1000/fs samples). 

A frame-by-frame sound quality evaluation has been 
implemented by a simple fuzzy logic inference engine in order 
to avoid wrong diagnosis. 

C. End-pointing the cardiac cycle 
Sound captured and conditioned by the digital stethoscope is a 
continuous audio stream in which the cardiac sound cycles 
repeat in a continuous mode. The single period has to be 
isolated so that the processing and analyzing actions (the beat 
periods that embed normal tones, their time occurrence and the 
presence of pathological tones) could be executed correctly. In 
order to identify the single cardiac beat, end-pointing detecting 
techniques are applied [21]-[24].  
End-pointing the cardiac cycle is relatively simple for a normal 
subject, but this process becomes very complex for 
pathological subjects due to extra sounds such as murmur, 
third tone, and other sounds caused by pathologies mask S1 
and S2, which are the two main sound’s components that 
characterize the cardiac sound cycle. Fig. 8 shows some of 
these masking sounds. 

 
Fig. 8 Three different types of heart pathologies: pan-

systolic murmur, third tone, and aortic insufficiency. 
 

Several methods have been proposed for end-pointing cardiac 
cycles embedded in a continuous audio stream captured by the 
digital stethoscope. Peak identification is proposed in [25] and 
segmentation based on the multi-band wavelet energy is 
presented in [26]. In [15] RMS feature is the basic feature used 
in cardiac audio signal end-pointing. A further improvement of 
end-point detection algorithm can be achieved [27]. 
The method based on RMS feature [15] first proceeds to erase 
sounds generated by anomalies and pathologies. The audio 
stream is processed by a sixth order low pass Butterworth filter 
(poles located at 100 Hz). The effect of the filter applied to 
signals reported in Fig 8 is shown in Fig. 9.  

 
Fig. 9 Pan-systolic murmur, third tone, and aortic 

insufficiency after filtering. 
 

Then, the algorithm seeks frame-by-frame for RMSs satisfying 
the condition; 

 
)max(RMSRMS ⋅> γ   (9) 

 
where γ is a pre-fixed threshold. A right choice of γ allows 
rejection of short time spikes. 
Time intervals ΔTi,i+1 between two adjacent points over 
threshold γ·max(RMS) are then calculated and if the condition; 

 
δ>∆ +1,iiT    (10) 

 
is satisfied, both peaks are identified, however only the one 
with a biggest peak is retained.  
δ is a fixed time interval chosen considering that  heart beat 
has its frequency in the range 40 beats/min – 200 beats/min. 
Once heart sound cycle has been end-pointed the following 
combination of tones can occur: 

 
1. S1 and S2 only 
2. S1, S2 and a further tone 
3. S1, S2 and two other tones 

 
Fig. 10 shows an example of cardiac sound with evidence of 
such pathology together with its RMS and ZCR. An algorithm 
which correlates these parameters to diagnose murmurs has 
been designed and implemented [15]. 
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Fig. 10 Cardiac signal with systolic murmur and its 

associated RMS and ZCR. 
 

To successfully execute the end-point process, only S1 and S2 
tones needs to be visible. All other tones must be cancelled 
(reduced) as these could significantly mask the cardiac cycle 
marking tones S1 and S2. Such extra tones and sounds need to 
be flagged and removed. 
As an example, a portion of the signal can be flagged as 
murmur if: 

 
)max(RMSRMS ⋅< ς  (11) 

)max(ZCRZCR ⋅>η  (12) 
 

III. RESULTS 
All the above signal processing and identification processes 
have been  implemented into an integrated development 
environment (IDE), whose graphical user interface (GUI) is 
shown in Fig. 11 [15]. Such environment allows to load files 
containing cardiac sound acquired with any electronic 
stethoscope (.wav), to display the audio stream and its feature 
computed after the end-point process has successfully isolated 
the cardiac cycles. 
To test and validate the procedure, a set of 48 cardiac signals 
with different pathologies [28]-[34] have been processed with 
a success rate of 89.5%. The tests have been performed with: 
γ= 0.2,  δ= 0.15 s,  ε= 1.3. 

 
Fig. 11 Main window of the analysis software. 

 
The diagnosis algorithm applied to murmurs has been tested. 
In the cases where the above pathology is present its 
identification rate is 93.3%. Tests were performed with ζ = 0.5 
and η = 0.5.  

IV. DISCUSSION 
Modern signal processing techniques enable powerful 
diagnosis based on cardiac activity. PCG and ECG embed a 
huge number of audio and bioelectric features that are 
typically extracted from the signals. This expanded set of 
features allows physicians to diagnose various pathologies, but 
they are too complex to manage manually. Methods for feature 
representation and evaluation are necessary for supporting 
medical diagnosis.  
The phonocardiogram audio signal contains useful information 
about the condition of the heart, but physicians need to look at 
other signals to detect subtle details which are too difficult to 
evaluate by means of PNG alone. Multimodality and data 
fusion is a novel approach applied to the process of automatic 
detection of diseases. Phonocardiogram and electrocardiogram 
data needs can be captured separately by different modes 
(audio and electric) and evaluated jointly for achieving 
improved diagnosis. 
Computer based analysis of bioelectric heterogeneous 
information needs the application of an efficient data fusion 
approach [35]-[36]. Data fusion is an important methodology 
to correlate data from multiple sources and to infer about a 
possible disease or a physiological state of a subject. Fuzzy 
logic based data fusion is an optimal approach as it enables the 
emulation of the physician’s experience in evaluating multiple 
and heterogenic information in his diagnosis’ action. 
Tuning of a fuzzy logic engine is proposed (Fig. 12) to make 
inferences considering heart rate variability (HRV) from data 
coming from multiple bioelectric subsystems, the 
phonocardiogram and electrocardiogram. HRV is a 
physiological phenomenon that consists of the variability of 
intervals in the beat rate [37]. It reflects the activity of the 
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autonomic nervous system (ANS), so physicians can make an 
assessment for the cardiac health, trying to prevent 
cardiovascular diseases. 
The fuzzy engine makes epoch-by-epoch (20 or 60 seconds 
per epoch) inferences on HRV extracted from ECG and audio 
features extracted from PCG to evaluate the stress level in a 
subject. 

 
 
 

 
Fig. 12 Fuzzy-logic decision engine to decide about the 

behavioural state (stress level) of a subject from data detected 
by PCG and ECG subsystems. 

 
To fuzzify such features, membership functions are modeled 
based on the distribution of crisp features. Inferring rules are 
defined and tuned manually and  look like these: 

… 
if HRV(n) is Low and  
   ZCR(n) is Medium Low and 

      RMS(n) is Medium Low 
   then the epoch is RELAXED 
… 

if HRV(n) is High and 
   ZCR(n) is High and 

      RMS(n) is Medium 
   then the epoch is EXCITED 
… 
 
These rules are the strongest in determining the output, but 
more variants are in the rule set to recover some occurred false 
detections due to noise and artifacts. The output of the fuzzy 
logic-based subject physiological status consists of singleton 
membership functions. “Center of gravity” algorithm is 
applied to defuzzify the final decision. 
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